1
|
Brzyska A, Majewski S, Ponikiewski Ł, Zubik-Duda M, Lipke A, Gładysz-Płaska A, Sowa S. Benzophosphol-3-yl Triflates as Precursors of 1,3-Diarylbenzophosphole Oxides. J Org Chem 2023. [PMID: 37276533 DOI: 10.1021/acs.joc.2c02355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A simple method for the synthesis of 3-arylbenzophosphole oxides under Suzuki-Miyaura coupling conditions has been presented. It employs benzophosphol-3-yl triflate starting materials which, prior to our work, had not been used for the synthesis of 3-arylbenzophosphole oxides. The reactions proceed over 24 h and provide a library of 3-arylbenzophosphole oxides. The synthetic access to the benzophosphol-3-yl triflates has been improved. The preliminary photophysical properties of some 3-arylbenzophosphole oxides have been investigated by absorption and emission measurements. The theoretical calculations were performed to establish structure-property relationships.
Collapse
Affiliation(s)
- Agnieszka Brzyska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek St., Krakow PL-30-239, Poland
| | - Sebastian Majewski
- Department of Organic Chemistry and Crystallochemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University in Lublin, 33 Gliniana St., Lublin PL-20-614, Poland
| | - Łukasz Ponikiewski
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., Gdańsk PL-80-233, Poland
| | - Monika Zubik-Duda
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University in Lublin, PL-20-031 Lublin, Poland
| | - Agnieszka Lipke
- Institute of Chemical Sciences, Maria Curie-Sklodowska University in Lublin, 2/9 M. Curie-Sklodowska sq., Lublin PL-20-031, Poland
| | - Agnieszka Gładysz-Płaska
- Department of Inorganic Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University in Lublin, 2/13-15A M. Curie-Sklodowska sq., Lublin PL-20-031, Poland
| | - Sylwia Sowa
- Department of Organic Chemistry and Crystallochemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University in Lublin, 33 Gliniana St., Lublin PL-20-614, Poland
| |
Collapse
|
2
|
Development of new 1, 3-dihydroxyacridone derivatives as Akt pathway inhibitors in skeletal muscle cells. Bioorg Chem 2023; 130:106222. [DOI: 10.1016/j.bioorg.2022.106222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
|
3
|
Saylor JL, Basile ON, Li H, Hunter LM, Weaver A, Shellenberger BM, Ann Tom L, Ma H, Seeram NP, Henry GE. Phenolic furanochromene hydrazone derivatives: Synthesis, antioxidant activity, ferroptosis inhibition, DNA cleavage and DNA molecular docking studies. Bioorg Med Chem 2022; 75:117088. [PMID: 36372027 DOI: 10.1016/j.bmc.2022.117088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/19/2022] [Accepted: 11/01/2022] [Indexed: 11/08/2022]
Abstract
Twenty-four phenolic furanochromene hydrazone derivatives were designed and synthesized in order to evaluate structure-activity relationships in a series of antioxidant-related assays. The derivatives have varying substitution patterns on the phenol ring, with some compounds having one, two or three hydroxy groups, and others containing one hydroxy group in combination with methoxy, methyl, bromo, iodo and/or nitro groups. Antioxidant activity was determined using the DPPH free radical scavenging and CUPRAC assays. Compounds containing ortho-dihydroxy and para-dihydroxy patterns had the highest free radical scavenging activity, with IC50 values ranging from 5.0 to 28 μM. Similarly, derivatives with ortho-dihydroxy and para-dihydroxy patterns, together with a 4-hydroxy-3,5‑dimethoxy pattern, displayed strong copper (II) ion reducing capacity, using Trolox as a standard. Trolox equivalent antioxidant capacity (TEAC) coefficients for these derivatives ranged from 1.75 to 3.97. As further evidence of antioxidant potential, greater than half of the derivatives reversed erastin-induced ferroptosis in HaCaT cells. In addition, twenty-three of the derivatives were effective at cleaving supercoiled plasmid DNA in the presence of copper (II) ions at 1 mM, with the 3,4‑dihydroxy derivative showing cleavage to both the linear and open circular forms at 3.9 uM. The interaction of the phenolic furanochromene derivatives with DNA was confirmed by molecular docking studies, which revealed that all the derivatives bind favorably in the minor groove of DNA.
Collapse
Affiliation(s)
- Jessica L Saylor
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Olivia N Basile
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Huifang Li
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Lindsey M Hunter
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Ashton Weaver
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Blake M Shellenberger
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Lou Ann Tom
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Navindra P Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Geneive E Henry
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA.
| |
Collapse
|
4
|
Gampa M, Padmaja P, Khalivulla SI, Reddy PN. Synthesis and Antimicrobial and Antioxidant Activities of 1,2,3-Triazole-Tethered Xanthone Derivatives. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022060173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Gul S, Aslam K, Pirzada Q, Rauf A, Khalil AA, Semwal P, Bawazeer S, Al-Awthan YS, Bahattab OS, Al Duais MA, Thiruvengadam M. Xanthones: A Class of Heterocyclic Compounds with Anticancer Potential. Curr Top Med Chem 2022; 22:1930-1949. [PMID: 36056870 DOI: 10.2174/1568026622666220901145002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022]
Abstract
Xanthones (9H xanthen-9-one) are an important class of heterocyclic compounds containing oxygen and a moiety of gamma-pirone, dense with a two-benzene ring structure, distributed widely in nature. Naturally occurring xanthones are found in micro-organisms and higher plants as secondary metabolites in fungi and lichens. Compounds of the family Caryophyllaceae, Guttiferae and Gentianaceae, are the most common natural source of xanthones. The structure of the xanthones nucleus, coupled with its biogenetic source, imposes that the carbons are numbered according to the biosynthetic pact. The characteristics oxygenation pattern of xanthones earlier is mixed shikimateacetate biogenesis. The major class of xanthones includes simple oxygenated, non-oxygenated, xanthonolignoids, bisxanthones, prenylated and related xanthones, miscellaneous xanthones. Their great pharmacological importance and interesting scaffolds were highly encouraged by scientists to investigate either the synthesis design or natural products for cancer treatment. Because currently used antitumor drugs possess high toxicity and low selectivity, efficacious treatment may be compromised. This review is limited to the antitumor activity of xanthones and the chemistry of xanthone core, which may help provide fundamental knowledge to the medicinal chemist for new and advanced research in drug development.
Collapse
Affiliation(s)
- Somia Gul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jinnah University for Women, Karachi, 74600, Pakistan
| | - Khadija Aslam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jinnah University for Women, Karachi, 74600, Pakistan
| | - Quratulain Pirzada
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jinnah University for Women, Karachi, 74600, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, 23430, Khyber Pakhtunkhwa (KP), Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Prabhakar Semwal
- Department of Life Sciences, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Sami Bawazeer
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Yahya Saleh Al-Awthan
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Department of Biology, Faculty of Science, Ibb University, Ibb, Yemen
| | - Omar Salem Bahattab
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammed Ali Al Duais
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biochemistry Unit, Chemistry Department, Faculty of Science, Ibb University, Ibb, Yemen
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
6
|
Kurniawan YS, Priyangga KTA, Jumina, Pranowo HD, Sholikhah EN, Zulkarnain AK, Fatimi HA, Julianus J. An Update on the Anticancer Activity of Xanthone Derivatives: A Review. Pharmaceuticals (Basel) 2021; 14:1144. [PMID: 34832926 PMCID: PMC8625896 DOI: 10.3390/ph14111144] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022] Open
Abstract
The annual number of cancer deaths continues increasing every day; thus, it is urgent to search for and find active, selective, and efficient anticancer drugs as soon as possible. Among the available anticancer drugs, almost all of them contain heterocyclic moiety in their chemical structure. Xanthone is a heterocyclic compound with a dibenzo-γ-pyrone framework and well-known to have "privileged structures" for anticancer activities against several cancer cell lines. The wide anticancer activity of xanthones is produced by caspase activation, RNA binding, DNA cross-linking, as well as P-gp, kinase, aromatase, and topoisomerase inhibition. This anticancer activity depends on the type, number, and position of the attached functional groups in the xanthone skeleton. This review discusses the recent advances in the anticancer activity of xanthone derivatives, both from natural products isolation and synthesis methods, as the anticancer agent through in vitro, in vivo, and clinical assays.
Collapse
Affiliation(s)
- Yehezkiel Steven Kurniawan
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (Y.S.K.); (K.T.A.P.); (H.D.P.)
| | - Krisfian Tata Aneka Priyangga
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (Y.S.K.); (K.T.A.P.); (H.D.P.)
| | - Jumina
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (Y.S.K.); (K.T.A.P.); (H.D.P.)
| | - Harno Dwi Pranowo
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (Y.S.K.); (K.T.A.P.); (H.D.P.)
| | - Eti Nurwening Sholikhah
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia;
| | - Abdul Karim Zulkarnain
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (A.K.Z.); (H.A.F.)
| | - Hana Anisa Fatimi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (A.K.Z.); (H.A.F.)
| | - Jeffry Julianus
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Sanata Dharma, Yogyakarta 55282, Indonesia;
| |
Collapse
|
7
|
Ponikiewski Ł, Sowa S. Ring Opening of Triflates Derived from Benzophospholan-3-one Oxides by Aryl Grignard Reagents as a Route to 2-Ethynylphenyl(diaryl)phosphine Oxides. J Org Chem 2021; 86:14928-14941. [PMID: 34699223 PMCID: PMC8576819 DOI: 10.1021/acs.joc.1c01629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new simple method for the synthesis of 2-ethynylphenyl(diaryl)phosphine oxides via ring opening of benzophosphol-3-yl triflates has been developed. This process occurs via nucleophilic attack of a Grignard reagent at the phosphorus center, which results in ring opening and cleavage of a leaving group. The reaction proceeds under mild conditions and, within 15-60 min, leads to a library of previously unavailable 2-ethynylphenylphosphine oxides in yields up to 98%.
Collapse
Affiliation(s)
- Łukasz Ponikiewski
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza St. 11/12, Gdańsk PL-80-233, Poland
| | - Sylwia Sowa
- Department of Organic Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Marie Curie-Sklodowska University in Lublin, 33 Gliniana Street, Lublin PL-20-614, Poland
| |
Collapse
|
8
|
Gloeothece sp.-Exploiting a New Source of Antioxidant, Anti-Inflammatory, and Antitumor Agents. Mar Drugs 2021; 19:md19110623. [PMID: 34822494 PMCID: PMC8624295 DOI: 10.3390/md19110623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Bioactive lipidic compounds of microalgae, such as polyunsaturated fatty acids (PUFA) and carotenoids, can avoid or treat oxidation-associated conditions and diseases like inflammation or cancer. This study aimed to assess the bioactive potential of lipidic extracts obtained from Gloeothece sp.–using Generally Recognized as Safe (GRAS) solvents like ethanol, acetone, hexane:isopropanol (3:2) (HI) and ethyl lactate. The bioactive potential of extracts was assessed in terms of antioxidant (ABTS•+, DPPH•, •NO and O2•assays), anti-inflammatory (HRBC membrane stabilization and Cox-2 screening assay), and antitumor capacity (death by TUNEL, and anti-proliferative by BrdU incorporation assay in AGS cancer cells); while its composition was characterized in terms of carotenoids and fatty acids, by HPLC-DAD and GC-FID methods, respectively. Results revealed a chemopreventive potential of the HI extract owing to its ability to: (I) scavenge -NO• radical (IC50, 1258 ± 0.353 µg·mL−1); (II) inhibit 50% of COX-2 expression at 130.2 ± 7.4 µg·mL−1; (III) protect 61.6 ± 9.2% of lysosomes from heat damage, and (IV) induce AGS cell death by 4.2-fold and avoid its proliferation up to 40% in a concentration of 23.2 ± 1.9 µg·mL−1. Hence, Gloeothece sp. extracts, namely HI, were revealed to have the potential to be used for nutraceutical purposes.
Collapse
|
9
|
Zhang J, Mu K, Yang P, Feng X, Zhang D, Fan X, Wang Q, Mao S. Synthesis, antiepileptic effects, and structure-activity relationships of α-asarone derivatives: In vitro and in vivo neuroprotective effect of selected derivatives. Bioorg Chem 2021; 115:105179. [PMID: 34332232 DOI: 10.1016/j.bioorg.2021.105179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 11/15/2022]
Abstract
In the present study, we compared the antiepileptic effects of α-asarone derivatives to explore their structure-activity relationships using the PTZ-induced seizure model. Our research revealed that electron-donating methoxy groups in the 3,4,5-position on phenyl ring increased antiepileptic potency but the placement of other groups at different positions decreased activity. Besides, in allyl moiety, the optimal activity was reached with either an allyl or a 1-butenyl group in conjugation with the benzene ring. The compounds 5 and 19 exerted better neuroprotective effects against epilepsy in vitro (cell) and in vivo (mouse) models. This study provides valuable data for further exploration and application of these compounds as potential anti-seizure medicines.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Keman Mu
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Peng Yang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xinqian Feng
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Di Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiangyu Fan
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qiantao Wang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Shengjun Mao
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
10
|
Loureiro DRP, Soares JX, Maia A, Silva AMN, Rangel M, Azevedo CMG, Hansen SV, Ulven T, Pinto MMM, Reis S, Afonso CMM. One‐Pot Synthesis of Xanthone by Carbonylative Suzuki Coupling Reaction. ChemistrySelect 2021. [DOI: 10.1002/slct.202101394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Daniela R. P. Loureiro
- Department of Chemical Sciences Laboratory of Organic and Pharmaceutical Chemistry Faculty of Pharmacy University of Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
- Interdisciplinary Center of Marine and Environmental Investigation (CIIMAR/CIMAR) Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n 4050-208 Matosinhos Porto Portugal
- LAQV-REQUIMTE Department of Chemical Sciences Laboratory of Applied Chemistry Faculty of Pharmacy University of Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - José X. Soares
- LAQV-REQUIMTE Department of Chemical Sciences Laboratory of Applied Chemistry Faculty of Pharmacy University of Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - Ana Maia
- Department of Chemical Sciences Laboratory of Organic and Pharmaceutical Chemistry Faculty of Pharmacy University of Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - André M. N. Silva
- LAQV-REQUIMTE Department of Chemistry and Biochemistry Faculty of Sciences University of Porto Faculty of Sciences University of Porto Campo Alegre Street 4169-007 Porto Portugal
| | - Maria Rangel
- LAQV-REQUIMTE Instituto de Ciências Biomédicas Abel Salazar University of Porto José Viterbo Ferreira Street No. 228 4050-313 Porto Portugal
| | - Carlos M. G. Azevedo
- Department of Physics Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Steffen V. Hansen
- Department of Physics Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Trond Ulven
- Department of Drug Design and Pharmacology University of Copenhagen Universitetsparken 2 2100 Copenhagen Denmark
| | - Madalena M. M. Pinto
- Department of Chemical Sciences Laboratory of Organic and Pharmaceutical Chemistry Faculty of Pharmacy University of Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
- Interdisciplinary Center of Marine and Environmental Investigation (CIIMAR/CIMAR) Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n 4050-208 Matosinhos Porto Portugal
| | - Salette Reis
- LAQV-REQUIMTE Department of Chemical Sciences Laboratory of Applied Chemistry Faculty of Pharmacy University of Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - Carlos M. M. Afonso
- Department of Chemical Sciences Laboratory of Organic and Pharmaceutical Chemistry Faculty of Pharmacy University of Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
- Interdisciplinary Center of Marine and Environmental Investigation (CIIMAR/CIMAR) Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n 4050-208 Matosinhos Porto Portugal
| |
Collapse
|
11
|
Xu YZ, Tian JW, Sha F, Li Q, Wu XY. Concise Synthesis of Chromene/Chromane-Type Aryne Precursors and Their Applications. J Org Chem 2021; 86:6765-6779. [PMID: 33852309 DOI: 10.1021/acs.joc.1c00493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The gram-scale synthesis of 5,6-, 6,7-, and 7,8-chromene/chromane-type aryne precursors and their applications in regioselective transformation to other functional derivatives is reported. Chromene/chromane-type arynes are generated under mild conditions, which can further undergo [2 + 2], [3 + 2], and [4 + 2] cycloaddition reactions, nucleophilic addition reactions, and σ-insertion reactions to produce structurally novel substituted chromenes and chromanes. The excellent regioselectivity of the reaction is facilitated by the oxygen-containing guiding groups at the ortho-position of the triple bond, which can be removed or switched to other functional groups including alkenyl, aryl, heteroaryl, and arylamino groups.
Collapse
Affiliation(s)
- Yuan-Ze Xu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Jia-Wei Tian
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Feng Sha
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Qiong Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Xin-Yan Wu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| |
Collapse
|
12
|
From Natural Products to New Synthetic Small Molecules: A Journey through the World of Xanthones. Molecules 2021; 26:molecules26020431. [PMID: 33467544 PMCID: PMC7829950 DOI: 10.3390/molecules26020431] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
This work reviews the contributions of the corresponding author (M.M.M.P.) and her research group to Medicinal Chemistry concerning the isolation from plant and marine sources of xanthone derivatives as well as their synthesis, biological/pharmacological activities, formulation and analytical applications. Although her group activity has been spread over several chemical families with relevance in Medicinal Chemistry, the main focus of the investigation and research has been in the xanthone family. Xanthone derivatives have a variety of activities with great potential for therapeutic applications due to their versatile framework. The group has contributed with several libraries of xanthones derivatives, with a variety of activities such as antitumor, anticoagulant, antiplatelet, anti-inflammatory, antimalarial, antimicrobial, hepatoprotective, antioxidant, and multidrug resistance reversal effects. Besides therapeutic applications, our group has also developed xanthone derivatives with analytical applications as chiral selectors for liquid chromatography and for maritime application as antifouling agents for marine paints. Chemically, it has been challenging to afford green chemistry methods and achieve enantiomeric purity of chiral derivatives. In this review, the structures of the most significant compounds will be presented.
Collapse
|
13
|
França F, Silva PMA, Soares JX, Henriques AC, Loureiro DRP, Azevedo CMG, Afonso CMM, Bousbaa H. A Pyranoxanthone as a Potent Antimitotic and Sensitizer of Cancer Cells to Low Doses of Paclitaxel. Molecules 2020; 25:E5845. [PMID: 33322077 PMCID: PMC7764177 DOI: 10.3390/molecules25245845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
Microtubule-targeting agents (MTAs) remain a gold standard for the treatment of several cancer types. By interfering with microtubules dynamic, MTAs induce a mitotic arrest followed by cell death. This antimitotic activity of MTAs is dependent on the spindle assembly checkpoint (SAC), which monitors the integrity of the mitotic spindle and proper chromosome attachments to microtubules in order to ensure accurate chromosome segregation and timely anaphase onset. However, the cytotoxic activity of MTAs is restrained by drug resistance and/or toxicities, and had motivated the search for new compounds and/or alternative therapeutic strategies. Here, we describe the synthesis and mechanism of action of the xanthone derivative pyranoxanthone 2 that exhibits a potent anti-growth activity against cancer cells. We found that cancer cells treated with the pyranoxanthone 2 exhibited persistent defects in chromosome congression during mitosis that were not corrected over time, which induced a prolonged SAC-dependent mitotic arrest followed by massive apoptosis. Importantly, pyranoxanthone 2 was able to potentiate apoptosis of cancer cells treated with nanomolar concentrations of paclitaxel. Our data identified the potential of the pyranoxanthone 2 as a new potent antimitotic with promising antitumor potential, either alone or in combination regimens.
Collapse
Affiliation(s)
- Fábio França
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), University Institute of Health Sciences (IUCS), Rua Central de Gandra, 1317, 4585-322 Gandra, Portugal; (F.F.); (P.M.A.S.); (A.C.H.)
- Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139 Faro, Portugal
| | - Patrícia M. A. Silva
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), University Institute of Health Sciences (IUCS), Rua Central de Gandra, 1317, 4585-322 Gandra, Portugal; (F.F.); (P.M.A.S.); (A.C.H.)
| | - José X. Soares
- LAQV-REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Ana C. Henriques
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), University Institute of Health Sciences (IUCS), Rua Central de Gandra, 1317, 4585-322 Gandra, Portugal; (F.F.); (P.M.A.S.); (A.C.H.)
- Interdisciplinary Center of Marine and Environmental Investigation (CIIMAR/CIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal;
| | - Daniela R. P. Loureiro
- Interdisciplinary Center of Marine and Environmental Investigation (CIIMAR/CIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal;
- Department of Chemical Sciences, Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Carlos M. G. Azevedo
- Department of Chemical Sciences, Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Carlos M. M. Afonso
- Interdisciplinary Center of Marine and Environmental Investigation (CIIMAR/CIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal;
- Department of Chemical Sciences, Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Hassan Bousbaa
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), University Institute of Health Sciences (IUCS), Rua Central de Gandra, 1317, 4585-322 Gandra, Portugal; (F.F.); (P.M.A.S.); (A.C.H.)
- Interdisciplinary Center of Marine and Environmental Investigation (CIIMAR/CIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal;
| |
Collapse
|
14
|
Loureiro DRP, Magalhães ÁF, Soares JX, Pinto J, Azevedo CMG, Vieira S, Henriques A, Ferreira H, Neves N, Bousbaa H, Reis S, Afonso CMM, Pinto MMM. Yicathins B and C and Analogues: Total Synthesis, Lipophilicity and Biological Activities. ChemMedChem 2020; 15:749-755. [PMID: 32162478 DOI: 10.1002/cmdc.201900735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/03/2020] [Indexed: 12/19/2022]
Abstract
Natural products have always been an important source of new hits and leads in drug discovery, with the marine environment being regarded as a significant source of novel and exquisite bioactive compounds. Yicathins B and C are two marine-derived xanthones that have shown antibacterial and antifungal activity. Herein, the total synthesis of these yicathins and six novel analogues is reported for the first time. As marine natural products tend to have very lipophilic scaffolds, the lipophilicity of yicathins and their analogues was evaluated in the classical octanol/water system and a biomimetic model-based system. As the xanthonic nucleus is a "privileged structure", other biological activities were evaluated, namely antitumor and anti-inflammatory activities. An interesting anti-inflammatory activity was identified for yicathin analogues that paves the way for the design of dual activity (anti-infective and anti-inflammatory) marine-inspired xanthone derivatives.
Collapse
Affiliation(s)
- Daniela R P Loureiro
- Department of Chemical Sciences, Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.,Interdisciplinary Center of Marine and Environmental Investigation (CIIMAR/CIMAR) Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208, Matosinhos Porto, Portugal
| | - Álvaro F Magalhães
- Department of Chemical Sciences, Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - José X Soares
- LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Joana Pinto
- Department of Chemical Sciences, Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Carlos M G Azevedo
- Department of Chemical Sciences, Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Sara Vieira
- I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Parque de Ciência e Tecnologia - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal.,ICVS/3B's -, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Henriques
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116, Gandra PRD, Portugal
| | - Helena Ferreira
- I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Parque de Ciência e Tecnologia - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal.,ICVS/3B's -, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Neves
- I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Parque de Ciência e Tecnologia - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal.,ICVS/3B's -, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - Hassan Bousbaa
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116, Gandra PRD, Portugal
| | - Salette Reis
- LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Carlos M M Afonso
- Department of Chemical Sciences, Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.,Interdisciplinary Center of Marine and Environmental Investigation (CIIMAR/CIMAR) Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208, Matosinhos Porto, Portugal
| | - Madalena M M Pinto
- Department of Chemical Sciences, Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.,Interdisciplinary Center of Marine and Environmental Investigation (CIIMAR/CIMAR) Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208, Matosinhos Porto, Portugal
| |
Collapse
|
15
|
Klein-Júnior LC, Campos A, Niero R, Corrêa R, Vander Heyden Y, Filho VC. Xanthones and Cancer: from Natural Sources to Mechanisms of Action. Chem Biodivers 2020; 17:e1900499. [PMID: 31794156 DOI: 10.1002/cbdv.201900499] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022]
Abstract
Xanthones are a class of heterocyclic natural products that have been widely studied for their pharmacological potential. In fact, they have been serving as scaffolds for the design of derivatives focusing on drug development. One of the main study targets of xanthones is their anticancer activity. Several compounds belonging to this class have already demonstrated cytotoxic and antitumor effects, making it a promising group for further exploration. This review therefore focuses on recently published studies, emphasizing their natural and synthetic sources and describing the main mechanisms of action responsible for the anticancer effect of promising xanthones.
Collapse
Affiliation(s)
- Luiz C Klein-Júnior
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí - UNIVALI, 88302-901, Itajaí, Brazil
| | - Adriana Campos
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí - UNIVALI, 88302-901, Itajaí, Brazil
| | - Rivaldo Niero
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí - UNIVALI, 88302-901, Itajaí, Brazil
| | - Rogério Corrêa
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí - UNIVALI, 88302-901, Itajaí, Brazil
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel - VUB, B-1090, Brussels, Belgium
| | - Valdir Cechinel Filho
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí - UNIVALI, 88302-901, Itajaí, Brazil
| |
Collapse
|
16
|
Sousa D, Matthiesen R, Lima RT, Vasconcelos MH. Deep Sequencing Analysis Reveals Distinctive Non-Coding RNAs When Comparing Tumor Multidrug-Resistant Cells and Extracellular Vesicles with Drug-Sensitive Counterparts. Cancers (Basel) 2020; 12:cancers12010200. [PMID: 31947507 PMCID: PMC7016831 DOI: 10.3390/cancers12010200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistance (MDR) is one of the main limitations of cancer treatment. The overexpression of drug-efflux pumps, such as P-glycoprotein (P-gp), is a major cause of MDR. Importantly, different studies have shown that extracellular vesicles (EVs) participate in the communication between MDR cells and drug-sensitive counterparts, promoting dissemination of the MDR phenotype. In the present work, we aimed to identify RNA species present in MDR cells and in EVs released by those cells, which may be associated with the MDR phenotype. The RNA content from two pairs (leukemia and lung cancer) of MDR (P-gp overexpressing) cells and their drug-sensitive counterparts, as well as from their EVs, was analyzed by deep sequencing. Our results showed distinctive transcripts for MDR cells and their EVs, when compared with their drug-sensitive counterparts. Remarkably, two pseudogenes (a novel pseudogene and RNA 5.8S ribosomal pseudogene 2) were found to be increased in EVs released by MDR cells in both leukemia and lung cancer models. Moreover, six miRs (miR-204-5p, miR-139-5p, miR-29c-5p, miR-551b-3p, miR-29b-2-5p, and miR-204-3p) exhibited altered levels in lung cancer MDR cells and their EVs. This study provides insights into the contribution of EVs to MDR.
Collapse
Affiliation(s)
- Diana Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (D.S.); (R.T.L.)
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- Department of Biological Sciences, FFUP—Faculty of Pharmacy of the University of Porto, 4050-313 Porto, Portugal
| | - Rune Matthiesen
- Computational and Experimental Biology Group, CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
- Correspondence: (R.M.); (M.H.V.); Tel.: +351-939-218-696 (R.M.); +351-225-570-772 (M.H.V.)
| | - Raquel T. Lima
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (D.S.); (R.T.L.)
- Department of Pathology, FMUP—Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- Cancer Signalling & Metabolism Group, IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - M. Helena Vasconcelos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (D.S.); (R.T.L.)
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- Department of Biological Sciences, FFUP—Faculty of Pharmacy of the University of Porto, 4050-313 Porto, Portugal
- Correspondence: (R.M.); (M.H.V.); Tel.: +351-939-218-696 (R.M.); +351-225-570-772 (M.H.V.)
| |
Collapse
|
17
|
Resende DISP, Durães F, Maia M, Sousa E, Pinto MMM. Recent advances in the synthesis of xanthones and azaxanthones. Org Chem Front 2020. [DOI: 10.1039/d0qo00659a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A useful chemical toolbox for (aza)xanthones from 2012 to 2020 that covers the optimization of known procedures and novel methodologies.
Collapse
Affiliation(s)
- Diana I. S. P. Resende
- CIIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental
- Terminal de Cruzeiros do Porto de Leixões
- 4450-208 Matosinhos
- Portugal
- Laboratório de Química Orgânica e Farmacêutica
| | - Fernando Durães
- CIIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental
- Terminal de Cruzeiros do Porto de Leixões
- 4450-208 Matosinhos
- Portugal
- Laboratório de Química Orgânica e Farmacêutica
| | - Miguel Maia
- CIIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental
- Terminal de Cruzeiros do Porto de Leixões
- 4450-208 Matosinhos
- Portugal
- Laboratório de Química Orgânica e Farmacêutica
| | - Emília Sousa
- CIIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental
- Terminal de Cruzeiros do Porto de Leixões
- 4450-208 Matosinhos
- Portugal
- Laboratório de Química Orgânica e Farmacêutica
| | - Madalena M. M. Pinto
- CIIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental
- Terminal de Cruzeiros do Porto de Leixões
- 4450-208 Matosinhos
- Portugal
- Laboratório de Química Orgânica e Farmacêutica
| |
Collapse
|
18
|
Pinto P, Machado CM, Moreira J, Almeida JDP, Silva PMA, Henriques AC, Soares JX, Salvador JAR, Afonso C, Pinto M, Bousbaa H, Cidade H. Chalcone derivatives targeting mitosis: synthesis, evaluation of antitumor activity and lipophilicity. Eur J Med Chem 2019; 184:111752. [PMID: 31610374 DOI: 10.1016/j.ejmech.2019.111752] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/22/2019] [Accepted: 10/01/2019] [Indexed: 02/08/2023]
Abstract
This study describes the synthesis of a series of chalcones, including pyrazole and α,β-epoxide derivatives, and evaluation of their cell growth inhibitory activity in three human tumor cell lines, as well as their lipophilicity using liposomes as a biomimetic membrane model. Structure-activity and structure-lipophilicity relationships were established for the synthetized chalcones. From this work, nine chalcones (3, 5, 9, 11, 15-19) showing suitable drug-like lipophilicity with potent growth inhibitory activity were identified, being the growth inhibitory effect of compounds 15-17 associated with a pronounced antimitotic effect. Compounds 15-17 affected spindle assembly and, as a consequence, arrested cells at metaphase in NCI-H460 cells, culminating in cell death. Amongst the compounds tested, compound 15 exhibited the highest antimitotic activity as revealed by mitotic index calculation. Moreover, 15 was able to enhance chemosensitivity of tumor cells to low doses of paclitaxel in NCI-H460 cells. The results indicate that 15 exerts its antiproliferative activity by affecting microtubules and causing cell death subsequently to a mitotic arrest, and thus has the potential for antitumor activity.
Collapse
Affiliation(s)
- Patricia Pinto
- Laboratório de Química Farmacêutica, Faculdade de Farmácia, Universidade de Coimbra, Pólo III - Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-354, Coimbra, Portugal
| | - Carmen Mariana Machado
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Joana Moreira
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/n, 4450-208, Matosinhos, Portugal
| | - José Diogo P Almeida
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Rua Central de Gandra 1317, 4585-116, Gandra PRD, Portugal
| | - Patrícia M A Silva
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Rua Central de Gandra 1317, 4585-116, Gandra PRD, Portugal
| | - Ana C Henriques
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Rua Central de Gandra 1317, 4585-116, Gandra PRD, Portugal
| | - José X Soares
- LAQV-REQUIMTE, Laboratório de Química Aplicada, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Jorge A R Salvador
- Laboratório de Química Farmacêutica, Faculdade de Farmácia, Universidade de Coimbra, Pólo III - Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-354, Coimbra, Portugal; Centro de Neurociências e Biologia Celular, Coimbra, Portugal
| | - Carlos Afonso
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/n, 4450-208, Matosinhos, Portugal
| | - Madalena Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/n, 4450-208, Matosinhos, Portugal
| | - Hassan Bousbaa
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Rua Central de Gandra 1317, 4585-116, Gandra PRD, Portugal.
| | - Honorina Cidade
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/n, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
19
|
Enantioseparation, recognition mechanisms and binding of xanthones on human serum albumin by liquid chromatography. Bioanalysis 2019; 11:1255-1274. [PMID: 31298568 DOI: 10.4155/bio-2019-0074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: To develop a method for enantioseparation of several chiral derivatives of xanthones (CDXs) by LC using a human serum albumin-chiral stationary phase (HSA-CSP) and screening CDX-HSA affinity. Additionally, recognition mechanisms were investigated. Materials & methods: The influence of organic modifier, buffer type, pH and ionic strength of mobile phase, and temperature were explored. The affinity was determined by measuring the retention times and further calculation of bound percentage. Chiral recognition mechanisms were investigated by docking. Results: Enantioselectivity and resolution values ranged from 1.40 to 9.16 and 1.51 to 4.97. Bound percentages ranged from 79.02 to 99.99%. Conclusion: LC systematic study and binding affinity of CDXs on HSA-CSP are presented here for the first time, expanding the applications of HSA-CSP for this class of compounds.
Collapse
|
20
|
1,2-Dihydroxyxanthone: Effect on A375-C5 Melanoma Cell Growth Associated with Interference with THP-1 Human Macrophage Activity. Pharmaceuticals (Basel) 2019; 12:ph12020085. [PMID: 31167479 PMCID: PMC6630936 DOI: 10.3390/ph12020085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
Xanthones have been suggested as prospective candidates for cancer treatment. 1,2- dihydroxyxanthone (1,2-DHX) is known to interfere with the growth of several cancer cell lines. We investigated the effects of 1,2-DHX on the growth of the A375-C5 melanoma cell line and THP-1 human macrophage activity. 1,2-DHX showed a moderate growth inhibition of A375-C5 melanoma cells (concentration that causes a 50% inhibition of cell growth (GI50) = 55.0 ± 2.3 µM), but strongly interfered with THP-1 human macrophage activity. Supernatants from lipopolysaccharide (LPS)-stimulated THP-1 macrophage cultures exposed to 1,2-DHX significantly increased growth inhibition of A375-C5 cells, when compared to supernatants from untreated LPS-stimulated macrophages or to direct treatment with 1,2-DHX only. 1,2-DHX decreased THP-1 secretion of interleukin-1β (IL-1β) and interleukin-10 (IL-10), but stimulated tumor necrosis factor-α (TNF-α) and transforming growth factor-β1 (TGF-β1) production. This xanthone also inhibited nitric oxide (NO) production by RAW 264.7 murine macrophages, possibly through inhibition of inducible NO synthase production. In conclusion, these findings suggest a potential impact of 1,2-DHX in melanoma treatment, not only due to a direct effect on cancer cells but also by modulation of macrophage activity.
Collapse
|
21
|
Fernandes C, Carraro ML, Ribeiro J, Araújo J, Tiritan ME, Pinto MMM. Synthetic Chiral Derivatives of Xanthones: Biological Activities and Enantioselectivity Studies. Molecules 2019; 24:E791. [PMID: 30813236 PMCID: PMC6412826 DOI: 10.3390/molecules24040791] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Many naturally occurring xanthones are chiral and present a wide range of biological and pharmacological activities. Some of them have been exhaustively studied and subsequently, obtained by synthesis. In order to obtain libraries of compounds for structure activity relationship (SAR) studies as well as to improve the biological activity, new bioactive analogues and derivatives inspired in natural prototypes were synthetized. Bioactive natural xanthones compromise a large structural multiplicity of compounds, including a diversity of chiral derivatives. Thus, recently an exponential interest in synthetic chiral derivatives of xanthones (CDXs) has been witnessed. The synthetic methodologies can afford structures that otherwise could not be reached within the natural products for biological activity and SAR studies. Another reason that justifies this trend is that both enantiomers can be obtained by using appropriate synthetic pathways, allowing the possibility to perform enantioselectivity studies. In this work, a literature review of synthetic CDXs is presented. The structures, the approaches used for their synthesis and the biological activities are described, emphasizing the enantioselectivity studies.
Collapse
Affiliation(s)
- Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| | - Maria Letícia Carraro
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - João Ribeiro
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Joana Araújo
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria Elizabeth Tiritan
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
- Cooperativa de Ensino Superior, Politécnico e Universitário (CESPU), Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal.
| | - Madalena M M Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| |
Collapse
|
22
|
Structures, Activities and Drug-Likeness of Anti-Infective Xanthone Derivatives Isolated from the Marine Environment: A Review. Molecules 2019; 24:molecules24020243. [PMID: 30634698 PMCID: PMC6359551 DOI: 10.3390/molecules24020243] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/24/2022] Open
Abstract
Marine organisms represent almost half of total biodiversity and are a very important source of new bioactive substances. Within the varied biological activities found in marine products, their antimicrobial activity is one of the most relevant. Infectious diseases are responsible for high levels of morbidity and mortality and many antimicrobials lose their effectiveness with time due to the development of resistance. These facts justify the high importance of finding new, effective and safe anti-infective agents. Among the variety of biological activities of marine xanthone derivatives, one that must be highlighted is their anti-infective properties. In this work, a literature review of marine xanthones with anti-infective activity, namely antibacterial, antifungal, antiparasitic and antiviral, is presented. Their structures, biological activity, sources and the methods used for bioactivity evaluation are described. The xanthone derivatives are grouped in three sets: xanthones, hydroxanthones and glycosylated derivatives. Moreover, molecular descriptors, biophysico-chemical properties, and pharmacokinetic parameters were calculated, and the chemical space occupied by marine xanthone derivatives is recognized. The chemical space was compared with marketed drugs and framed accordingly to the drug-likeness concept in order to profile the pharmacokinetic of anti-infective marine xanthone derivatives.
Collapse
|
23
|
Ribeiro J, Veloso C, Fernandes C, Tiritan ME, Pinto MMM. Carboxyxanthones: Bioactive Agents and Molecular Scaffold for Synthesis of Analogues and Derivatives. Molecules 2019; 24:E180. [PMID: 30621303 PMCID: PMC6337274 DOI: 10.3390/molecules24010180] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 11/16/2022] Open
Abstract
Xanthones represent a structurally diverse group of compounds with a broad range of biological and pharmacological activities, depending on the nature and position of various substituents in the dibenzo-γ-pyrone scaffold. Among the large number of natural and synthetic xanthone derivatives, carboxyxanthones are very interesting bioactive compounds as well as important chemical substrates for molecular modifications to obtain new derivatives. A remarkable example is 5,6-dimethylxanthone-4-acetic acid (DMXAA), a simple carboxyxanthone derivative, originally developed as an anti-tumor agent and the first of its class to enter phase III clinical trials. From DMXAA new bioactive analogues and derivatives were also described. In this review, a literature survey covering the report on carboxyxanthone derivatives is presented, emphasizing their biological activities as well as their application as suitable building blocks to obtain new bioactive derivatives. The data assembled in this review intends to highlight the therapeutic potential of carboxyxanthone derivatives and guide the design for new bioactive xanthone derivatives.
Collapse
Affiliation(s)
- João Ribeiro
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Cláudia Veloso
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| | - Maria Elizabeth Tiritan
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
- Cooperativa de Ensino Superior, Politécnico e Universitário (CESPU), Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal.
| | - Madalena M M Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| |
Collapse
|
24
|
Urbatzka R, Freitas S, Palmeira A, Almeida T, Moreira J, Azevedo C, Afonso C, Correia-da-Silva M, Sousa E, Pinto M, Vasconcelos V. Lipid reducing activity and toxicity profiles of a library of polyphenol derivatives. Eur J Med Chem 2018; 151:272-284. [PMID: 29626799 DOI: 10.1016/j.ejmech.2018.03.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/05/2018] [Accepted: 03/12/2018] [Indexed: 11/27/2022]
Abstract
Obesity is an increasing epidemic worldwide and novel treatments are urgently needed. Polyphenols are natural compounds derived from plants, which are known in particular for their antioxidant properties. However, some polyphenols were described to possess anti-obesity activities in vitro and in vivo. In this study, we aimed to screen a library of 85 polyphenol derivatives for their lipid reducing activity and toxicity. Compounds were analyzed at 5 μM with the zebrafish Nile red fluorescence fat metabolism assay and for general toxicity in vivo. To improve the safety profile, compounds were screened at 50 μM in murine preadipocytes in vitro for cytotoxicity. Obtained activity data were used to create a 2D-QSAR (quantitative structure activity relationship) model. 38 polyphenols showed strong lipid reducing activity. Toxicity analysis revealed that 18 of them did not show any toxicity in vitro or in vivo. QSAR analysis revealed the importance of the number of rings, fractional partial positively charged surface area, relative positive charge, relative number of oxygen atoms, and partial negative surface area for lipid-reducing activity. The five most potent compounds with EC50 values in the nanomolar range for lipid reducing activity and without any toxic effects are strong candidates for future research and development into anti-obesity drugs. Molecular profiling for fasn, sirt1, mtp and ppary revealed one compound that reduced significantly fasn mRNA expression.
Collapse
Affiliation(s)
- Ralph Urbatzka
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| | - Sara Freitas
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Andreia Palmeira
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Tiago Almeida
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - João Moreira
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Carlos Azevedo
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Carlos Afonso
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Marta Correia-da-Silva
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Emilia Sousa
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Madalena Pinto
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Vitor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4069-007, Porto, Portugal
| |
Collapse
|
25
|
Loureiro DRP, Soares JX, Lopes D, Macedo T, Yordanova D, Jakobtorweihen S, Nunes C, Reis S, Pinto MMM, Afonso CMM. Accessing lipophilicity of drugs with biomimetic models: A comparative study using liposomes and micelles. Eur J Pharm Sci 2018; 115:369-380. [PMID: 29366962 DOI: 10.1016/j.ejps.2018.01.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/12/2018] [Accepted: 01/13/2018] [Indexed: 12/24/2022]
Abstract
Lipophilicity is a physicochemical property of crucial importance in drug discovery and drug design. Biomimetic models, such as liposomes and micelles, constitute a valuable tool for the assessment of lipophilicity through the determination of partition coefficients (log Kp). However, the lack of standardization hampers the judgment about which model or method has the best and broadest passive drug permeation predictive capacity. This work provides a comparative analysis between the methodologies based on biomimetic models to determine the partition coefficient (log Kp). For that purpose, a set of reference substances preconized by the Organization for Economic Cooperation and Development (OECD) guidelines was used. The biomimetic models employed were liposomes and micelles composed by 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC) and hexadecylphosphocholine (HePC), respectively. Both lipids were used as representative phospholipids of natural membranes. The partition coefficients between biomimetic models and aqueous phases were determined by derivative spectroscopy at physiological conditions (37 °C and pH 7.4). The partition coefficients obtained using biomimetic models are quite different and more reliable than the ones obtained using an octanol/water system. Comparing the performance of the two biomimetic models, micelles revealed to be suitable only for substances with high molar absorption coefficient and log Kp > 3, but in general liposomes are the best model for accessing lipophilicity of drugs. Furthermore, a comparison between experimental data and the partition coefficients determined by the computational method COSMOmic is also provided and discussed. As a final summarizing result, a decision tree is provided in order to guide the selection of a tool for assessing the lipophilicity of drugs.
Collapse
Affiliation(s)
- Daniela R P Loureiro
- Department of Chemical Sciences, Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - José X Soares
- LAQV-REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Daniela Lopes
- LAQV-REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Tiago Macedo
- Department of Chemical Sciences, Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Denitsa Yordanova
- Institute of Thermal Separation Processes, Hamburg University of Technology, Germany
| | - Sven Jakobtorweihen
- Institute of Thermal Separation Processes, Hamburg University of Technology, Germany
| | - Cláudia Nunes
- LAQV-REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Salette Reis
- LAQV-REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Madalena M M Pinto
- Department of Chemical Sciences, Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Interdisciplinary Center of Marine and Environmental Investigation (CIIMAR/CIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Porto, Portugal
| | - Carlos M M Afonso
- Department of Chemical Sciences, Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Interdisciplinary Center of Marine and Environmental Investigation (CIIMAR/CIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Porto, Portugal.
| |
Collapse
|
26
|
Phyo YZ, Cravo S, Palmeira A, Tiritan ME, Kijjoa A, Pinto MMM, Fernandes C. Enantiomeric Resolution and Docking Studies of Chiral Xanthonic Derivatives on Chirobiotic Columns. Molecules 2018; 23:molecules23010142. [PMID: 29324676 PMCID: PMC6017832 DOI: 10.3390/molecules23010142] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/06/2018] [Accepted: 01/08/2018] [Indexed: 11/16/2022] Open
Abstract
A systematic study of enantioresolution of a library of xanthonic derivatives, prepared “in-house”, was successfully carried out with four commercially available macrocyclic glycopeptide-based columns, namely ChirobioticTM T, ChirobioticTM R, ChirobioticTM V and ChirobioticTM TAG. Evaluation was conducted in multimodal elution conditions: normal-phase, polar organic, polar ionic and reversed-phase. The effects of the mobile phase composition, the percentage of organic modifier, the pH of the mobile phase, the nature and concentration of different mobile phase additives on the chromatographic parameters are discussed. ChirobioticTM T and ChirobioticTM V, under normal-phase and reversed-phase modes, respectively, presented the best chromatographic parameters. Considering the importance of understanding the chiral recognition mechanisms associated with the chromatographic enantioresolution, and the scarce data available for macrocyclic glycopeptide-based columns, computational studies by molecular docking were also carried out.
Collapse
Affiliation(s)
- Ye' Zaw Phyo
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| | - Sara Cravo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Andreia Palmeira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria Elizabeth Tiritan
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal.
| | - Anake Kijjoa
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| | - Madalena M M Pinto
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Carla Fernandes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
27
|
Santos Á, Soares JX, Cravo S, Tiritan ME, Reis S, Afonso C, Fernandes C, Pinto MMM. Lipophilicity assessement in drug discovery: Experimental and theoretical methods applied to xanthone derivatives. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1072:182-192. [PMID: 29175698 DOI: 10.1016/j.jchromb.2017.10.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/05/2017] [Accepted: 10/08/2017] [Indexed: 10/18/2022]
Abstract
For the last several years, searching of new xanthone derivatives (XDs) with potential pharmacological activities has remained one of the main areas of interest of our group. The optimization of biological activity and drug-like properties of hits and leads is crucial at early stage of the drug discovery pipeline. Lipophilicity is one of the most important drug-like properties having a great impact in both pharmacokinetics and pharmacodynamics processes. In this work, we describe the lipophilicity of a small library of bioactive XDs, previously synthesized by our group, using different methods: computational, vortex-assisted liquid-liquid microextraction coupled with high-performance liquid chromatography (VALLME-HPLC), reversed-phase high-performance thin layer chromatography (RP-HPTLC), reversed-phase high-performance liquid chromatography (RP-HPLC), and biomembrane model by the partition between micelles and aqueous phase. The different results obtained by the used methods were compared and discussed. The methodologies and data gathered in this study will expand the investigation of lipophilicity of XDs, an important class of compounds in medicinal chemistry.
Collapse
Affiliation(s)
- Álvaro Santos
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - José Xavier Soares
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Sara Cravo
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; Interdisciplinary Center of Marine and Environmental Investigation (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208, Porto, Matosinhos, Portugal
| | - Maria E Tiritan
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; Interdisciplinary Center of Marine and Environmental Investigation (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208, Porto, Matosinhos, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Rua Central de Gandra, 1317, 4585-116, Gandra PRD, Portugal
| | - Salette Reis
- UCBIO-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Carlos Afonso
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; Interdisciplinary Center of Marine and Environmental Investigation (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208, Porto, Matosinhos, Portugal.
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; Interdisciplinary Center of Marine and Environmental Investigation (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208, Porto, Matosinhos, Portugal.
| | - Madalena M M Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; Interdisciplinary Center of Marine and Environmental Investigation (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208, Porto, Matosinhos, Portugal
| |
Collapse
|
28
|
Tubulin inhibitors targeting the colchicine binding site: a perspective of privileged structures. Future Med Chem 2017; 9:1765-1794. [DOI: 10.4155/fmc-2017-0100] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The vital roles of microtubule in mitosis and cell division make it an attractive target for antitumor therapy. Colchicine binding site of tubulin is one of the most important pockets that have been focused on to design tubulin-destabilizing agents. Over the past few years, a large number of colchicine binding site inhibitors (CBSIs) have been developed inspired by natural products or synthetic origins, and many moieties frequently used in these CBSIs are structurally in common. In this review, we will classify the CBSIs into classical CBSIs and nonclassical CBSIs according to their spatial conformations and binding modes with tubulin, and highlight the privileged structures from these CBSIs in the development of tubulin inhibitors targeting the colchicine binding site.
Collapse
|
29
|
Gómez-Verjan J, Rodríguez-Hernández K, Reyes-Chilpa R. Bioactive Coumarins and Xanthones From Calophyllum Genus and Analysis of Their Druglikeness and Toxicological Properties. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017; 53. [PMCID: PMC7152109 DOI: 10.1016/b978-0-444-63930-1.00008-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Calophyllum spp. (Calophyllaceae) is a genus of tropical trees valued in the chemopharmacological industry as an important source of biogenetically related coumarins and xanthones, which can lead to the development of new drugs due to their relevant pharmacological activities and diversity of molecular structural. These compounds have relevant pharmacological activities, such as: cytotoxicity against human tumor cell lines (especially leukemia), parasites (Plasmodium, Leshmania, and Trypanosoma), retroviruses (e.g., HIV), and Mycobacterium tuberculosis. Chemoinformatic and toxicoinformatic tools were used here to perform a computational analysis of 70 coumarins and 70 xanthones isolated from this genus in order to explore their potential as new drugs. Most coumarins from this genus possess similar patterns of druglikeness with differences in its physicochemical properties. Xanthones, on the other hand, show quite similar physicochemical properties and druglikeness. It is interesting to note that the vast majority of these compounds (57 coumarins and 59 xanthones) are in compliance with Lipinski´s Rule of Five. Remarkably, two xanthones (2-hydroxyxanthone and caledonixanthone-B) have leadlikeness potential that accordingly with chemoinformatic analysis may target MAO A and B, respectively, and therefore may exhibit antidepressant potential. These compounds also target tyrosine-phosphorilation-regulated kinase 1A (DYRK1A) which is over-expressed in a variety of hematological and brain cancers, therefore they could act as anticancer compounds. Several toxicological predictions were also depicted. Coumarins could be an irritant and may affect the reproductive system, while xanthones may have mutagenic results. To our knowledge, this is the first chemoinformatic report on the main active compounds of this genus and its potential for drug development.
Collapse
Affiliation(s)
- J.C. Gómez-Verjan
- Department of Basic Research, National Institute of Geriatrics, Mexico City, Mexico
| | | | - R. Reyes-Chilpa
- Instituto de Química, Universidad Nacional Autónoma de México, México City, México,Corresponding author:
| |
Collapse
|
30
|
Yang ZM, Huang J, Qin JK, Dai ZK, Lan WL, Su GF, Tang H, Yang F. Design, synthesis and biological evaluation of novel 1-hydroxyl-3-aminoalkoxy xanthone derivatives as potent anticancer agents. Eur J Med Chem 2014; 85:487-97. [DOI: 10.1016/j.ejmech.2014.07.076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 07/21/2014] [Accepted: 07/21/2014] [Indexed: 10/25/2022]
|