1
|
Danielewski M, Rapak A, Kruszyńska A, Małodobra-Mazur M, Oleszkiewicz P, Dzimira S, Kucharska AZ, Słupski W, Matuszewska A, Nowak B, Szeląg A, Piórecki N, Zaleska-Dorobisz U, Sozański T. Cornelian Cherry ( Cornus mas L.) Fruit Extract Lowers SREBP-1c and C/EBPα in Liver and Alters Various PPAR-α, PPAR-γ, LXR-α Target Genes in Cholesterol-Rich Diet Rabbit Model. Int J Mol Sci 2024; 25:1199. [PMID: 38256272 PMCID: PMC10816641 DOI: 10.3390/ijms25021199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Cornelian cherry (Cornus mas L.) fruits, abundant in iridoids and anthocyanins, are natural products with proven beneficial impacts on the functions of the cardiovascular system and the liver. This study aims to assess and compare whether and to what extent two different doses of resin-purified cornelian cherry extract (10 mg/kg b.w. or 50 mg/kg b.w.) applied in a cholesterol-rich diet rabbit model affect the levels of sterol regulatory element-binding protein 1c (SREBP-1c) and CCAAT/enhancer binding protein α (C/EBPα), and various liver X receptor-α (LXR-α), peroxisome proliferator-activated receptor-α (PPAR-α), and peroxisome proliferator-activated receptor-γ (PPAR-γ) target genes. Moreover, the aim is to evaluate the resistive index (RI) of common carotid arteries (CCAs) and aortas, and histopathological changes in CCAs. For this purpose, the levels of SREBP-1c, C/EBPα, ATP-binding cassette transporter A1 (ABCA1), ATP-binding cassette transporter G1 (ABCG1), fatty acid synthase (FAS), endothelial lipase (LIPG), carnitine palmitoyltransferase 1A (CPT1A), and adiponectin receptor 2 (AdipoR2) in liver tissue were measured. Also, the levels of lipoprotein lipase (LPL), visceral adipose tissue-derived serine protease inhibitor (Vaspin), and retinol-binding protein 4 (RBP4) in visceral adipose tissue were measured. The RI of CCAs and aortas, and histopathological changes in CCAs, were indicated. The oral administration of the cornelian cherry extract decreased the SREBP-1c and C/EBPα in both doses. The dose of 10 mg/kg b.w. increased ABCA1 and decreased FAS, CPT1A, and RBP4, and the dose of 50 mg/kg b.w. enhanced ABCG1 and AdipoR2. Mitigations in atheromatous changes in rabbits' CCAs were also observed. The obtained outcomes were compared to the results of our previous works. The beneficial results confirm that cornelian cherry fruit extract may constitute a potentially effective product in the prevention and treatment of obesity-related disorders.
Collapse
Affiliation(s)
- Maciej Danielewski
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (W.S.); (A.M.); (B.N.); (A.S.)
| | - Andrzej Rapak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland; (A.R.); (A.K.)
| | - Angelika Kruszyńska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland; (A.R.); (A.K.)
| | - Małgorzata Małodobra-Mazur
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland;
| | - Paweł Oleszkiewicz
- Department of Radiology and Imaging Diagnostics II, Lower Silesian Center of Oncology, Pulmonology and Hematology, Grabiszynska 105, 53-439 Wroclaw, Poland;
| | - Stanisław Dzimira
- Department of Pathology, Wroclaw University of Environmental and Life Sciences, C. K. Norwida 31, 50-375 Wroclaw, Poland;
| | - Alicja Z. Kucharska
- Department of Fruit, Vegetable, and Plant Nutraceutical Technology, Wroclaw University of Environmental and Life Sciences, J. Chelmonskiego 37, 51-630 Wroclaw, Poland;
| | - Wojciech Słupski
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (W.S.); (A.M.); (B.N.); (A.S.)
| | - Agnieszka Matuszewska
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (W.S.); (A.M.); (B.N.); (A.S.)
| | - Beata Nowak
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (W.S.); (A.M.); (B.N.); (A.S.)
| | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (W.S.); (A.M.); (B.N.); (A.S.)
| | - Narcyz Piórecki
- Bolestraszyce Arboretum and Institute of Physiography, Bolestraszyce 130, 37-722 Wyszatyce, Poland;
- Institute of Physical Culture Sciences, Medical College, University of Rzeszow, Cicha 2A, 35-326 Rzeszow, Poland
| | - Urszula Zaleska-Dorobisz
- Department of General and Pediatric Radiology, Wroclaw Medical University, M. Sklodowskiej-Curie 50/52, 50-369 Wroclaw, Poland;
| | - Tomasz Sozański
- Department of Preclinical Sciences, Pharmacology and Medical Diagnostics, Faculty of Medicine, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland;
| |
Collapse
|
2
|
Pham NK, Bui HT, Tran TH, Hoang TNA, Vu TH, Do DT, Kim YH, Song SB, To DC, Nguyen MC. Dammarane triterpenes and phytosterols from Dysoxylum tpongense Pierre and their anti-inflammatory activity against liver X receptors and NF-κB activation. Steroids 2021; 175:108902. [PMID: 34520797 DOI: 10.1016/j.steroids.2021.108902] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 11/15/2022]
Abstract
Dysoxylum tpongense Pierre (local name 'Huynh Dan Bap') belonging to family Meliaceae, is a tree (3-10 m height), distributed in the mountainous areas (ca. 1000 m a.s.l.) in North Vietnam. From the dichloromethane fraction of the methanol extract of the leaves and stems of this plant, six dammarane triterpenes, one furanoid diterpene together with three sterols were isolated. Evaluation of biological activities of isolated compounds showed that cabraleahydroxylactone (5), cabraleahydroxylactone 3-acetate (6), and stigmast-4-en-3-one (10) possessed an anti-inflammatory effect against Liver X receptor (LXR) activation in HepG2 cell line model with IC50 values of 20.29 ± 3.69, 24.32 ± 2.99, and 7.09 ± 0.97 (μM), respectively. While three other triterpenoid compounds aglinin C 3- acetate (1), aglinin C (2), and 24-epi-cabraleadiol (4) presented the most significant inhibitory effect against TNF-α induced NF-κB activation in HepG2 cell line in a dose-dependent manner with IC50 values of 12.45 ± 2.37, 23.32 ± 3.25, and 13.95 ± 1.57 μM, respectively. As stigmast-4-en-3-one (10), with structure closely similar to cholesterol, acted selectively on LXRs but not on NF-kB activation pathway, this suggests that stigmast-4-en-3-one (10) can be potentially applied as an agonist on LXR signaling pathway. Pathways LXRs-NF-κB-iNOS expression have a close relationship and play a crucial role in proceeding metabolic abnormalities like atherosclerosis, obesity, inflammation, etc. Thus, the findings showed that dammarane-type triterpenoids from D. tpongense are worthy of further investigation for potential LXR agonists and potent anti-atherogenic agents against atherosclerotic lesion progression.
Collapse
Affiliation(s)
- Ngoc Khanh Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam; College of Pharmacy, Dongguk University, 32 Dongguk-ro, Goyang 10326, South Korea; Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam.
| | - Huu Tai Bui
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Thu Huong Tran
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Thi Ngoc Anh Hoang
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Thi Ha Vu
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Dinh Tung Do
- National Institute of Diabetes and Metabolic Disorders, 1 Ton That Tung, Hanoi, Viet Nam
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, South Korea
| | - Seok Bean Song
- Korea Bio Pharmaceutical CMO Center, 48-27, Saneopdanji 1-gil, Pungsan-eup, Andong-si, Gyeongsangbuk-do, Republic of Korea
| | - Dao Cuong To
- Faculty of Pharmacy, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam, Phenikaa Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, No.167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi 11313, Viet Nam
| | - Manh Cuong Nguyen
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam.
| |
Collapse
|
3
|
Maczewsky J, Sikimic J, Bauer C, Krippeit-Drews P, Wolke C, Lendeckel U, Barthlen W, Drews G. The LXR Ligand T0901317 Acutely Inhibits Insulin Secretion by Affecting Mitochondrial Metabolism. Endocrinology 2017; 158:2145-2154. [PMID: 28449117 DOI: 10.1210/en.2016-1941] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/20/2017] [Indexed: 12/15/2022]
Abstract
The role of liver X receptor (LXR) in pancreatic β-cell physiology and pathophysiology is still unclear. It has been postulated that chronic LXR activation in β-cells induces lipotoxicity, a key step in the development of β-cell dysfunction, which accompanies type 2 diabetes mellitus. In most of these studies, the LXR ligand T0901317 has been administered chronically in the micromolar range to study the significance of LXR activation. In the current study, we have evaluated acute effects of T0901317 on stimulus-secretion coupling of β-cells. We found that 10 µM T0901317 completely suppressed oscillations of the cytosolic Ca2+ concentration induced by 15 mM glucose. Obviously, this effect was due to inhibition of mitochondrial metabolism. T0901317 markedly depolarized the mitochondrial membrane potential, thus inhibiting adenosine triphosphate (ATP) production and reducing the cytosolic ATP concentration. This led in turn to a huge increase in KATP current and hyperpolarization of the cell membrane potential. Eventually, T0901317 inhibited glucose-induced insulin secretion. These effects were rapid in on-set and not compatible with the activation of a nuclear receptor. In vivo, T0901317 acutely increased the blood glucose concentration after intraperitoneal application. In summary, these data clearly demonstrate that T0901317 exerts acute effects on stimulus-secretion coupling. This observation questions the chronic use of T0901317 and limits the interpretation of results obtained under these experimental conditions.
Collapse
Affiliation(s)
- Jonas Maczewsky
- Institute of Pharmacy, Department of Pharmacology, University of Tübingen, 72076 Tübingen, Germany
| | - Jelena Sikimic
- Institute of Pharmacy, Department of Pharmacology, University of Tübingen, 72076 Tübingen, Germany
| | - Cita Bauer
- Institute of Pharmacy, Department of Pharmacology, University of Tübingen, 72076 Tübingen, Germany
| | - Peter Krippeit-Drews
- Institute of Pharmacy, Department of Pharmacology, University of Tübingen, 72076 Tübingen, Germany
| | - Carmen Wolke
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Uwe Lendeckel
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Winfried Barthlen
- Department of Pediatric Surgery, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Gisela Drews
- Institute of Pharmacy, Department of Pharmacology, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Åstrand OAH, Viktorsson EÖ, Kristensen AL, Ekeberg D, Røberg-Larsen H, Wilson SR, Gabrielsen M, Sylte I, Rustan AC, Thoresen GH, Rongved P, Kase ET. Synthesis, in vitro and in vivo biological evaluation of new oxysterols as modulators of the liver X receptors. J Steroid Biochem Mol Biol 2017; 165:323-330. [PMID: 27471149 DOI: 10.1016/j.jsbmb.2016.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/06/2016] [Accepted: 07/24/2016] [Indexed: 11/24/2022]
Abstract
Liver X Receptor (LXR) modulators have shown potential as drugs since they target genes affecting metabolism and fatty acid synthesis. LXR antagonists are of particular interest since they are able to reduce the synthesis of complex fatty acids and glucose uptake. Based on molecular modeling, five new cholesterol mimics were synthesized, where four contained a hydroxyl group in the 22-S-position. The new compounds were screened in vitro against several genes affecting lipid metabolism. The compound that performed best in vitro was a dimethylamide derivative of 22(S)-hydroxycholesterol and it was chosen for in vivo testing. However, the blood plasma analysis from the in vivo tests revealed a concentration lower than needed to give any response, indicating either rapid metabolism or low bioavailability.
Collapse
Affiliation(s)
- Ove Alexander Høgmoen Åstrand
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway
| | - Elvar Örn Viktorsson
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway
| | - Aleksander Lim Kristensen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway
| | - Dag Ekeberg
- Department of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, PO Box 5003, N-1432, Aas, Norway
| | - Hanne Røberg-Larsen
- Department of Chemistry, University of Oslo, PO Box 1033 Blindern, NO-0315 Oslo, Norway
| | - Steven Ray Wilson
- Department of Chemistry, University of Oslo, PO Box 1033 Blindern, NO-0315 Oslo, Norway
| | - Mari Gabrielsen
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ingebrigt Sylte
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Arild Christian Rustan
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway
| | - G Hege Thoresen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway; Department of Pharmacology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Pål Rongved
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway
| | - Eili Tranheim Kase
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway.
| |
Collapse
|
5
|
Viktorsson EØ, Åstrand OAH, Haseeb RS, Görbitz CH, Rongved P. Crystal structure of (S)-2-[(3S,8S,9S,10R,13S,14S,17R)-3-hy-droxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetra-deca-hydro-1H-cyclo-penta[a]phenanthren-17-yl]-N-meth-oxy-N-methyl-pro-pan-amide (Fernholz Weinreb amide). Acta Crystallogr E Crystallogr Commun 2015; 71:275-7. [PMID: 25844186 PMCID: PMC4350737 DOI: 10.1107/s2056989015001747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/27/2015] [Indexed: 11/13/2022]
Abstract
The literature compound 3β-hy-droxy-bis-nor-5-cholenic aldehyde is an important inter-mediate for the synthesis of new modulators of the nuclear oxysterol receptor Liver X. As part of our ongoing search for new LXR antagonists, the title compound, C24H39NO3, has proven to be an important inter-mediate in our new synthetic pathway, giving the corresponding aldehyde in high yield and in only three steps from the commercially available 3β-hy-droxy-bis-nor-5-cholenic acid. The title amide crystallized with two mol-ecules in the asymmetric unit, linked into helices by O-H⋯O hydrogen bonds involving the hy-droxy and carbonyl groups.
Collapse
Affiliation(s)
- Elvar Ørn Viktorsson
- School of Pharmacy, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway
| | | | - Rasha Sabah Haseeb
- School of Pharmacy, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway
| | - Carl Henrik Görbitz
- Department of Chemistry, University of Oslo, PO Box 1033 Blindern, N-0315 Oslo, Norway
| | - Pål Rongved
- School of Pharmacy, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway
| |
Collapse
|