1
|
Touaibia M, Chiasson AI, Robichaud S, Doiron JA, Hébert MPA, Surette ME. Single and multiple inhibitors of the biosynthesis of 5-, 12-, 15-lipoxygenase products derived from cinnamyl-3,4-dihydroxy-α-cyanocinnamate: Synthesis and structure-activity relationship. Drug Dev Res 2024; 85:e22181. [PMID: 38619209 DOI: 10.1002/ddr.22181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/18/2024] [Accepted: 03/21/2024] [Indexed: 04/16/2024]
Abstract
The involvement of lipoxygenases in various pathologies, combined with the unavailability of safe and effective inhibitors of the biosynthesis of their products, is a source of inspiration for the development of new inhibitors. Based on a structural analysis of known inhibitors of lipoxygenase products biosynthesis, a comprehensive structure-activity study was carried out, which led to the discovery of several novel compounds (16a-c, 17a) demonstrating promising potency to inhibit the biosynthesis of products of 5-, 12- and 15-LO. Compounds 16b and 16c outperformed zileuton (1), the only FDA-approved 5-LO inhibitor, as well as known inhibitors such as caffeic acid phenethyl ester (CAPE (2)) and cinnamyl-3,4-dihydroxy-α-cyanocinnamate (CDC (4)). However, the introduction of a cyano group at the α-position of the carbonyl abolished the activity. Compounds 16a and 17a also inhibited the biosynthesis of 12- and 15-LO products. Compounds 16a, 17a far surpassed baicalein, a known 12-LO inhibitor, as inhibitors of 12-LO products biosynthesis. Compound 17a and CDC (4) showed equivalent inhibition of LO products, proposing that the double bond in the ester moiety is not necessary for the inhibitory activity. The introduction of the cyano group, as in compound 17a, at the α-position of the carbonyl in compound 16a significantly reduced the inhibitory activity against the biosynthesis of 15-LO products. In addition to the interactions with residues His372 and Phe421 also found with zileuton and CAPE, compounds 16a and 16c each interact with residue His367 as shown by molecular docking. This new interaction may explain their high affinity with the 5-LO active site.
Collapse
Affiliation(s)
- Mohamed Touaibia
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, New Brunswick, Canada
| | - Audrey Isabel Chiasson
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, New Brunswick, Canada
| | - Samuel Robichaud
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, New Brunswick, Canada
| | - Jérémie A Doiron
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, New Brunswick, Canada
- New Brunswick Center for Precision Medicine, Université de Moncton, Moncton, New Brunswick, Canada
| | - Mathieu P A Hébert
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, New Brunswick, Canada
- New Brunswick Center for Precision Medicine, Université de Moncton, Moncton, New Brunswick, Canada
| | - Marc E Surette
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, New Brunswick, Canada
- New Brunswick Center for Precision Medicine, Université de Moncton, Moncton, New Brunswick, Canada
| |
Collapse
|
2
|
Saleh MM, El-Moselhy T, El-Bastawissy E, Ibrahim MAA, Sayed SRM, Hegazy MEF, Efferth T, Jaragh-Alhadad LA, Sidhom PA. The mystery of titan hunter: Rationalized striking of the MAPK pathway via Newly synthesized 6-Indolylpyridone-3-Carbonitrile derivatives. Eur J Med Chem 2023; 259:115675. [PMID: 37506545 DOI: 10.1016/j.ejmech.2023.115675] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
MAPK pathway sparkles with RTK activation, passes through subsequent downstream RAS-RAF-MEK-ERK signaling cascades, with consequent direct and indirect CDK4/6 signaling activation, and ends with cell survival, division, and proliferation. However, the emergence of anomalies such as mutations or overexpression in one or more points of the pathway could lead to cancer development and drug resistance. Therefore, designing small inhibitors to strike multitudinous MAPK pathway steps could be a promising synergistic strategy to confine cancer. In this study, twelve 6-indolylpyridone-3-carbonitrile candidates were synthesized and assessed in vitro for antineoplastic activity using four cancer cell lines. The initial antiproliferative screening revealed that compounds 3g, 3h, and 3i were the most potent candidates (GI% Avg = 70.10, 73.94, 74.33%, respectively) compared to staurosporine (GI% Avg = 70.99%). The subsequent safety and selectivity assessment showed that 3h exhibited sub-micromolar inhibition against lung cancer cells (HOP-92 GI50 = 0.75 μM) and 13.7 times selectivity toward cancerous cells over normal cells. As a result, 3h was nominated for deep mechanistic studies which evidenced that compound 3h impressively blocks multiple keystones of the MAPK pathway with nanomolar potency (EGFRWT IC50 = 281 nM, c-MET IC50 = 205 nM, B-RAFWT IC50 = 112 nM, and CDK4/6 IC50 = 95 and 184 nM, respectively). Surprisingly, 3h showed a remarkable potency against mutated EGFR and B-RAF, being 4 and 1.3 more selective to the mutated enzymes over the wild-type forms (EGFRT790M IC50 = 69 nM and B-RAFV600E IC50 = 83 nM). Ultimately, combined molecular docking and molecular dynamics (MD) calculations were executed to inspect the mode of binding and the complex stability of 3h towards the keystones of the MAPK pathway.
Collapse
Affiliation(s)
- Mohamed M Saleh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, 31527, Tanta, Egypt.
| | - Tarek El-Moselhy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, 31527, Tanta, Egypt
| | - Eman El-Bastawissy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, 31527, Tanta, Egypt
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt; School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa
| | - Shaban R M Sayed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed-Elamir F Hegazy
- Chemistry of Medicinal Plants Department, National Research Center, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt; Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | | | - Peter A Sidhom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, 31527, Tanta, Egypt.
| |
Collapse
|
3
|
Basagni F, Di Paolo ML, Cozza G, Dalla Via L, Fagiani F, Lanni C, Rosini M, Minarini A. Double Attack to Oxidative Stress in Neurodegenerative Disorders: MAO-B and Nrf2 as Elected Targets. Molecules 2023; 28:7424. [PMID: 37959843 PMCID: PMC10650714 DOI: 10.3390/molecules28217424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Oxidative stress and neuroinflammation play a pivotal role in triggering the neurodegenerative pathological cascades which characterize neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. In search for potential efficient treatments for these pathologies, that are still considered unmet medical needs, we started from the promising properties of the antidiabetic drug pioglitazone, which has been repositioned as an MAO-B inhibitor, characterized by promising neuroprotective properties. Herein, with the aim to broaden its neuroprotective profile, we tried to enrich pioglitazone with direct and indirect antioxidant properties by hanging polyphenolic and electrophilic features that are able to trigger Nrf2 pathway and the resulting cytoprotective genes' transcription, as well as serve as radical scavengers. After a preliminary screening on MAO-B inhibitory properties, caffeic acid derivative 2 emerged as the best inhibitor for potency and selectivity over MAO-A, characterized by a reversible mechanism of inhibition. Furthermore, the same compound proved to activate Nrf2 pathway by potently increasing Nrf2 nuclear translocation and strongly reducing ROS content, both in physiological and stressed conditions. Although further biological investigations are required to fully clarify its neuroprotective properties, we were able to endow the pioglitazone scaffold with potent antioxidant properties, representing the starting point for potential future pioglitazone-based therapeutics for neurodegenerative disorders.
Collapse
Affiliation(s)
- Filippo Basagni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;
| | - Maria Luisa Di Paolo
- Department of Molecular Medicine, University of Padova, Via G. Colombo 3, 35131 Padova, Italy; (M.L.D.P.); (G.C.)
| | - Giorgio Cozza
- Department of Molecular Medicine, University of Padova, Via G. Colombo 3, 35131 Padova, Italy; (M.L.D.P.); (G.C.)
| | - Lisa Dalla Via
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy;
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
| | - Francesca Fagiani
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100 Pavia, Italy; (F.F.); (C.L.)
- Division of Neuroscience, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy
| | - Cristina Lanni
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100 Pavia, Italy; (F.F.); (C.L.)
| | - Michela Rosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;
| | - Anna Minarini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;
| |
Collapse
|
4
|
Pope L, Minor DL. The Polysite Pharmacology of TREK K 2P Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1349:51-65. [PMID: 35138610 DOI: 10.1007/978-981-16-4254-8_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
K2P (KCNK) potassium channels form "background" or "leak" currents that have critical roles in cell excitability control in the brain, cardiovascular system, and somatosensory neurons. Similar to many ion channel families, studies of K2Ps have been limited by poor pharmacology. Of six K2P subfamilies, the thermo- and mechanosensitive TREK subfamily comprising K2P2.1 (TREK-1), K2P4.1 (TRAAK), and K2P10.1 (TREK-2) are the first to have structures determined for each subfamily member. These structural studies have revealed key architectural features that underlie K2P function and have uncovered sites residing at every level of the channel structure with respect to the membrane where small molecules or lipids can control channel function. This polysite pharmacology within a relatively small (~70 kDa) ion channel comprises four structurally defined modulator binding sites that occur above (Keystone inhibitor site), at the level of (K2P modulator pocket), and below (Fenestration and Modulatory lipid sites) the C-type selectivity filter gate that is at the heart of K2P function. Uncovering this rich structural landscape provides the framework for understanding and developing subtype-selective modulators to probe K2P function that may provide leads for drugs for anesthesia, pain, arrhythmia, ischemia, and migraine.
Collapse
Affiliation(s)
- Lianne Pope
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, US
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, US. .,Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA. .,California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA, USA. .,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA, USA. .,Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
5
|
Regulation of Two-Pore-Domain Potassium TREK Channels and their Involvement in Pain Perception and Migraine. Neurosci Lett 2022; 773:136494. [DOI: 10.1016/j.neulet.2022.136494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023]
|
6
|
Natale AM, Deal PE, Minor DL. Structural Insights into the Mechanisms and Pharmacology of K 2P Potassium Channels. J Mol Biol 2021; 433:166995. [PMID: 33887333 PMCID: PMC8436263 DOI: 10.1016/j.jmb.2021.166995] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 01/10/2023]
Abstract
Leak currents, defined as voltage and time independent flows of ions across cell membranes, are central to cellular electrical excitability control. The K2P (KCNK) potassium channel class comprises an ion channel family that produces potassium leak currents that oppose excitation and stabilize the resting membrane potential in cells in the brain, cardiovascular system, immune system, and sensory organs. Due to their widespread tissue distribution, K2Ps contribute to many physiological and pathophysiological processes including anesthesia, pain, arrythmias, ischemia, hypertension, migraine, intraocular pressure regulation, and lung injury responses. Structural studies of six homomeric K2Ps have established the basic architecture of this channel family, revealed key moving parts involved in K2P function, uncovered the importance of asymmetric pinching and dilation motions in the K2P selectivity filter (SF) C-type gate, and defined two K2P structural classes based on the absence or presence of an intracellular gate. Further, a series of structures characterizing K2P:modulator interactions have revealed a striking polysite pharmacology housed within a relatively modestly sized (~70 kDa) channel. Binding sites for small molecules or lipids that control channel function are found at every layer of the channel structure, starting from its extracellular side through the portion that interacts with the membrane bilayer inner leaflet. This framework provides the basis for understanding how gating cues sensed by different channel parts control function and how small molecules and lipids modulate K2P activity. Such knowledge should catalyze development of new K2P modulators to probe function and treat a wide range of disorders.
Collapse
Affiliation(s)
- Andrew M Natale
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Parker E Deal
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA; Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience University of California, San Francisco, CA 94158, USA; Molecular Biophysics and Integrated Bio-imaging Division Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
7
|
Huang L, Xu G, Jiang R, Luo Y, Zuo Y, Liu J. Development of Non-opioid Analgesics Targeting Two-pore Domain Potassium Channels. Curr Neuropharmacol 2021; 20:16-26. [PMID: 33827408 PMCID: PMC9199554 DOI: 10.2174/1570159x19666210407152528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/14/2021] [Accepted: 03/24/2021] [Indexed: 02/08/2023] Open
Abstract
Two-pore domain potassium (K2P) channels are a diverse family of potassium channels. K2P channels generate background leak potassium currents to regulate cellular excitability and are thereby involved in a wide range of neurological disorders. K2P channels are modulated by a variety of physicochemical factors such as mechanical stretch, temperature, and pH. In the the peripheral nervous system (PNS), K2P channels are widely expressed in nociceptive neurons and play a critical roles in pain perception. In this review, we summarize the recent advances in the pharmacological properties of K2P channels, with a focus on the exogenous small-molecule activators targeting K2P channels. We emphasize the subtype-selectivity, cellular and in vivo pharmacological properties of all the reported small-molecule activators. The key underlying analgesic mechanisms mediated by K2P are also summarized based on the data in the literature from studies using small-molecule activators and genetic knock-out animals. We discuss advantages and limitations of the translational perspectives of K2P in pain medicine and provide outstanding questions for future studies in the end.
Collapse
Affiliation(s)
- Lu Huang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan. China
| | - Guangyin Xu
- Department of Physiology and Neurobiology, Institute of Neuroscience, Medical College of Soochow University, Suzhou, 215123, Jiangsu. China
| | - Ruotian Jiang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan. China
| | - Yuncheng Luo
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan. China
| | - Yunxia Zuo
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan. China
| | - Jin Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan. China
| |
Collapse
|
8
|
Lee H, Lolicato M, Arrigoni C, Minor DL. Production of K 2P2.1 (TREK-1) for structural studies. Methods Enzymol 2021; 653:151-188. [PMID: 34099170 DOI: 10.1016/bs.mie.2021.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
K2P (KCNK) potassium channels form 'background' or 'leak' currents that are important for controlling cell excitability in the brain, cardiovascular system, and somatosensory neurons. K2P2.1 (TREK-1) is one of the founding members of this family and one of the first well-characterized polymodal ion channels capable of responding to a variety of physical and chemical gating cues. Of the six K2P subfamilies, the thermo-and mechano-sensitive TREK subfamily comprising K2P2.1 (TREK-1), K2P4.1 (TRAAK), and K2P10.1 (TREK-2) is the first to have structures determined for each subfamily member. These structural studies have revealed key architectural features that provide a framework for understanding how gating cues sensed by different channel elements converge on the K2P selectivity filter C-type gate. TREK family structural studies have also revealed numerous sites where small molecules or lipids bind and affect channel function. This rich structural landscape provides the framework for probing K2P function and for the development of new K2P-directed agents. Such molecules may be useful for affecting processes where TREK channels are important such as anesthesia, pain, arrythmia, ischemia, migraine, intraocular pressure, and lung injury. Production of high quality protein samples is key to addressing new questions about K2P function and pharmacology. Here, we present methods for producing pure K2P2.1 (TREK-1) suitable for advancing towards these goals through structural and biochemical studies.
Collapse
Affiliation(s)
- Haerim Lee
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Marco Lolicato
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Cristina Arrigoni
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States; Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, CA, United States; California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA, United States; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA, United States; Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
9
|
Busserolles J, Ben Soussia I, Pouchol L, Marie N, Meleine M, Devilliers M, Judon C, Schopp J, Clémenceau L, Poupon L, Chapuy E, Richard S, Noble F, Lesage F, Ducki S, Eschalier A, Lolignier S. TREK1 channel activation as a new analgesic strategy devoid of opioid adverse effects. Br J Pharmacol 2020; 177:4782-4795. [PMID: 32851651 DOI: 10.1111/bph.15243] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 07/06/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Opioids are effective painkillers. However, their risk-benefit ratio is dampened by numerous adverse effects and opioid misuse has led to a public health crisis. Safer alternatives are required, but isolating the antinociceptive effect of opioids from their adverse effects is a pharmacological challenge because activation of the μ opioid receptor triggers both the antinociceptive and adverse effects of opioids. EXPERIMENTAL APPROACH The TREK1 potassium channel is activated downstream of μ receptor and involved in the antinociceptive activity of morphine but not in its adverse effects. Bypassing the μ opioid receptor to directly activate TREK1 could therefore be a safer analgesic strategy. KEY RESULTS We developed a selective TREK1 activator, RNE28, with antinociceptive activity in naive rodents and in models of inflammatory and neuropathic pain. This activity was lost in TREK1 knockout mice or wild-type mice treated with the TREK1 blocker spadin, showing that TREK1 is required for the antinociceptive activity of RNE28. RNE28 did not induce respiratory depression, constipation, rewarding effects, or sedation at the analgesic doses tested. CONCLUSION AND IMPLICATIONS This proof-of-concept study shows that TREK1 activators could constitute a novel class of painkillers, inspired by the mechanism of action of opioids but devoid of their adverse effects.
Collapse
Affiliation(s)
- Jérôme Busserolles
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.,Faculté de Médecine, Institut Analgesia, Clermont-Ferrand, France
| | - Ismail Ben Soussia
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, Université Côte d'Azur, INSERM, Valbonne, France
| | - Laetitia Pouchol
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.,Faculté de Médecine, Institut Analgesia, Clermont-Ferrand, France
| | - Nicolas Marie
- Neuroplasticité et thérapie des addictions, Université Paris Descartes, CNRS, Inserm, Paris, France
| | - Mathieu Meleine
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.,Faculté de Médecine, Institut Analgesia, Clermont-Ferrand, France
| | - Maïly Devilliers
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.,Faculté de Médecine, Institut Analgesia, Clermont-Ferrand, France
| | - Céline Judon
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.,Faculté de Médecine, Institut Analgesia, Clermont-Ferrand, France
| | - Julien Schopp
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.,Faculté de Médecine, Institut Analgesia, Clermont-Ferrand, France
| | - Loïc Clémenceau
- Neuroplasticité et thérapie des addictions, Université Paris Descartes, CNRS, Inserm, Paris, France
| | - Laura Poupon
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.,Faculté de Médecine, Institut Analgesia, Clermont-Ferrand, France
| | - Eric Chapuy
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.,Faculté de Médecine, Institut Analgesia, Clermont-Ferrand, France
| | - Serge Richard
- Centre de Recherches Biologiques, CERB, Baugy, France
| | - Florence Noble
- Neuroplasticité et thérapie des addictions, Université Paris Descartes, CNRS, Inserm, Paris, France
| | - Florian Lesage
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, Université Côte d'Azur, INSERM, Valbonne, France
| | - Sylvie Ducki
- ICCF, SIGMA Clermont, Université Clermont Auvergne, CNRS, Clermont-Ferrand, France
| | - Alain Eschalier
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.,Faculté de Médecine, Institut Analgesia, Clermont-Ferrand, France
| | - Stéphane Lolignier
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.,Faculté de Médecine, Institut Analgesia, Clermont-Ferrand, France
| |
Collapse
|
10
|
Busserolles J, Lolignier S, Kerckhove N, Bertin C, Authier N, Eschalier A. Replacement of current opioid drugs focusing on MOR-related strategies. Pharmacol Ther 2020; 210:107519. [PMID: 32165137 DOI: 10.1016/j.pharmthera.2020.107519] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Abstract
The scarcity and limited risk/benefit ratio of painkillers available on the market, in addition to the opioid crisis, warrant reflection on new innovation strategies. The pharmacopoeia of analgesics is based on products that are often old and derived from clinical empiricism, with limited efficacy or spectrum of action, or resulting in an unsatisfactory tolerability profile. Although they are reference analgesics for nociceptive pain, opioids are subject to the same criticism. The use of opium as an analgesic is historical. Morphine was synthesized at the beginning of the 19th century. The efficacy of opioids is limited in certain painful contexts and these drugs can induce potentially serious and fatal adverse effects. The current North American opioid crisis, with an ever-rising number of deaths by opioid overdose, is a tragic illustration of this. It is therefore legitimate to develop research into molecules likely to maintain or increase opioid efficacy while improving their tolerability. Several avenues are being explored including targeting of the mu opioid receptor (MOR) splice variants, developing biased agonists or targeting of other receptors such as heteromers with MOR. Ion channels acting as MOR effectors, are also targeted in order to offer compounds without MOR-dependent adverse effects. Another route is to develop opioid analgesics with peripheral action or limited central nervous system (CNS) access. Finally, endogenous opioids used as drugs or compounds that modify the metabolism of endogenous opioids (Dual ENKephalinase Inhibitors) are being developed. The aim of the present review is to present these various targets/strategies with reference to current indications for opioids, concerns about their widespread use, particularly in chronic non-cancer pains, and ways of limiting the risk of opioid abuse and misuse.
Collapse
Affiliation(s)
- Jérôme Busserolles
- Université Clermont Auvergne, INSERM, CHU, NEURO-DOL Pharmacologie Fondamentale et Clinique de la douleur, F-63000 Clermont-Ferrand, France; Institut ANALGESIA, Faculté de Médecine, F-63000 Clermont-Ferrand, France
| | - Stéphane Lolignier
- Université Clermont Auvergne, INSERM, CHU, NEURO-DOL Pharmacologie Fondamentale et Clinique de la douleur, F-63000 Clermont-Ferrand, France; Institut ANALGESIA, Faculté de Médecine, F-63000 Clermont-Ferrand, France
| | - Nicolas Kerckhove
- Université Clermont Auvergne, INSERM, CHU, NEURO-DOL Pharmacologie Fondamentale et Clinique de la douleur, F-63000 Clermont-Ferrand, France; Institut ANALGESIA, Faculté de Médecine, F-63000 Clermont-Ferrand, France; Observatoire Français des Médicaments Antalgiques (OFMA), French monitoring centre for analgesic drugs, CHU, F-63000 Clermont-Ferrand, France
| | - Célian Bertin
- Université Clermont Auvergne, INSERM, CHU, NEURO-DOL Pharmacologie Fondamentale et Clinique de la douleur, F-63000 Clermont-Ferrand, France; Institut ANALGESIA, Faculté de Médecine, F-63000 Clermont-Ferrand, France; Observatoire Français des Médicaments Antalgiques (OFMA), French monitoring centre for analgesic drugs, CHU, F-63000 Clermont-Ferrand, France
| | - Nicolas Authier
- Université Clermont Auvergne, INSERM, CHU, NEURO-DOL Pharmacologie Fondamentale et Clinique de la douleur, F-63000 Clermont-Ferrand, France; Institut ANALGESIA, Faculté de Médecine, F-63000 Clermont-Ferrand, France; Observatoire Français des Médicaments Antalgiques (OFMA), French monitoring centre for analgesic drugs, CHU, F-63000 Clermont-Ferrand, France
| | - Alain Eschalier
- Université Clermont Auvergne, INSERM, CHU, NEURO-DOL Pharmacologie Fondamentale et Clinique de la douleur, F-63000 Clermont-Ferrand, France; Institut ANALGESIA, Faculté de Médecine, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
11
|
Caffeates and Caffeamides: Synthetic Methodologies and Their Antioxidant Properties. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2019; 2019:2592609. [PMID: 31815016 PMCID: PMC6877993 DOI: 10.1155/2019/2592609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023]
Abstract
Polyphenols are secondary metabolites of plants and include a variety of chemical structures, from simple molecules such as phenolic acids to condensed tannins and highly polymerized compounds. Caffeic acid (3,4-dihydroxycinnamic acid) is one of the hydroxycinnamate metabolites more widely distributed in plant tissues. It is present in many food sources, including coffee drinks, blueberries, apples, and cider, and also in several medications of popular use, mainly those based on propolis. Its derivatives are also known to possess anti-inflammatory, antioxidant, antitumor, and antibacterial activities, and can contribute to the prevention of atherosclerosis and other cardiovascular diseases. This review is an overview of the available information about the chemical synthesis and antioxidant activity of caffeic acid derivatives. Considering the relevance of these compounds in human health, many of them have been the focus of reviews, taking as a center their obtaining from the plants. There are few revisions that compile the chemical synthesis methods, in this way, we consider that this review does an important contribution.
Collapse
|
12
|
Towards a TREK-1/2 (TWIK-Related K+ Channel 1 and 2) dual activator tool compound: Multi-dimensional optimization of BL-1249. Bioorg Med Chem Lett 2019; 29:1601-1604. [DOI: 10.1016/j.bmcl.2019.04.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/25/2019] [Accepted: 04/27/2019] [Indexed: 11/20/2022]
|
13
|
Djillani A, Mazella J, Heurteaux C, Borsotto M. Role of TREK-1 in Health and Disease, Focus on the Central Nervous System. Front Pharmacol 2019; 10:379. [PMID: 31031627 PMCID: PMC6470294 DOI: 10.3389/fphar.2019.00379] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/26/2019] [Indexed: 01/22/2023] Open
Abstract
TREK-1 is the most studied background K2P channel. Its main role is to control cell excitability and maintain the membrane potential below the threshold of depolarization. TREK-1 is multi-regulated by a variety of physical and chemical stimuli which makes it a very promising and challenging target in the treatment of several pathologies. It is mainly expressed in the brain but also in heart, smooth muscle cells, endocrine pancreas, and prostate. In the nervous system, TREK-1 is involved in many physiological and pathological processes such as depression, neuroprotection, pain, and anesthesia. These properties explain why many laboratories and pharmaceutical companies have been focusing their research on screening and developing highly efficient modulators of TREK-1 channels. In this review, we summarize the different roles of TREK-1 that have been investigated so far in attempt to characterize pharmacological tools and new molecules to modulate cellular functions controlled by TREK-1.
Collapse
Affiliation(s)
- Alaeddine Djillani
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France
| | - Jean Mazella
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France
| | - Catherine Heurteaux
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France
| | - Marc Borsotto
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France
| |
Collapse
|
14
|
Pope L, Arrigoni C, Lou H, Bryant C, Gallardo-Godoy A, Renslo AR, Minor DL. Protein and Chemical Determinants of BL-1249 Action and Selectivity for K 2P Channels. ACS Chem Neurosci 2018; 9:3153-3165. [PMID: 30089357 PMCID: PMC6302903 DOI: 10.1021/acschemneuro.8b00337] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
K2P potassium channels generate leak currents that stabilize the resting membrane potential of excitable cells. Various K2P channels are implicated in pain, ischemia, depression, migraine, and anesthetic responses, making this family an attractive target for small molecule modulator development efforts. BL-1249, a compound from the fenamate class of nonsteroidal anti-inflammatory drugs is known to activate K2P2.1(TREK-1), the founding member of the thermo- and mechanosensitive TREK subfamily; however, its mechanism of action and effects on other K2P channels are not well-defined. Here, we demonstrate that BL-1249 extracellular application activates all TREK subfamily members but has no effect on other K2P subfamilies. Patch clamp experiments demonstrate that, similar to the diverse range of other chemical and physical TREK subfamily gating cues, BL-1249 stimulates the selectivity filter "C-type" gate that controls K2P function. BL-1249 displays selectivity among the TREK subfamily, activating K2P2.1(TREK-1) and K2P10.1(TREK-2) ∼10-fold more potently than K2P4.1(TRAAK). Investigation of mutants and K2P2.1(TREK-1)/K2P4.1(TRAAK) chimeras highlight the key roles of the C-terminal tail in BL-1249 action and identify the M2/M3 transmembrane helix interface as a key site of BL-1249 selectivity. Synthesis and characterization of a set of BL-1249 analogs demonstrates that both the tetrazole and opposing tetralin moieties are critical for function, whereas the conformational mobility between the two ring systems impacts selectivity. Together, our findings underscore the landscape of modes by which small molecules can affect K2P channels and provide crucial information for the development of better and more selective K2P modulators of the TREK subfamily.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daniel L. Minor
- Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States
| |
Collapse
|
15
|
Loucif AJC, Saintot P, Liu J, Antonio BM, Zellmer SG, Yoger K, Veale EL, Wilbrey A, Omoto K, Cao L, Gutteridge A, Castle NA, Stevens EB, Mathie A. GI-530159, a novel, selective, mechanosensitive two-pore-domain potassium (K 2P ) channel opener, reduces rat dorsal root ganglion neuron excitability. Br J Pharmacol 2018; 175:2272-2283. [PMID: 29150838 PMCID: PMC5980259 DOI: 10.1111/bph.14098] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE TREK two-pore-domain potassium (K2P ) channels play a critical role in regulating the excitability of somatosensory nociceptive neurons and are important mediators of pain perception. An understanding of the roles of TREK channels in pain perception and, indeed, in other pathophysiological conditions, has been severely hampered by the lack of potent and/or selective activators and inhibitors. In this study, we describe a new, selective opener of TREK channels, GI-530159. EXPERIMENTAL APPROACH The effect of GI-530159 on TREK channels was demonstrated using 86 Rb efflux assays, whole-cell and single-channel patch-clamp recordings from recombinant TREK channels. The expression of K2P 2.1 (TREK1), K2P 10.1 (TREK2) and K2P 4.1 (TRAAK) channels was determined using transcriptome analysis from single dorsal root ganglion (DRG) cells. Current-clamp recordings from cultured rat DRG neurons were used to measure the effect of GI-530159 on neuronal excitability. KEY RESULTS For recombinant human TREK1 channels, GI-530159 had similar low EC50 values in Rb efflux experiments and electrophysiological recordings. It activated TREK2 channels, but it had no detectable action on TRAAK channels nor any significant effect on other K channels tested. Current-clamp recordings from cultured rat DRG neurones showed that application of GI-530159 at 1 μM resulted in a significant reduction in firing frequency and a small hyperpolarization of resting membrane potential. CONCLUSIONS AND IMPLICATIONS This study provides pharmacological evidence for the presence of mechanosensitive TREK K2P channels in sensory neurones and suggests that development of selective K2P channel openers like GI-530159 could aid in the development of novel analgesic agents. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Emma L Veale
- Medway School of PharmacyUniversity of KentChatham MaritimeKentUK
| | | | | | | | | | | | | | - Alistair Mathie
- Medway School of PharmacyUniversity of KentChatham MaritimeKentUK
| |
Collapse
|
16
|
Abstract
Pain is an unpleasant feeling usually resulting from tissue damage that can persist along weeks, months, or even years after the injury, turning into pathological chronic pain, the leading cause of disability. Currently, pharmacology interventions are usually the first-line therapy but there is a highly variable analgesic drug response. Pharmacogenetics (PGx) offers a means to identify genetic biomarkers that can predict individual analgesic response opening doors to precision medicine. PGx analyze the way in which the presence of variations in the DNA sequence (single-nucleotide polymorphisms, SNPs) could be responsible for portions of the population reaching different levels of pain relief (phenotype) due to gene interference in the drug mechanism of action (pharmacodynamics) and/or its concentration at the place of action (pharmacokinetics). SNPs in the cytochrome P450 enzymes genes (CYP2D6) influence metabolism of codeine, tramadol, hydrocodone, oxycodone, and tricyclic antidepressants. Blood concentrations of some NSAIDs depend on CYP2C9 and/or CYP2C8 activity. Additional candidate genes encode for opioid receptors, transporters, and other molecules important for pharmacotherapy in pain management. However, PGx studies are often contradictory, slowing the uptake of this information. This is likely due, in large part, to a lack of robust evidence demonstrating clinical utility and to its polygenic response modulated by other exogenous or epigenetics factors. Novel therapies, including targeting of epigenetic changes and gene therapy-based approaches, broaden future options to improve understanding of pain and the treatment of people who suffer it.
Collapse
Affiliation(s)
- Ana M Peiró
- Clinical Pharmacology Unit, Department of Health of Alicante-General Hospital, Alicante, Spain; Neuropharmacology on Pain (NED), Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), Alicante, Spain.
| |
Collapse
|
17
|
Peiró AM, Planelles B, Juhasz G, Bagdy G, Libert F, Eschalier A, Busserolles J, Sperlagh B, Llerena A. Pharmacogenomics in pain treatment. Drug Metab Pers Ther 2017; 31:131-42. [PMID: 27662648 DOI: 10.1515/dmpt-2016-0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/08/2016] [Indexed: 11/15/2022]
Abstract
The experience of chronic pain is one of the commonest reasons for seeking medical attention, being a major issue in clinical practice. While pain is a universal experience, only a small proportion of people who felt pain develop pain syndromes. In addition, painkillers are associated with wide inter-individual variability in the analgesic response. This may be partly explained by the presence of single nucleotide polymorphisms in genes encoding molecular entities involved in pharmacodynamics and pharmacokinetics. However, uptake of this information has been slow due in large part to the lack of robust evidences demonstrating clinical utility. Furthermore, novel therapies, including targeting of epigenetic changes and gene therapy-based approaches are further broadening future options for the treatment of chronic pain. The aim of this article is to review the evidences behind pharmacogenetics (PGx) to individualize therapy (boosting the efficacy and minimizing potential toxicity) and genes implicated in pain medicine, in two parts: (i) genetic variability with pain sensitivity and analgesic response; and (ii) pharmacological concepts applied on PGx.
Collapse
|
18
|
Otero E, García E, Palacios G, Yepes LM, Carda M, Agut R, Vélez ID, Cardona WI, Robledo SM. Triclosan-caffeic acid hybrids: Synthesis, leishmanicidal, trypanocidal and cytotoxic activities. Eur J Med Chem 2017; 141:73-83. [PMID: 29028533 DOI: 10.1016/j.ejmech.2017.09.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 01/02/2023]
Abstract
The synthesis, cytotoxicity, anti-leishmanial and anti-trypanosomal activities of twelve triclosan-caffeic acid hybrids are described herein. The structure of the synthesized products was elucidated by a combination of spectrometric analyses. The synthesized compounds were evaluated against amastigotes forms of L. (V) panamensis, which is the most prevalent Leishmania species in Colombia, and against Trypanosoma cruzi, which is the pathogenic species to humans. Cytotoxicity was evaluated against human U-937 macrophages. Eight compounds were active against L. (V) panamensis (18-23, 26 and 30) and eight of them against T. cruzi (19-22, 24 and 28-30) with EC50 values lower than 40 μM. Compounds 19-22, 24 and 28-30 showed higher activities than benznidazole (BNZ). Esters 19 and 21 were the most active compounds for both L. (V) panamensis and T. cruzi with 3.82 and 11.65 μM and 8.25 and 8.69 μM, respectively. Compounds 19-22, 24 and 28-30 showed higher activities than benznidazole (BNZ). Most of the compounds showed antiprotozoal activity and with exception of 18, 26 and 28, the remaining compounds were toxic for mammalian cells, yet they have potential to be considered as candidates for anti-trypanosomal and anti-leishmanial drug development. The activity is dependent on the length of the alkyl linker with compound 19, bearing a four-carbon alkyl chain, the most performing hybrid. In general, hydroxyl groups increase both activity and cytotoxicity and the presence of the double bond in the side chain is not decisive for cytotoxicity and anti-protozoal activity.
Collapse
Affiliation(s)
- Elver Otero
- Chemistry of Colombian Plants, Institute of Chemistry, Exact and Natural Sciences School, Universidad de Antioquia-UdeA, Calle 70, No. 52-21, A.A 1226, Medellín, Colombia
| | - Elisa García
- Chemistry of Colombian Plants, Institute of Chemistry, Exact and Natural Sciences School, Universidad de Antioquia-UdeA, Calle 70, No. 52-21, A.A 1226, Medellín, Colombia
| | - Genesis Palacios
- PECET-Medical Research Institute, School of Medicine, Universidad de Antioquia-UdeA, Calle 70, No. 52-21, A.A 1226 Medellín, Colombia
| | - Lina M Yepes
- PECET-Medical Research Institute, School of Medicine, Universidad de Antioquia-UdeA, Calle 70, No. 52-21, A.A 1226 Medellín, Colombia
| | - Miguel Carda
- Department of Inorganic and Organic Chemistry, Jaume I University, E-12071 Castellón, Spain
| | - Raúl Agut
- Department of Inorganic and Organic Chemistry, Jaume I University, E-12071 Castellón, Spain
| | - Iván D Vélez
- PECET-Medical Research Institute, School of Medicine, Universidad de Antioquia-UdeA, Calle 70, No. 52-21, A.A 1226 Medellín, Colombia
| | - Wilson I Cardona
- Chemistry of Colombian Plants, Institute of Chemistry, Exact and Natural Sciences School, Universidad de Antioquia-UdeA, Calle 70, No. 52-21, A.A 1226, Medellín, Colombia.
| | - Sara M Robledo
- PECET-Medical Research Institute, School of Medicine, Universidad de Antioquia-UdeA, Calle 70, No. 52-21, A.A 1226 Medellín, Colombia.
| |
Collapse
|
19
|
Abstract
Acute and chronic pain complaints, although common, are generally poorly served by existing therapies. This unmet clinical need reflects a failure to develop novel classes of analgesics with superior efficacy, diminished adverse effects and a lower abuse liability than those currently available. Reasons for this include the heterogeneity of clinical pain conditions, the complexity and diversity of underlying pathophysiological mechanisms, and the unreliability of some preclinical pain models. However, recent advances in our understanding of the neurobiology of pain are beginning to offer opportunities for developing novel therapeutic strategies and revisiting existing targets, including modulating ion channels, enzymes and G-protein-coupled receptors.
Collapse
|
20
|
Vivier D, Soussia IB, Rodrigues N, Lolignier S, Devilliers M, Chatelain FC, Prival L, Chapuy E, Bourdier G, Bennis K, Lesage F, Eschalier A, Busserolles J, Ducki S. Development of the First Two-Pore Domain Potassium Channel TWIK-Related K+ Channel 1-Selective Agonist Possessing in Vivo Antinociceptive Activity. J Med Chem 2017; 60:1076-1088. [DOI: 10.1021/acs.jmedchem.6b01285] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Delphine Vivier
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Ismail Ben Soussia
- Labex
ICST, Institut de Pharmacologie Moléculaire et Cellulaire, UMR CNRS 7275, Université Côte d’Azur, F-06560 Valbonne, France
| | - Nuno Rodrigues
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Stéphane Lolignier
- Université Clermont Auvergne, Inserm, Neuro-Dol, F-63000 Clermont-Ferrand, France
| | - Maïly Devilliers
- Université Clermont Auvergne, Inserm, Neuro-Dol, F-63000 Clermont-Ferrand, France
| | - Franck C. Chatelain
- Labex
ICST, Institut de Pharmacologie Moléculaire et Cellulaire, UMR CNRS 7275, Université Côte d’Azur, F-06560 Valbonne, France
| | - Laetitia Prival
- Université Clermont Auvergne, Inserm, Neuro-Dol, F-63000 Clermont-Ferrand, France
| | - Eric Chapuy
- Université Clermont Auvergne, Inserm, Neuro-Dol, F-63000 Clermont-Ferrand, France
| | - Geoffrey Bourdier
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Khalil Bennis
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Florian Lesage
- Labex
ICST, Institut de Pharmacologie Moléculaire et Cellulaire, UMR CNRS 7275, Université Côte d’Azur, F-06560 Valbonne, France
| | - Alain Eschalier
- Université Clermont Auvergne, Inserm, Neuro-Dol, F-63000 Clermont-Ferrand, France
- CHU Clermont-Ferrand, Service de Pharmacologie, F-63003 Clermont-Ferrand, France
| | - Jérôme Busserolles
- Université Clermont Auvergne, Inserm, Neuro-Dol, F-63000 Clermont-Ferrand, France
| | - Sylvie Ducki
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| |
Collapse
|
21
|
Jorgensen C, Darré L, Oakes V, Torella R, Pryde D, Domene C. Lateral Fenestrations in K(+)-Channels Explored Using Molecular Dynamics Simulations. Mol Pharm 2016; 13:2263-73. [PMID: 27173896 DOI: 10.1021/acs.molpharmaceut.5b00942] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Potassium channels are of paramount physiological and pathological importance and therefore constitute significant drug targets. One of the keys to rationalize the way drugs modulate ion channels is to understand the ability of such small molecules to access their respective binding sites, from which they can exert an activating or inhibitory effect. Many computational studies have probed the energetics of ion permeation, and the mechanisms of voltage gating, but little is known about the role of fenestrations as possible mediators of drug entry in potassium channels. To explore the existence, structure, and conformational dynamics of transmembrane fenestrations accessible by drugs in potassium channels, molecular dynamics simulation trajectories were analyzed from three potassium channels: the open state voltage-gated channel Kv1.2, the G protein-gated inward rectifying channel GIRK2 (Kir3.2), and the human two-pore domain TWIK-1 (K2P1.1). The main results of this work were the identification of the sequence identity of four main lateral fenestrations of similar length and with bottleneck radius in the range of 0.9-2.4 Å for this set of potassium channels. It was found that the fenestrations in Kv1.2 and Kir3.2 remain closed to the passage of molecules larger than water. In contrast, in the TWIK-1 channel, both open and closed fenestrations are sampled throughout the simulation, with bottleneck radius shown to correlate with the random entry of lipid membrane molecules into the aperture of the fenestrations. Druggability scoring function analysis of the fenestration regions suggests that Kv and Kir channels studied are not druggable in practice due to steric constraining of the fenestration bottleneck. A high (>50%) fenestration sequence identity was found in each potassium channel subfamily studied, Kv1, Kir3, and K2P1. Finally, the reported fenestration sequence of TWIK-1 compared favorably with another channel, K2P channel TREK-2, reported to possess open fenestrations, suggesting that K2P channels could be druggable via fenestrations, for which we reported atomistic detail of the fenestration region, including the flexible residues M260 and L264 that interact with POPC membrane in a concerted fashion with the aperture and closure of the fenestrations.
Collapse
Affiliation(s)
- Christian Jorgensen
- Department of Chemistry, King's College London , Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Leonardo Darré
- Department of Chemistry, King's College London , Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Victoria Oakes
- Department of Chemistry, King's College London , Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Rubben Torella
- Pfizer Neuroscience and Pain Research Unit, Worldwide Medicinal Chemistry , Portway Building, Granta Park, Great Abington, Cambridge CB21 6GS, U.K
| | - David Pryde
- Pfizer Neuroscience and Pain Research Unit, Worldwide Medicinal Chemistry , Portway Building, Granta Park, Great Abington, Cambridge CB21 6GS, U.K
| | - Carmen Domene
- Department of Chemistry, King's College London , Britannia House, 7 Trinity Street, London SE1 1DB, U.K.,Chemistry Research Laboratory, University of Oxford , Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
22
|
Han HJ, Lee SW, Kim GT, Kim EJ, Kwon B, Kang D, Kim HJ, Seo KS. Enhanced Expression of TREK-1 Is Related with Chronic Constriction Injury of Neuropathic Pain Mouse Model in Dorsal Root Ganglion. Biomol Ther (Seoul) 2016; 24:252-9. [PMID: 27133259 PMCID: PMC4859788 DOI: 10.4062/biomolther.2016.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/21/2016] [Accepted: 03/31/2016] [Indexed: 11/05/2022] Open
Abstract
Neuropathic pain is a complex state showing increased pain response with dysfunctional inhibitory neurotransmission. The TREK family, one of the two pore domain K⁺ (K2P) channel subgroups were focused among various mechanisms of neuropathic pain. These channels influence neuronal excitability and are thought to be related in mechano/thermosensation. However, only a little is known about the expression and role of TREK-1 and TREK-2, in neuropathic pain. It is performed to know whether TREK-1 and/ or 2 are positively related in dorsal root ganglion (DRG) of a mouse neuropathic pain model, the chronic constriction injury (CCI) model. Following this purpose, Reverse Transcription Polymerase Chain Reaction (RT-PCR) and western blot analyses were performed using mouse DRG of CCI model and compared to the sham surgery group. Immunofluorescence staining of isolectin- B4 (IB4) and TREK were performed. Electrophysiological recordings of single channel currents were analyzed to obtain the information about the channel. Interactions with known TREK activators were tested to confirm the expression. While both TREK-1 and TREK-2 mRNA were significantly overexpressed in DRG of CCI mice, only TREK-1 showed significant increase (~9 fold) in western blot analysis. The TREK-1-like channel recorded in DRG neurons of the CCI mouse showed similar current-voltage relationship and conductance to TREK-1. It was easily activated by low pH solution (pH 6.3), negative pressure, and riluzole. Immunofluorescence images showed the expression of TREK-1 was stronger compared to TREK-2 on IB4 positive neurons. These results suggest that modulation of the TREK-1 channel may have beneficial analgesic effects in neuropathic pain patients.
Collapse
Affiliation(s)
- Hyo Jo Han
- Department of Anesthesiology and Pain Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea
| | - Seung Wook Lee
- Division of Natural Science, Ajou University, Suwon 16499, Republic of Korea
| | - Gyu-Tae Kim
- Departments of Physiology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea
| | - Eun-Jin Kim
- Departments of Physiology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea
| | - Byeonghun Kwon
- Department of Anesthesiology and Pain Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea
| | - Dawon Kang
- Departments of Physiology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea
| | - Hyun Jeong Kim
- Department of Dental Anesthesiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Kwang-Suk Seo
- Department of Dental Anesthesiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
23
|
Mixing and matching TREK/TRAAK subunits generate heterodimeric K2P channels with unique properties. Proc Natl Acad Sci U S A 2016; 113:4200-5. [PMID: 27035965 DOI: 10.1073/pnas.1522748113] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The tandem of pore domain in a weak inwardly rectifying K(+) channel (Twik)-related acid-arachidonic activated K(+) channel (TRAAK) and Twik-related K(+) channels (TREK) 1 and TREK2 are active as homodimers gated by stretch, fatty acids, pH, and G protein-coupled receptors. These two-pore domain potassium (K2P) channels are broadly expressed in the nervous system where they control excitability. TREK/TRAAK KO mice display altered phenotypes related to nociception, neuroprotection afforded by polyunsaturated fatty acids, learning and memory, mood control, and sensitivity to general anesthetics. These channels have emerged as promising targets for the development of new classes of anesthetics, analgesics, antidepressants, neuroprotective agents, and drugs against addiction. Here, we show that the TREK1, TREK2, and TRAAK subunits assemble and form active heterodimeric channels with electrophysiological, regulatory, and pharmacological properties different from those of homodimeric channels. Heteromerization occurs between all TREK variants produced by alternative splicing and alternative translation initiation. These results unveil a previously unexpected diversity of K2P channels that will be challenging to analyze in vivo, but which opens new perspectives for the development of clinically relevant drugs.
Collapse
|
24
|
|
25
|
Abstract
PURPOSE OF REVIEW Poor management of chronic pain remains a significant cause of misery with huge socioeconomic costs. Accumulating research in potassium (K+) channel physiology has uncovered several promising leads for the development of novel analgesics. RECENT FINDINGS We now recognize that certain K+ channel subunits are directly gated to pain-relevant stimuli (Kv1.1, K2P) whereas others are specifically modulated by inflammatory processes (Kv7, BKCA, K2P). Genetic analyses illustrate that K+ channel gene variation can predict pain sensitivity (KCNS1, GIRKs), risk for persistent pain (KCNS1, GIRKs, TRESK) and analgesic effectiveness (GIRK2). Importantly, preclinical studies confirm that K+ channel dysfunction can be a pain trigger in traumatic neuropathies (Kv9.1/Kv2.1, Kv7, Kv1.2) and migraine (TRESK). Finally, emerging data suggest that even pain in diabetes, bone cancer and autoimmune neuropathies may have K+ channel dysfunction constituents. SUMMARY There is a long-sought need for superior pharmacotherapy of pain syndromes. Although universal enhancement of K+ channel function in the periphery can decrease nociceptive excitability irrespective of the underlying cause, a more refined targeting of subunits with dominant nociceptive roles could yield highly efficacious treatments with fewer side-effects. The ongoing characterization of molecular interactions linking K+ channel dysfunction to pain is instrumental for identifying candidates with the most therapeutic potential.
Collapse
|
26
|
Vivier D, Bennis K, Lesage F, Ducki S. Perspectives on the Two-Pore Domain Potassium Channel TREK-1 (TWIK-Related K(+) Channel 1). A Novel Therapeutic Target? J Med Chem 2015; 59:5149-57. [PMID: 26588045 DOI: 10.1021/acs.jmedchem.5b00671] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Potassium (K(+)) channels are membrane proteins expressed in most living cells that selectively control the flow of K(+) ions. More than 80 genes encode the K(+) channel subunits in the human genome. The TWIK-related K(+) channel (TREK-1) belongs to the two-pore domain K(+) channels (K2P) and displays various properties including sensitivity to physical (membrane stretch, acidosis, temperature) and chemical stimuli (signaling lipids, volatile anesthetics). The distribution of TREK-1 in the central nervous system, coupled with the physiological consequences of its opening and closing, leads to the emergence of this channel as an attractive therapeutic target. We review the TREK-1 channel, its structural and functional properties, and the pharmacological agents (agonists and antagonists) able to modulate its gating.
Collapse
Affiliation(s)
- Delphine Vivier
- Université Clermont Auvergne, ENSCCF, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France.,CNRS, UMR6296, ICCF, F-63171 Aubiere, France
| | - Khalil Bennis
- Université Clermont Auvergne, ENSCCF, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France.,CNRS, UMR6296, ICCF, F-63171 Aubiere, France
| | - Florian Lesage
- Labex ICST, Institut de Pharmacologie Moléculaire et Cellulaire, UMR CNRS 7275, Université de Nice Sophia Antipolis, F-06560 Valbonne, France
| | - Sylvie Ducki
- Université Clermont Auvergne, ENSCCF, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France.,CNRS, UMR6296, ICCF, F-63171 Aubiere, France
| |
Collapse
|
27
|
Lindley BM, Swidan A, Lobkovsky EB, Wolczanski PT, Adelhardt M, Sutter J, Meyer K. Fe(iv) alkylidenes via protonation of Fe(ii) vinyl chelates and a comparative Mössbauer spectroscopic study. Chem Sci 2015; 6:4730-4736. [PMID: 29142710 PMCID: PMC5667503 DOI: 10.1039/c5sc01268f] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/20/2015] [Indexed: 11/21/2022] Open
Abstract
Treatment of cis-Me2Fe(PMe3)4 with di-1,2-(E-2-(pyridin-2-yl)vinyl)benzene ((bdvp)H2), a tetradentate ligand precursor, afforded (bdvp)Fe(PMe3)2 (1-PMe3) and 2 equiv. CH4, via C-H bond activation. Similar treatments with tridentate ligand precursors PhCH 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 NCH2(E-CHCHPh) ((pipp)H2) and PhCHN(2-CCMe-Ph) ((pipa)H) under dinitrogen provided trans-(pipp)Fe(PMe3)2N2 (2) and trans-(pipvd)Fe(PMe3)2N2 (3), respectively; the latter via one C-H bond activation, and a subsequent insertion of the alkyne into the remaining Fe-Me bond. All three Fe(ii) vinyl species were protonated with H[BArF4] to form the corresponding Fe(iv) alkylidene cations, [(bavp)Fe(PMe3)2][BArF4] (4-PMe3), [(piap)Fe(PMe3)3][BArF4] (5), and [(pipad)Fe(PMe3)3][BArF4] (6). Mössbauer spectroscopic measurements on the formally Fe(ii) and Fe(iv) derivatives revealed isomer shifts within 0.1 mm s-1, reflecting the similarity in their bond distances.
Collapse
Affiliation(s)
- Brian M Lindley
- Department of Chemistry & Chemical Biology , Baker Laboratory , Cornell University , Ithaca , NY 14850 , USA . ; ; Tel: +1 607 255 7220
| | - Ala'aeddeen Swidan
- Department of Chemistry & Chemical Biology , Baker Laboratory , Cornell University , Ithaca , NY 14850 , USA . ; ; Tel: +1 607 255 7220
| | - Emil B Lobkovsky
- Department of Chemistry & Chemical Biology , Baker Laboratory , Cornell University , Ithaca , NY 14850 , USA . ; ; Tel: +1 607 255 7220
| | - Peter T Wolczanski
- Department of Chemistry & Chemical Biology , Baker Laboratory , Cornell University , Ithaca , NY 14850 , USA . ; ; Tel: +1 607 255 7220
| | - Mario Adelhardt
- Department of Chemistry & Pharmacy , Friedrich Alexander University Erlangen-Nürnberg (FAU) , Egerlandstr. 1 , D-91058 Erlangen , Germany
| | - Jörg Sutter
- Department of Chemistry & Pharmacy , Friedrich Alexander University Erlangen-Nürnberg (FAU) , Egerlandstr. 1 , D-91058 Erlangen , Germany
| | - Karsten Meyer
- Department of Chemistry & Pharmacy , Friedrich Alexander University Erlangen-Nürnberg (FAU) , Egerlandstr. 1 , D-91058 Erlangen , Germany
| |
Collapse
|
28
|
Feliciangeli S, Chatelain FC, Bichet D, Lesage F. The family of K2P channels: salient structural and functional properties. J Physiol 2015; 593:2587-603. [PMID: 25530075 DOI: 10.1113/jphysiol.2014.287268] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/10/2014] [Indexed: 12/11/2022] Open
Abstract
Potassium channels participate in many biological functions, from ion homeostasis to generation and modulation of the electrical membrane potential. They are involved in a large variety of diseases. In the human genome, 15 genes code for K(+) channels with two pore domains (K2P ). These channels form dimers of pore-forming subunits that produce background conductances finely regulated by a range of natural and chemical effectors, including signalling lipids, temperature, pressure, pH, antidepressants and volatile anaesthetics. Since the cloning of TWIK1, the prototypical member of this family, a lot of work has been carried out on their structure and biology. These studies are still in progress, but data gathered so far show that K2P channels are central players in many processes, including ion homeostasis, hormone secretion, cell development and excitability. A growing number of studies underline their implication in physiopathological mechanisms, such as vascular and pulmonary hypertension, cardiac arrhythmias, nociception, neuroprotection and depression. This review gives a synthetic view of the most noticeable features of these channels.
Collapse
Affiliation(s)
- Sylvain Feliciangeli
- LabEx ICST, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS and Université de Nice-Sophia Antipolis, 660 Route des Lucioles, 06560, Valbonne, France
| | - Frank C Chatelain
- LabEx ICST, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS and Université de Nice-Sophia Antipolis, 660 Route des Lucioles, 06560, Valbonne, France
| | - Delphine Bichet
- LabEx ICST, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS and Université de Nice-Sophia Antipolis, 660 Route des Lucioles, 06560, Valbonne, France
| | - Florian Lesage
- LabEx ICST, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS and Université de Nice-Sophia Antipolis, 660 Route des Lucioles, 06560, Valbonne, France
| |
Collapse
|
29
|
Mathie A, Veale EL. Two-pore domain potassium channels: potential therapeutic targets for the treatment of pain. Pflugers Arch 2014; 467:931-43. [DOI: 10.1007/s00424-014-1655-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 01/01/2023]
|