1
|
Kurz JL, Pedroso MM, Richard E, McGeary RP, Schenk G. Inhibitors for metallo-β-lactamases from the B1 and B3 subgroups provide an avenue to combat a major mechanism of antibiotic resistance. Bioorg Med Chem Lett 2023; 92:129387. [PMID: 37369333 DOI: 10.1016/j.bmcl.2023.129387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/12/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
Metallo-β-lactamases (MBLs) are a group of Zn(II)-dependent enzymes that pose a major threat to global health. They are linked to an increasing number of multi-drug resistant bacterial pathogens, but no clinically useful inhibitor is yet available. Since β-lactam antibiotics, which are inactivated by MBLs, constitute ∼65% of all antibiotics used to treat infections, the search for clinically relevant MBL inhibitors is urgent. Here, derivatives of a 2-amino-1-benzyl-4,5-diphenyl-1H-pyrrole-3-carbonitrile (1a) were synthesised and their inhibitory effects assessed against prominent representatives of the MBL family. Several compounds are potent inhibitors of each MBL tested, making them promising candidates for the development of broad-spectrum drug leads. In particular, compound 5f is highly potent across the MBL family, with Ki values in the low µM range. Furthermore, this compound also appears to display synergy in combination with antibiotics such as penicillin G, cefuroxime or meropenem. This molecule thus represents a promising starting point to develop new drugs to inhibit a major mechanism of antibiotic resistance.
Collapse
Affiliation(s)
- Julia L Kurz
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Emmanuelle Richard
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Ross P McGeary
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; Australian Centre for Ecogenomics, The University of Queensland, St. Lucia, QLD 4072, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia; Sustainable Minerals Institute, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
2
|
Krco S, Davis SJ, Joshi P, Wilson LA, Monteiro Pedroso M, Douw A, Schofield CJ, Hugenholtz P, Schenk G, Morris MT. Structure, function, and evolution of metallo-β-lactamases from the B3 subgroup-emerging targets to combat antibiotic resistance. Front Chem 2023; 11:1196073. [PMID: 37408556 PMCID: PMC10318434 DOI: 10.3389/fchem.2023.1196073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
β-Lactams are the most widely employed antibiotics in clinical settings due to their broad efficacy and low toxicity. However, since their first use in the 1940s, resistance to β-lactams has proliferated to the point where multi-drug resistant organisms are now one of the greatest threats to global human health. Many bacteria use β-lactamases to inactivate this class of antibiotics via hydrolysis. Although nucleophilic serine-β-lactamases have long been clinically important, most broad-spectrum β-lactamases employ one or two metal ions (likely Zn2+) in catalysis. To date, potent and clinically useful inhibitors of these metallo-β-lactamases (MBLs) have not been available, exacerbating their negative impact on healthcare. MBLs are categorised into three subgroups: B1, B2, and B3 MBLs, depending on their sequence similarities, active site structures, interactions with metal ions, and substrate preferences. The majority of MBLs associated with the spread of antibiotic resistance belong to the B1 subgroup. Most characterized B3 MBLs have been discovered in environmental bacteria, but they are increasingly identified in clinical samples. B3-type MBLs display greater diversity in their active sites than other MBLs. Furthermore, at least one of the known B3-type MBLs is inhibited by the serine-β-lactamase inhibitor clavulanic acid, an observation that may promote the design of derivatives active against a broader range of MBLs. In this Mini Review, recent advances in structure-function relationships of B3-type MBLs will be discussed, with a view to inspiring inhibitor development to combat the growing spread of β-lactam resistance.
Collapse
Affiliation(s)
- Stefan Krco
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| | - Samuel J. Davis
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| | - Pallav Joshi
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Liam A. Wilson
- Chemistry Research Laboratory, Department of Chemistry, The Ineos Oxford Institute for Antimicrobial Research, Oxford University, Oxford, United Kingdom
| | - Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew Douw
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Christopher J. Schofield
- Chemistry Research Laboratory, Department of Chemistry, The Ineos Oxford Institute for Antimicrobial Research, Oxford University, Oxford, United Kingdom
| | - Philip Hugenholtz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
- Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Marc T. Morris
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Feder D, Mohd-Pahmi SH, Adibi H, Guddat LW, Schenk G, McGeary RP, Hussein WM. Optimization of an α-aminonaphthylmethylphosphonic acid inhibitor of purple acid phosphatase using rational structure-based design approaches. Eur J Med Chem 2023; 254:115383. [PMID: 37087894 DOI: 10.1016/j.ejmech.2023.115383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023]
Abstract
Purple acid phosphatases (PAPs) are ubiquitous binuclear metallohydrolases that have been isolated from various animals, plants and some types of fungi. In humans and mice, elevated PAP activity in osteoclasts is associated with osteoporosis, making human PAP an attractive target for the development of anti-osteoporotic drugs. Based on previous studies focusing on phosphonate scaffolds, as well as a new crystal structure of a PAP in complex with a derivative of a previously synthesized α-aminonaphthylmethylphosphonic acid, phosphonates 24-40 were designed as new PAP inhibitor candidates. Subsequent docking studies predicted that all of these compounds are likely to interact strongly with the active site of human PAP and most are likely to interact strongly with the active site of pig PAP. The seventeen candidates were synthesized with good yields and nine of them (26-28, 30, 33-36 and 38) inhibit in the sub-micromolar to nanomolar range against pig PAP, with 28 and 35 being the most potent mammalian PAP inhibitors reported with Ki values of 168 nM and 186 nM, respectively. This study thus paves the way for the next stage of drug development for phosphonate inhibitors of PAPs as anti-osteoporotic agents.
Collapse
Affiliation(s)
- Daniel Feder
- The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, QLD, 4072, Australia
| | - Siti Hajar Mohd-Pahmi
- The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, QLD, 4072, Australia
| | - Hadi Adibi
- The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, QLD, 4072, Australia; Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Luke W Guddat
- The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, QLD, 4072, Australia
| | - Gerhard Schenk
- The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, QLD, 4072, Australia; The University of Queensland, Sustainable Minerals Institute, Brisbane, QLD, 4072, Australia; The University of Queensland, Australian Institute of Bioengineering and Nanotechnology, Brisbane, QLD, 4072, Australia
| | - Ross P McGeary
- The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, QLD, 4072, Australia
| | - Waleed M Hussein
- The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, QLD, 4072, Australia; Helwan University, Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Ein Helwan, Helwan, Egypt.
| |
Collapse
|
4
|
Wilson LA, Pedroso MM, Peralta RA, Gahan LR, Schenk G. Biomimetics for purple acid phosphatases: A historical perspective. J Inorg Biochem 2023; 238:112061. [PMID: 36371912 DOI: 10.1016/j.jinorgbio.2022.112061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/23/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Biomimetics hold potential for varied applications in biotechnology and medicine but have also attracted particular interest as benchmarks for the functional study of their more complex biological counterparts, e.g. metalloenzymes. While many of the synthetic systems adequately mimic some structural and functional aspects of their biological counterparts the catalytic efficiencies displayed are mostly far inferior due to the smaller size and the associated lower complexity. Nonetheless they play an important role in bioinorganic chemistry. Numerous examples of biologically inspired and informed artificial catalysts have been reported, designed to mimic a plethora of chemical transformations, and relevant examples are highlighted in reviews and scientific reports. Herein, we discuss biomimetics of the metallohydrolase purple acid phosphatase (PAP), examples of which have been used to showcase synergistic research advances for both the biological and synthetic systems. In particular, we focus on the seminal contribution of our colleague Prof. Ademir Neves, and his group, pioneers in the design and optimization of suitable ligands that mimic the active site of PAP.
Collapse
Affiliation(s)
- Liam A Wilson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Marcelo M Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Rosely A Peralta
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Lawrence R Gahan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia; Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia; Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
5
|
Yun Y, Han S, Park YS, Park H, Kim D, Kim Y, Kwon Y, Kim S, Lee JH, Jeon JH, Lee SH, Kang LW. Structural Insights for Core Scaffold and Substrate Specificity of B1, B2, and B3 Metallo-β-Lactamases. Front Microbiol 2022; 12:752535. [PMID: 35095785 PMCID: PMC8792953 DOI: 10.3389/fmicb.2021.752535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/22/2021] [Indexed: 11/24/2022] Open
Abstract
Metallo-β-lactamases (MBLs) hydrolyze almost all β-lactam antibiotics, including penicillins, cephalosporins, and carbapenems; however, no effective inhibitors are currently clinically available. MBLs are classified into three subclasses: B1, B2, and B3. Although the amino acid sequences of MBLs are varied, their overall scaffold is well conserved. In this study, we systematically studied the primary sequences and crystal structures of all subclasses of MBLs, especially the core scaffold, the zinc-coordinating residues in the active site, and the substrate-binding pocket. We presented the conserved structural features of MBLs in the same subclass and the characteristics of MBLs of each subclass. The catalytic zinc ions are bound with four loops from the two central β-sheets in the conserved αβ/βα sandwich fold of MBLs. The three external loops cover the zinc site(s) from the outside and simultaneously form a substrate-binding pocket. In the overall structure, B1 and B2 MBLs are more closely related to each other than they are to B3 MBLs. However, B1 and B3 MBLs have two zinc ions in the active site, while B2 MBLs have one. The substrate-binding pocket is different among all three subclasses, which is especially important for substrate specificity and drug resistance. Thus far, various classes of β-lactam antibiotics have been developed to have modified ring structures and substituted R groups. Currently available structures of β-lactam-bound MBLs show that the binding of β-lactams is well conserved according to the overall chemical structure in the substrate-binding pocket. Besides β-lactam substrates, B1 and cross-class MBL inhibitors also have distinguished differences in the chemical structure, which fit well to the substrate-binding pocket of MBLs within their inhibitory spectrum. The systematic structural comparison among B1, B2, and B3 MBLs provides in-depth insight into their substrate specificity, which will be useful for developing a clinical inhibitor targeting MBLs.
Collapse
Affiliation(s)
- Yeongjin Yun
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Sangjun Han
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Yoon Sik Park
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Hyunjae Park
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Dogyeong Kim
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Yeseul Kim
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Yongdae Kwon
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Sumin Kim
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea
| | - Jeong Ho Jeon
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea
- *Correspondence: Sang Hee Lee,
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
- Lin-Woo Kang,
| |
Collapse
|
6
|
Stroek R, Wilson L, Goracke W, Kang T, Vermue F, Krco S, Mendels Y, Douw A, Morris M, Knaven EG, Mitić N, Gutierrez MCR, Schenk EB, Clark A, Garcia D, Monteiro Pedroso M, Schenk G. LAM-1 from Lysobacter antibioticus: A potent zinc-dependent activity that inactivates β-lactam antibiotics. J Inorg Biochem 2021; 226:111637. [PMID: 34749064 DOI: 10.1016/j.jinorgbio.2021.111637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/25/2022]
Abstract
Resistance to β-lactam antibiotics, including the "last-resort" carbapenems, has emerged as a major threat to global health. A major resistance mechanism employed by pathogens involves the use of metallo-β-lactamases (MBLs), zinc-dependent enzymes that inactivate most of the β-lactam antibiotics used to treat infections. Variants of MBLs are frequently discovered in clinical environments. However, an increasing number of such enzymes have been identified in microorganisms that are less impacted by human activities. Here, an MBL from Lysobacter antibioticus, isolated from the rhizosphere, has been shown to be highly active toward numerous β-lactam antibiotics. Its activity is higher than that of some of the most effective MBLs linked to hospital-acquired antibiotic resistance and thus poses an interesting system to investigate evolutionary pressures that drive the emergence of such biocatalysts.
Collapse
Affiliation(s)
- Rozanne Stroek
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Liam Wilson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - William Goracke
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Taeuk Kang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Febe Vermue
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Stefan Krco
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Yonatan Mendels
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Andrew Douw
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Marc Morris
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Esmee G Knaven
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Nataša Mitić
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Maria C R Gutierrez
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Elaine B Schenk
- School of Mathematics and Physics, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Alice Clark
- Sustainable Minerals Institute, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - David Garcia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia; Sustainable Minerals Institute, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia; Sustainable Minerals Institute, The University of Queensland, St. Lucia, Queensland 4072, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
7
|
Feder D, Mohd-Pahmi SH, Hussein WM, Guddat LW, McGeary RP, Schenk G. Rational Design of Potent Inhibitors of a Metallohydrolase Using a Fragment-Based Approach. ChemMedChem 2021; 16:3342-3359. [PMID: 34331400 DOI: 10.1002/cmdc.202100486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Indexed: 11/08/2022]
Abstract
Metallohydrolases form a large group of enzymes that have fundamental importance in a broad range of biological functions. Among them, the purple acid phosphatases (PAPs) have gained attention due to their crucial role in the acquisition and use of phosphate by plants and also as a promising target for novel treatments of bone-related disorders and cancer. To date, no crystal structure of a mammalian PAP with drug-like molecules bound near the active site is available. Herein, we used a fragment-based design approach using structures of a mammalian PAP in complex with the MaybridgeTM fragment CC063346, the amino acid L-glutamine and the buffer molecule HEPES, as well as various solvent molecules to guide the design of highly potent and efficient mammalian PAP inhibitors. These inhibitors have improved aqueous solubility when compared to the clinically most promising PAP inhibitors available to date. Furthermore, drug-like fragments bound in newly discovered binding sites mapped out additional scaffolds for further inhibitor discovery, as well as scaffolds for the design of inhibitors with novel modes of action.
Collapse
Affiliation(s)
- Daniel Feder
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.,Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Siti H Mohd-Pahmi
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ross P McGeary
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.,Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
8
|
Zhao D, Li H, Yue C, Sun K, Dai Y, Zhang H, Liu Y, Gao Y, Li J. Captopril potentiated meropenem activity against MBL-producing carbapenem-resistant Klebsiella pneumoniae: in vitro and in vivo study. J Inorg Biochem 2021; 218:111381. [PMID: 33647540 DOI: 10.1016/j.jinorgbio.2021.111381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/23/2021] [Accepted: 01/23/2021] [Indexed: 10/22/2022]
Abstract
This study investigated whether captopril can reverse drug resistance in metallo-β-lactamase (MBL)-producing carbapenem-resistant Klebsiella pneumoniae (CRKP) and increase their sensitivity to antimicrobial agents. And also aimed to further characterize the affinity of captopril for imipenemase 4 (IMP-4) to explore the drug resistance treatment of MBL-producing bacteria. Five clinically isolated MBL-producing strains of CRKP were screened and the combined effects of captopril and meropenem were examined in vitro and in vivo to analyze whether captopril can reverse antimicrobial resistance in drug-resistant bacteria. Additionally, enzyme inhibition kinetics was analyzed to characterize the affinity of captopril for IMP-4. In MBL-producing Klebsiella pneumoniae, combined treatment with captopril significantly reduced the minimum inhibitory concentration (MIC) of carbapenems to 1 μg/mL at least, and captopril inhibited New-Delhi metallo-β-lactamase 1 (NDM-1) and IMP-4 in a concentration-dependent manner in vitro. Following the infection of Galleria mellonella by IMP-expressing bacteria, the survival rates were significantly higher in the combination treatment group than in the monotherapy groups. And the bacterial load in the combination treatment group was significantly lower than those in the monotherapy groups and IMP-4-producing bacteria were more sensitive to the combination treatment than NDM-1-producing bacteria. Additionally, enzyme inhibition kinetics firstly illustrated that the half-maximal inhibitory concentration of captopril for IMP-4 was 26.34 μM, and the dissociation constant was 37.14 μM. In brief, captopril potentiated meropenem activity and restored its efficacy against MBL-producing CRKP. Additionally, analysis of enzyme inhibition kinetics confirmed that captopril has good inhibitory effects on IMP-4 activity. Therefore, captopril or its derivatives may have clinical utility for overcoming antibiotic resistance.
Collapse
Affiliation(s)
- Dongmei Zhao
- Department of Infectious Disease, The First Affilated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hongru Li
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Chengcheng Yue
- Department of Infectious Disease, The First Affilated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Kaili Sun
- Department of Infectious Diseases, The Chaohu Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuanyuan Dai
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hui Zhang
- Department of Infectious Disease, The First Affilated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yanyan Liu
- Department of Infectious Disease, The First Affilated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yufeng Gao
- Department of Infectious Disease, The First Affilated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jiabin Li
- Department of Infectious Disease, The First Affilated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Infectious Diseases, The Chaohu Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui, China; Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
9
|
A de novo binuclear zinc enzyme with DNA cleavage activity. J Biol Inorg Chem 2021; 26:161-167. [PMID: 33469708 DOI: 10.1007/s00775-020-01845-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
Metallohydrolases are broadly used throughout biology, often to catalyze the degradation of macromolecules such as DNA and proteins. Many of these enzymes function with zinc in their active site, and an important subset of these enzymes utilize a binuclear zinc active site. Mimics of these enzymes have been developed, some of which catalyze the digestion of DNA. However, the majority of the mimics that utilize zinc are small molecules, and most are mononuclear. Herein, we report DNA cleavage activity by the de novo designed Due Ferri single-chain (DFsc) protein containing a binuclear zinc active site. This binuclear zinc-protein complex is able to digest plasmid DNA at rates up to 50 ng/h, and these cleavage rates are affected by changes to amino acid residues near the zinc-binding site. These results indicate that the DFsc scaffold is a good model system to carry out careful structure-function relationship studies to understand key structural features that influence reactivity in natural binuclear zinc hydrolases, as it is the first report of a binuclear model system in a protein scaffold.
Collapse
|
10
|
Lobos M, Figueroa M, Martínez-Oyanedel J, López V, García-Robles MDLÁ, Tarifeño-Saldivia E, Carvajal N, Uribe E. Insights on the participation of Glu256 and Asp204 in the oligomeric structure and cooperative effects of human arginase type I. J Struct Biol 2020; 211:107533. [PMID: 32450233 DOI: 10.1016/j.jsb.2020.107533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 11/20/2022]
Abstract
Arginase (EC 3.5.3.1) catalyzes the hydrolysis of L-arginine to L-ornithine and urea, and requires a bivalent cation, especially Mn2+ for its catalytic activity. It is a component of the urea cycle and regulates the intracellular levels of l-arginine, which makes the arginase a target for treatment of vascular diseases and asthma. Mammalian arginases contain an unusual S-shaped motif located at the intermonomeric interface. Until now, the studies were limited to structural role of the motif. Then, our interest was focused on functional aspects and our hypothesis has been that the motif is essential for maintain the oligomeric state, having Arg308 as a central axis. Previously, we have shown that the R308A mutant is monomeric and re-associates to the trimeric-cooperative state in the presence of low concentrations of guanidine chloride. We have now mutated Asp204 that interacts with Arg308 in the neighbor subunit, and also we mutated Glu256, proposed as important for oligomerization. Concretely, the human arginase I mutants D204A, D204E, E256A, E256Q and E256D were generated and examined. No differences were observed in the kinetic parameters at pH 9.5 or in tryptophan fluorescence. However, the D204A and E256Q variants were monomeric. On the other hand, D204E and E256D proved to be trimeric and kinetically cooperative at pH 7.5, whereas hyperbolic kinetics was exhibited by E256A, also trimeric. The results obtained strongly support the importance of the interaction between Arg255 and Glu256 in the cooperative properties of arginase, and Asp204 would be relevant to maintain the oligomeric state through salt bridges with Arg255 and Arg308.
Collapse
Affiliation(s)
- Marcela Lobos
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Maximiliano Figueroa
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
| | - José Martínez-Oyanedel
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Vasthi López
- Departamento de Ciencias Biomédicas. Universidad Católica del Norte, Coquimbo, Chile
| | | | - Estefanía Tarifeño-Saldivia
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Nelson Carvajal
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Elena Uribe
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
| |
Collapse
|
11
|
Zhou S, Huang G, Chen G. Synthesis and biological activities of drugs for the treatment of osteoporosis. Eur J Med Chem 2020; 197:112313. [PMID: 32335412 DOI: 10.1016/j.ejmech.2020.112313] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022]
Abstract
Osteoporosis is an asymptomatic progressive disease. With the improvement of people's living standard and the aging of population, osteoporosis and its fracture have become one of the main diseases threatening the aging society. The serious medical and social burden caused by this has aroused wide public concern. Osteoporosis is listed as one of the three major diseases of the elderly. At present, the drugs for osteoporosis include bone resorption inhibitors and bone formation promoters. The purpose of these anti-osteoporosis drugs is to balance osteoblast bone formation and osteoclast bone resorption. With the development of anti-osteoporosis drugs, new anti osteoporosis drugs have been designed and synthesized. There are many kinds of new compounds with anti osteoporosis activity, but most of them are concentrated on the original drugs with anti osteoporosis activity, or the natural products with anti-osteoporosis activity are extracted from the natural products for structural modification to obtain the corresponding derivatives or analogues. These target compounds showed good ALP activity in vitro and in vivo, promoted osteoblast differentiation and mineralization, or had anti TRAP activity, inhibited osteoclast absorption. This work attempts to systematically review the studies on the synthesis and bioactivity of anti-osteoporosis drugs in the past 10 years. The structure-activity relationship was discussed, which provided a reasonable idea for the design and development of new anti-osteoporosis drugs.
Collapse
Affiliation(s)
- Shiyang Zhou
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Gangliang Huang
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Green Synthesis and Application, College of Chemistry, Chongqing Normal University, Chongqing, 401331, China.
| | - Guangying Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China.
| |
Collapse
|
12
|
Sharma G, Jayasinghe-Arachchige VM, Hu Q, Schenk G, Prabhakar R. Effect of Chemically Distinct Substrates on the Mechanism and Reactivity of a Highly Promiscuous Metallohydrolase. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04847] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Gaurav Sharma
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | | | - Qiaoyu Hu
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
13
|
Functional analysis of the Mn2+ requirement in the catalysis of ureohydrolases arginase and agmatinase - a historical perspective. J Inorg Biochem 2020; 202:110812. [DOI: 10.1016/j.jinorgbio.2019.110812] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/13/2019] [Accepted: 08/25/2019] [Indexed: 12/22/2022]
|
14
|
Synthesis, evaluation and structural investigations of potent purple acid phosphatase inhibitors as drug leads for osteoporosis. Eur J Med Chem 2019; 182:111611. [DOI: 10.1016/j.ejmech.2019.111611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/31/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022]
|
15
|
Martini N, Parente JE, D Alessandro F, Rey M, Rizzi A, Williams PAM, Ferrer EG. Potential bio-protective effect of copper compounds: mimicking SOD and peroxidases enzymes and inhibiting acid phosphatase as a target for anti-osteoporotic chemotherapeutics. Mol Biol Rep 2018; 46:867-885. [PMID: 30506507 DOI: 10.1007/s11033-018-4542-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/28/2018] [Indexed: 11/28/2022]
Abstract
Copper complexes with transformed methimazole ligand have been synthesized and characterized by elemental analysis, conductivity measurements, thermogravimetric analysis, EPR, FTIR and UV-Vis spectroscopies. Results support their stoichiometries and geometrical structures: [Cu(C4H5N2S)2Cl2]·2H2O(1), [Cu(C8H10N4S)SO4H2O](2) and [Cu(C8H10N4S)SO4](3). ((C4H5N2)2S: bis(l-methylimidazol-2-yl)sulfide; (C4H5N2S)2 = Bis[bis(l-methylimidazol-2-yl)disulfide]) Concurrently, the structurally distinct soluble species corresponding to complexes (1) and (2) were subsequently used in an in vitro investigation of their potential biological properties. In view of their possible pharmaceutical activity, the complexes were in vitro evaluated as phosphatase acid inhibitors. Their radical bio-protective effects were also studied measuring the effect against DPPH• and O2•- radicals. Additional catalytic properties as peroxidase mimics were evaluated using Michaelis-Menten kinetic model by means of phenol red and pyrogallol assays. The complexes exhibited catalytic bromination activity and the ability to oxidize pyrogallol substrate indicating that they can be considered as functional models. The relationships between the structures and the in vitro biological activities have also been considered. Serum protein albumin has attracted the greatest interest as drug carrier and the affinity of biological/pharmaceutical compound is relevant to the development of new medicine. In that sense, interaction studies by fluorescence and EPR spectroscopies were performed showing the binding capacity of the complexes.
Collapse
Affiliation(s)
- Nancy Martini
- CEQUINOR, CONICET-CICPBA-UNLP, Faculty of Exact Sciences, National University of La Plata, Bv. 120 No 1465, 1900, La Plata, Argentina
| | - Juliana E Parente
- CEQUINOR, CONICET-CICPBA-UNLP, Faculty of Exact Sciences, National University of La Plata, Bv. 120 No 1465, 1900, La Plata, Argentina
| | - Franco D Alessandro
- CEQUINOR, CONICET-CICPBA-UNLP, Faculty of Exact Sciences, National University of La Plata, Bv. 120 No 1465, 1900, La Plata, Argentina
| | - Marilin Rey
- Physics Department, Faculty of Biochemistry and Biological Sciences, National University of the Litoral, Ciudad Universitaria-Paraje El Pozo, 3000, Santa Fe, Argentina
| | - Alberto Rizzi
- Physics Department, Faculty of Biochemistry and Biological Sciences, National University of the Litoral, Ciudad Universitaria-Paraje El Pozo, 3000, Santa Fe, Argentina
| | - Patricia A M Williams
- CEQUINOR, CONICET-CICPBA-UNLP, Faculty of Exact Sciences, National University of La Plata, Bv. 120 No 1465, 1900, La Plata, Argentina
| | - Evelina G Ferrer
- CEQUINOR, CONICET-CICPBA-UNLP, Faculty of Exact Sciences, National University of La Plata, Bv. 120 No 1465, 1900, La Plata, Argentina.
| |
Collapse
|
16
|
Monteiro Pedroso M, Selleck C, Bilyj J, Harmer JR, Gahan LR, Mitić N, Standish AJ, Tierney DL, Larrabee JA, Schenk G. Reaction mechanism of the metallohydrolase CpsB from Streptococcus pneumoniae, a promising target for novel antimicrobial agents. Dalton Trans 2018; 46:13194-13201. [PMID: 28573276 DOI: 10.1039/c7dt01350g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CpsB is a metal ion-dependent hydrolase involved in the biosynthesis of capsular polysaccharides in bacterial organisms. The enzyme has been proposed as a promising target for novel chemotherapeutics to combat antibiotic resistance. The crystal structure of CpsB indicated the presence of as many as three closely spaced metal ions, modelled as Mn2+, in the active site. While the preferred metal ion composition in vivo is obscure Mn2+ and Co2+ have been demonstrated to be most effective in reconstituting activity. Using isothermal titration calorimetry (ITC) we have demonstrated that, in contrast to the crystal structure, only two Mn2+ or Co2+ ions bind to a monomer of CpsB. This observation is in agreement with magnetic circular dichroism (MCD) and electron paramagnetic resonance (EPR) data that indicate the presence of two weakly ferromagnetically coupled Co2+ ions in the active site of catalytically active CpsB. While CpsB is known to be a phosphoesterase we have also been able to demonstrate that this enzyme is efficient in hydrolyzing the β-lactam substrate nitrocefin. Steady-state and stopped-flow kinetics measurements further indicated that phosphoesters and nitrocefin undergo catalysis in a conserved manner with a metal ion-bridging hydroxide acting as a nucleophile. Thus, the combined physicochemical studies demonstrate that CpsB is a novel member of the dinuclear metallohydrolase family.
Collapse
Affiliation(s)
- Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Beloglazkina EK, Krasnovskaya OO, Guk DA, Tafeenko VA, Moiseeva AA, Zyk NV, Majouga AG. Synthesis, characterization, and cytotoxicity of binuclear copper(II) complexes with tetradentate nitrogen-containing ligands bis-5-(2-pyridylmethylidene)-3,5-dihydro-4H-imidazol-4-ones. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Chen C, Xiang Y, Liu Y, Hu X, Yang KW. Mercaptoacetate thioesters and their hydrolysate mercaptoacetic acids jointly inhibit metallo-β-lactamase L1. MEDCHEMCOMM 2018; 9:1172-1177. [PMID: 30109005 DOI: 10.1039/c8md00091c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/04/2018] [Indexed: 11/21/2022]
Abstract
The 'superbug' infection caused by metallo-β-lactamases (MβLs) including L1 has grown into an emerging threat. To probe whether mercaptoacetate thioesters inhibiting L1 is a contribution of the thioester itself or its hydrolysate, ten mercaptoacetate thioesters 1-10 were synthesized, which specifically inhibited L1, exhibiting IC50 values ranging from 0.17 to 1.2 μM, and 8 was found to be the best inhibitor (IC50 = 0.17 μM). These thioesters restored the antimicrobial activity of cefazolin against E. coli expressing L1 by 2-4-fold. UV-vis monitoring showed that 1, 8 and 9 were unhydrolyzed in Tris buffer (pH 6.0-8.5), but hydrolyzed by L1; further HPLC monitoring indicated that 1/3 of the thioester 9 was converted to mercaptoacetic acid. STD-NMR monitoring suggested that both the thioester and its hydrolysate mercaptoacetic acid jointly inhibited L1.
Collapse
Affiliation(s)
- Cheng Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education , Innovation Laboratory of Chemical Biology , College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , P. R. China .
| | - Yang Xiang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education , Innovation Laboratory of Chemical Biology , College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , P. R. China .
| | - Ya Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education , Innovation Laboratory of Chemical Biology , College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , P. R. China .
| | - Xiangdong Hu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education , Innovation Laboratory of Chemical Biology , College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , P. R. China .
| | - Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education , Innovation Laboratory of Chemical Biology , College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , P. R. China .
| |
Collapse
|
19
|
The use of SWATH to analyse the dynamic changes of bacterial proteome of carbapanemase-producing Escherichia coli under antibiotic pressure. Sci Rep 2018; 8:3871. [PMID: 29497067 PMCID: PMC5832786 DOI: 10.1038/s41598-018-21984-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 02/06/2018] [Indexed: 11/24/2022] Open
Abstract
Antibiotic resistance associated with the clinically significant carbapenemases KPC, NDM and OXA-48 in Enterobacteriaceae is emerging as worldwide. In Australia, IMP-producing Enterobacteriaceae are the most prevalent carbapenemase-producing Enterobacteriaceae (CPE). Genomic characteristics of such CPE are well described, but the corresponding proteome is poorly characterised. We have thus developed a method to analyse dynamic changes in the proteome of CPE under antibiotic pressure. Specifically, we have investigated the effect of meropenem at sub-lethal concentrations to develop a better understanding of how antibiotic pressure leads to resistance. Escherichia coli strains producing either NDM-, IMP- or KPC-type carbapenemases were included in this study, and their proteomes were analysed in growth conditions with or without meropenem. The most significant difference in the bacterial proteomes upon the addition of meropenem was triggered amongst NDM-producers and to a lower extent amongst KPC-producers. In particular, HU DNA-binding proteins, the GroEL/GroES chaperonin complex and GrpE proteins were overexpressed. These proteins may thus contribute to the better adaptability of NDM- and KPC-producers to meropenem. A significant meropenem-induced increase in the expression of the outer membrane protein A was only observed in IMP-producers, thus demonstrating that carbapenemase-mediated resistance relies on far more complex mechanisms than simple inactivation of the antibiotic.
Collapse
|
20
|
Copper Ions and Coordination Complexes as Novel Carbapenem Adjuvants. Antimicrob Agents Chemother 2018; 62:AAC.02280-17. [PMID: 29133551 DOI: 10.1128/aac.02280-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022] Open
Abstract
Carbapenem-resistant Enterobacteriaceae are urgent threats to global human health. These organisms produce β-lactamases with carbapenemase activity, such as the metallo-β-lactamase NDM-1, which is notable due to its association with mobile genetic elements and the lack of a clinically useful inhibitor. Here we examined the ability of copper to inhibit the activity of NDM-1 and explored the potential of a copper coordination complex as a mechanism to efficiently deliver copper as an adjuvant in clinical therapeutics. An NDM-positive Escherichia coli isolate, MS6192, was cultured from the urine of a patient with a urinary tract infection. MS6192 was resistant to antibiotics from multiple classes, including diverse β-lactams (penicillins, cephalosporins, and carbapenems), aminoglycosides, and fluoroquinolones. In the presence of copper (range, 0 to 2 mM), however, the susceptibility of MS6192 to the carbapenems ertapenem and meropenem increased markedly. In standard checkerboard assays, copper decreased the MICs of ertapenem and meropenem against MS6192 in a dose-dependent manner, suggesting a synergistic mode of action. To examine the inhibitory effect of copper in the absence of other β-lactamases, the blaNDM-1 gene from MS6192 was cloned and expressed in a recombinant E. coli K-12 strain. Analysis of cell extracts prepared from this strain revealed that copper directly inhibited NDM-1 activity, which was confirmed using purified recombinant NDM-1. Finally, delivery of copper at a low concentration of 10 μM by using the FDA-approved coordination complex copper-pyrithione sensitized MS6192 to ertapenem and meropenem in a synergistic manner. Overall, this work demonstrates the potential use of copper coordination complexes as novel carbapenemase adjuvants.
Collapse
|
21
|
Rasouli H, Hosseini-Ghazvini SMB, Adibi H, Khodarahmi R. Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: a virtual screening perspective for the treatment of obesity and diabetes. Food Funct 2017; 8:1942-1954. [PMID: 28470323 DOI: 10.1039/c7fo00220c] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recently, due to their biological properties, polyphenol-rich functional foods have been proposed to be unique supplementary and nutraceutical treatments for diabetes mellitus. Inhibition of α-amylase and α-glucosidase enzymes using natural products (especially polyphenols) is a novel oral policy to regulate carbohydrate metabolism and hyperglycemia. The present study aims to evaluate the α-amylase and α-glucosidase inhibitory activity of 26 polyphenols using molecular docking and virtual screening studies. The results speculate that among selected compounds caffeic acid, curcumin, cyanidin, daidzein, epicatechin, eridyctiol, ferulic acid, hesperetin, narenginin, pinoresinol, quercetin, resveratrol and syringic acid can significantly inhibit the α-glucosidase enzyme. In addition, catechin, hesperetin, kaempferol, silibinin and pelargonidin are potent α-amylase inhibitors. Therefore the primary structure of polyphenols can change the inhibitory effect versus the α-amylase and α-glucosidase enzymes. Finally, we speculate that consumption of polyphenol-rich functional foods (by considering the best dose of each compound and assessing their possible side effects) in diabetic patients may be useful for regulating carbohydrate metabolism and related disorders. The findings of the current study may also shed light on a way of generating a new class of amylase/glucosidase inhibitors that will discriminately inhibit the on-target enzymes with negligible undesired off-target side effects.
Collapse
Affiliation(s)
- Hassan Rasouli
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | | | | |
Collapse
|
22
|
Kumar D, Sharma N, Nair M. Synthesis, spectral and extended spectrum beta-lactamase studies of transition metal tetraaza macrocyclic complexes. J Biol Inorg Chem 2017; 22:535-543. [PMID: 28101682 DOI: 10.1007/s00775-017-1440-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 01/06/2017] [Indexed: 11/28/2022]
Abstract
Urinary tract infections commonly occur in humans due to microbial pathogens invading the urinary tract, which can bring about a range of clinical symptoms and potentially fatal sequelae. The present study is aimed at addressing the development of a new antimicrobial agent against extended spectrum beta lactamase (ESBL) producing E. coli bacteria. We have synthesised some biologically potent (NNNN) donor macrocycles (L 1 = dibenzo[f,n]dipyrido[3,4-b:4',3'-j][1,4,9,12]tetraazacyclohexadecine-6,11,18,23(5H,12H, 7H, 24H)-tetraone, and L 2 = 6,12,19,25-tetraoxo-4,6,11,12,16,18,23,24-octahydrotetrabenzo [b,g,k,p][1,5,10,14]tetra azacyclooctadecine-2,13-dicarboxylic acid) and their Ti and Zr metal complexes in alcoholic media using microwave protocol. Macrocyclic ligands were synthesised by incorporating of 3,5-diaminobenzoic acid, phthalic acid and 3,4-diaminopyridine in 1:1:1 molar ratio. The macrocyclic ligands and their metal complexes have been characterised by elemental analysis, conductance measurement, magnetic measurement and their structure configurations have been determined by various spectroscopic (FTIR, 1H/13C NMR, UV-Vis, LC-MS mass, XRD and TGA) techniques. [ZrL2Cl2]Cl2 metal complex shows excellent antibacterial activity against ESBLs. A zone of inhibition and minimum inhibitory concentration was determined by McFarland and the dilution method, respectively. The spectral studies confirm the binding sites of the nitrogen atom of the macrocycles. An octahedral geometry has been assigned to the metal complexes based on the findings.
Collapse
Affiliation(s)
- Dinesh Kumar
- Department of Chemistry, Banasthali University, Banasthali, 304022, India.
| | - Nutan Sharma
- Department of Chemistry, Banasthali University, Banasthali, 304022, India
| | - Manjula Nair
- Department of Chemistry, American College of Dubai, 36778, Dubai, UAE
| |
Collapse
|
23
|
Chang YN, Xiang Y, Zhang YJ, Wang WM, Chen C, Oelschlaeger P, Yang KW. Carbamylmethyl Mercaptoacetate Thioether: A Novel Scaffold for the Development of L1 Metallo-β-lactamase Inhibitors. ACS Med Chem Lett 2017; 8:527-532. [PMID: 28523105 DOI: 10.1021/acsmedchemlett.7b00058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/24/2017] [Indexed: 12/30/2022] Open
Abstract
Given the clinical importance of metallo-β-lactamases (MβLs), a new scaffold, N-substituted carbamylmethyl mercaptoacetate thioether, was constructed. The obtained molecules 1-16 inhibited MβLs from all three subclasses, but preferentially L1 from subclass B3. Compound 9 with a p-carboxyphenyl substituent exhibited the broadest spectrum with at least 70% inhibition of enzymes from all subclasses at 100 μM, while compound 5 with a p-methylphenyl substituent was the most potent inhibitor of any individual enzyme, with 97% inhibition at 100 μM and an IC50 value of 0.41 μM against L1. Isothermal titration calorimetry assays corroborate findings from UV-vis spectrophotometric assays that the inhibition of L1 by 5 is dose-dependent. Docking studies suggest that the carboxyl group, the sulfide atom, and the carbonyl group of the carbamyl coordinate Zn2 in a chelating fashion. Using E. coli cells expressing L1, 6 and 8 were able to decrease cefazolin minimum inhibitory concentration 8-fold.
Collapse
Affiliation(s)
- Ya-Nan Chang
- Key
Laboratory of Synthetic and Natural Functional Molecule Chemistry
of Ministry of Education, Chemical Biology Innovation Laboratory,
College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Yang Xiang
- Key
Laboratory of Synthetic and Natural Functional Molecule Chemistry
of Ministry of Education, Chemical Biology Innovation Laboratory,
College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Yue-Juan Zhang
- Key
Laboratory of Synthetic and Natural Functional Molecule Chemistry
of Ministry of Education, Chemical Biology Innovation Laboratory,
College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Wen-Ming Wang
- Key
Laboratory of Synthetic and Natural Functional Molecule Chemistry
of Ministry of Education, Chemical Biology Innovation Laboratory,
College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Cheng Chen
- Key
Laboratory of Synthetic and Natural Functional Molecule Chemistry
of Ministry of Education, Chemical Biology Innovation Laboratory,
College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Peter Oelschlaeger
- Department
of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 East Second Street, Pomona, California 91766, United States
| | - Ke-Wu Yang
- Key
Laboratory of Synthetic and Natural Functional Molecule Chemistry
of Ministry of Education, Chemical Biology Innovation Laboratory,
College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| |
Collapse
|
24
|
Abstract
The global overuse of antibiotics has led to the emergence of drug-resistant pathogenic bacteria. Bacteria can combat β-lactams by expressing β-lactamases. Inhibitors of one class of β-lactamase, the serine-β-lactamases, are used clinically to prevent degradation of β-lactam antibiotics. However, a second class of β-lactamase, the metallo-β-lactamases (MBLs), function by a different mechanism to serine-β-lactamases and no inhibitors of MBLs have progressed to be used in the clinic. Bacteria that express MBLs are an increasingly important threat to human health. This review outlines various approaches taken to discover MBL inhibitors, with an emphasis on the different chemical classes of inhibitors. Recent progress, particularly new screening methods and the rational design of potent MBL inhibitors are discussed.
Collapse
|
25
|
Hou CFD, Liu JW, Collyer C, Mitić N, Pedroso MM, Schenk G, Ollis DL. Insights into an evolutionary strategy leading to antibiotic resistance. Sci Rep 2017; 7:40357. [PMID: 28074907 PMCID: PMC5225480 DOI: 10.1038/srep40357] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/05/2016] [Indexed: 12/13/2022] Open
Abstract
Metallo-β-lactamases (MBLs) with activity towards a broad-spectrum of β-lactam antibiotics have become a major threat to public health, not least due to their ability to rapidly adapt their substrate preference. In this study, the capability of the MBL AIM-1 to evade antibiotic pressure by introducing specific mutations was probed by two alternative methods, i.e. site-saturation mutagenesis (SSM) of active site residues and in vitro evolution. Both approaches demonstrated that a single mutation in AIM-1 can greatly enhance a pathogen's resistance towards broad spectrum antibiotics without significantly compromising the catalytic efficiency of the enzyme. Importantly, the evolution experiments demonstrated that relevant amino acids are not necessarily in close proximity to the catalytic centre of the enzyme. This observation is a powerful demonstration that MBLs have a diverse array of possibilities to adapt to new selection pressures, avenues that cannot easily be predicted from a crystal structure alone.
Collapse
Affiliation(s)
- Chun-Feng D Hou
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
| | - Jian-Wei Liu
- CSIRO Entomology, Black Mountain, ACT 2601, Australia
| | - Charles Collyer
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Nataša Mitić
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David L Ollis
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
26
|
Romero N, Benítez J, Garcia D, González A, Bennun L, García-Robles MA, López V, Wilson LA, Schenk G, Carvajal N, Uribe E. Mammalian agmatinases constitute unusual members in the family of Mn 2+ -dependent ureahydrolases. J Inorg Biochem 2017; 166:122-125. [DOI: 10.1016/j.jinorgbio.2016.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/06/2016] [Accepted: 11/08/2016] [Indexed: 10/20/2022]
|
27
|
Silva GADS, Amorim AL, Souza BD, Gabriel P, Terenzi H, Nordlander E, Neves A, Peralta RA. Synthesis and characterization of FeIII(μ-OH)ZnII complexes: effects of a second coordination sphere and increase in the chelate ring size on the hydrolysis of a phosphate diester and DNA. Dalton Trans 2017; 46:11380-11394. [DOI: 10.1039/c7dt02035j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Effects of a second coordination sphere and of the chelate ring size in FeIII(μ-OH)ZnII complexes properties and catalysis.
Collapse
Affiliation(s)
| | - André Luiz Amorim
- Departamento de Química
- Universidade Federal de Santa Catarina
- 88040-900 Florianópolis
- Brazil
| | - Bernardo de Souza
- Departamento de Química
- Universidade Federal de Santa Catarina
- 88040-900 Florianópolis
- Brazil
| | - Philipe Gabriel
- Centro de Biologia Molecular Estrutural
- Departamento de Bioquímica
- Universidade Federal de Santa Catarina
- Florianópolis
- Brazil
| | - Hernán Terenzi
- Centro de Biologia Molecular Estrutural
- Departamento de Bioquímica
- Universidade Federal de Santa Catarina
- Florianópolis
- Brazil
| | - Ebbe Nordlander
- Inorganic Chemistry Research Group
- Chemical Physics
- Center for Chemistry and Chemical Engineering
- Lund University
- SE-221 00 Lund
| | - Ademir Neves
- Departamento de Química
- Universidade Federal de Santa Catarina
- 88040-900 Florianópolis
- Brazil
| | - Rosely A. Peralta
- Departamento de Química
- Universidade Federal de Santa Catarina
- 88040-900 Florianópolis
- Brazil
| |
Collapse
|
28
|
Pedroso MM, Selleck C, Enculescu C, Harmer JR, Mitić N, Craig WR, Helweh W, Hugenholtz P, Tyson GW, Tierney DL, Larrabee JA, Schenk G. Characterization of a highly efficient antibiotic-degrading metallo-β-lactamase obtained from an uncultured member of a permafrost community. Metallomics 2017; 9:1157-1168. [DOI: 10.1039/c7mt00195a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Microorganisms in the permafrost contain a potent mechanism to inactivate antibiotics.
Collapse
|
29
|
Shirvani G, Shockravi A, Amini M, Saemian N. Synthesis of (2-mercaptoacetyl)-L-[2- 14 C]tryptophan as a selective metallo-β-lactamase inhibitor via [2- 14 C]indole based on chiral pool strategy. J Labelled Comp Radiopharm 2016; 60:130-134. [PMID: 27943428 DOI: 10.1002/jlcr.3485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 11/13/2016] [Accepted: 12/02/2016] [Indexed: 11/11/2022]
Abstract
Metallo-beta-lactamase enzymes make bacteria resistant to a broad range of commonly used beta-lactam antibiotics. Several thiol derivatives of L-amino acids have been shown their inhibitory effects against the metallo-β-lactamase IMP-1. In this study, (2-mercaptoacetyl)-L-tryptophan as a new inhibitor of metallo-β-lactamases labeled with carbon-14 in the 2-position of the indole ring was prepared from [2-14 C]indole as a key synthetic intermediate based on chiral pool strategy. The overall synthesis was performed in 10 steps with the overall radiochemical yield 3.6% on the basis of the barium [14 C]carbonate as a starting material.
Collapse
Affiliation(s)
- Gholamhossein Shirvani
- Nuclear Science Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | | | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nader Saemian
- Nuclear Science Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| |
Collapse
|
30
|
Selleck C, Larrabee JA, Harmer J, Guddat LW, Mitić N, Helweh W, Ollis DL, Craig WR, Tierney DL, Monteiro Pedroso M, Schenk G. AIM-1: An Antibiotic-Degrading Metallohydrolase That Displays Mechanistic Flexibility. Chemistry 2016; 22:17704-17714. [DOI: 10.1002/chem.201602762] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Christopher Selleck
- School of Chemistry and Molecular Biosciences; The University of Queensland; St. Lucia Queensland 4072 Australia
| | - James A. Larrabee
- Department of Chemistry and Biochemistry; Middlebury College; Middlebury Vermont 05753 USA
| | - Jeffrey Harmer
- Centre for Advanced Imaging; The University of Queensland; St. Lucia Queensland 4072 Australia
| | - Luke W. Guddat
- School of Chemistry and Molecular Biosciences; The University of Queensland; St. Lucia Queensland 4072 Australia
| | - Nataša Mitić
- Department of Chemistry; Maynooth University; Maynooth, Co. Kildare Ireland
| | - Waleed Helweh
- Department of Chemistry and Biochemistry; Middlebury College; Middlebury Vermont 05753 USA
| | - David L. Ollis
- Research School of Chemistry; Australian National University of Canberra; ACT 0200 Australia
| | - Whitney R. Craig
- Department of Chemistry and Biochemistry; Miami University, Oxford; Ohio 45056 USA
| | - David L. Tierney
- Department of Chemistry and Biochemistry; Miami University, Oxford; Ohio 45056 USA
| | - Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences; The University of Queensland; St. Lucia Queensland 4072 Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences; The University of Queensland; St. Lucia Queensland 4072 Australia
| |
Collapse
|
31
|
Promiscuous metallo-β-lactamases: MIM-1 and MIM-2 may play an essential role in quorum sensing networks. J Inorg Biochem 2016; 162:366-375. [DOI: 10.1016/j.jinorgbio.2015.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/04/2015] [Accepted: 12/16/2015] [Indexed: 11/21/2022]
|
32
|
Sgrignani J, Grazioso G, De Amici M. Insight into the Mechanism of Hydrolysis of Meropenem by OXA-23 Serine-β-lactamase Gained by Quantum Mechanics/Molecular Mechanics Calculations. Biochemistry 2016; 55:5191-200. [PMID: 27534275 DOI: 10.1021/acs.biochem.6b00461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The fast and constant development of drug resistant bacteria represents a serious medical emergency. To overcome this problem, the development of drugs with new structures and modes of action is urgently needed. In this work, we investigated, at the atomistic level, the mechanisms of hydrolysis of Meropenem by OXA-23, a class D β-lactamase, combining unbiased classical molecular dynamics and umbrella sampling simulations with classical force field-based and quantum mechanics/molecular mechanics potentials. Our calculations provide a detailed structural and dynamic picture of the molecular steps leading to the formation of the Meropenem-OXA-23 covalent adduct, the subsequent hydrolysis, and the final release of the inactive antibiotic. In this mechanistic framework, the predicted activation energy is in good agreement with experimental kinetic measurements, validating the expected reaction path.
Collapse
Affiliation(s)
- Jacopo Sgrignani
- Istituto di Chimica del Riconoscimento Molecolare, CNR , Via Mario Bianco 9, 20131 Milan, Italy
| | - Giovanni Grazioso
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano , Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Marco De Amici
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano , Via L. Mangiagalli 25, 20133 Milan, Italy
| |
Collapse
|
33
|
Arjomandi OK, Hussein WM, Vella P, Yusof Y, Sidjabat HE, Schenk G, McGeary RP. Design, synthesis, and in vitro and biological evaluation of potent amino acid-derived thiol inhibitors of the metallo-β-lactamase IMP-1. Eur J Med Chem 2016; 114:318-27. [DOI: 10.1016/j.ejmech.2016.03.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/04/2016] [Accepted: 03/05/2016] [Indexed: 01/10/2023]
|
34
|
Yusof Y, Tan DT, Arjomandi OK, Schenk G, McGeary RP. Captopril analogues as metallo-β-lactamase inhibitors. Bioorg Med Chem Lett 2016; 26:1589-1593. [DOI: 10.1016/j.bmcl.2016.02.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 10/22/2022]
|
35
|
Marton Z, Guillon R, Krimm I, Preeti, Rahimova R, Egron D, Jordheim LP, Aghajari N, Dumontet C, Périgaud C, Lionne C, Peyrottes S, Chaloin L. Identification of Noncompetitive Inhibitors of Cytosolic 5'-Nucleotidase II Using a Fragment-Based Approach. J Med Chem 2015; 58:9680-96. [PMID: 26599519 DOI: 10.1021/acs.jmedchem.5b01616] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We used a combined approach based on fragment-based drug design (FBDD) and in silico methods to design potential inhibitors of the cytosolic 5'-nucleotidase II (cN-II), which has been recognized as an important therapeutic target in hematological cancers. Two subgroups of small compounds (including adenine and biaryl moieties) were identified as cN-II binders and a fragment growing strategy guided by molecular docking was considered. Five compounds induced a strong inhibition of the 5'-nucleotidase activity in vitro, and the most potent ones were characterized as noncompetitive inhibitors. Biological evaluation in cancer cell lines showed synergic effect with selected anticancer drugs. Structural studies using X-ray crystallography lead to the identification of new binding sites for two derivatives and of a new crystal form showing important domain swapping. Altogether, the strategy developed herein allowed identifying new original noncompetitive inhibitors against cN-II that act in a synergistic manner with well-known antitumoral agents.
Collapse
Affiliation(s)
- Zsuzsanna Marton
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), FRE 3689 CNRS, Université de Montpellier , 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Rémi Guillon
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, ENSCM , Campus Triolet, cc1705, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Isabelle Krimm
- Institut des Sciences Analytiques, UMR 5280 CNRS, Université Lyon 1 , ENS de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Preeti
- Institut de Biologie et Chimie des Protéines FR3302, Molecular and Structural Bases of Infectious Diseases UMR 5086 CNRS, Université Lyon 1 , 7 Passage du Vercors, 69367 Lyon, France
| | - Rahila Rahimova
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), FRE 3689 CNRS, Université de Montpellier , 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - David Egron
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, ENSCM , Campus Triolet, cc1705, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Lars P Jordheim
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université Lyon 1 , 69008 Lyon, France
| | - Nushin Aghajari
- Institut de Biologie et Chimie des Protéines FR3302, Molecular and Structural Bases of Infectious Diseases UMR 5086 CNRS, Université Lyon 1 , 7 Passage du Vercors, 69367 Lyon, France
| | - Charles Dumontet
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université Lyon 1 , 69008 Lyon, France
| | - Christian Périgaud
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, ENSCM , Campus Triolet, cc1705, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Corinne Lionne
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), FRE 3689 CNRS, Université de Montpellier , 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Suzanne Peyrottes
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, ENSCM , Campus Triolet, cc1705, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Laurent Chaloin
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), FRE 3689 CNRS, Université de Montpellier , 1919 route de Mende, 34293 Montpellier cedex 5, France
| |
Collapse
|
36
|
Miraula M, Whitaker JJ, Schenk G, Mitić N. β-Lactam antibiotic-degrading enzymes from non-pathogenic marine organisms: a potential threat to human health. J Biol Inorg Chem 2015; 20:639-51. [PMID: 25773168 DOI: 10.1007/s00775-015-1250-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/02/2015] [Indexed: 10/23/2022]
Abstract
Metallo-β-lactamases (MBLs) are a family of Zn(II)-dependent enzymes that inactivate most of the commonly used β-lactam antibiotics. They have emerged as a major threat to global healthcare. Recently, we identified two novel MBL-like proteins, Maynooth IMipenemase-1 (MIM-1) and Maynooth IMipenemase-2 (MIM-2), in the marine organisms Novosphingobium pentaromativorans and Simiduia agarivorans, respectively. Here, we demonstrate that MIM-1 and MIM-2 have catalytic activities comparable to those of known MBLs, but from the pH dependence of their catalytic parameters it is evident that both enzymes differ with respect to their mechanisms, with MIM-1 preferring alkaline and MIM-2 acidic conditions. Both enzymes require Zn(II) but activity can also be reconstituted with other metal ions including Co(II), Mn(II), Cu(II) and Ca(II). Importantly, the substrate preference of MIM-1 and MIM-2 appears to be influenced by their metal ion composition. Since neither N. pentaromativorans nor S. agarivorans are human pathogens, the precise biological role(s) of MIM-1 and MIM-2 remains to be established. However, due to the similarity of at least some of their in vitro functional properties to those of known MBLs, MIM-1 and MIM-2 may provide essential structural insight that may guide the design of as of yet elusive clinically useful MBL inhibitors.
Collapse
Affiliation(s)
- Manfredi Miraula
- Department of Chemistry, Maynooth University, Maynooth, Co., Kildare, Ireland
| | | | | | | |
Collapse
|
37
|
Mitić N, Miraula M, Selleck C, Hadler KS, Uribe E, Pedroso MM, Schenk G. Catalytic mechanisms of metallohydrolases containing two metal ions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 97:49-81. [PMID: 25458355 DOI: 10.1016/bs.apcsb.2014.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
At least one-third of enzymes contain metal ions as cofactors necessary for a diverse range of catalytic activities. In the case of polymetallic enzymes (i.e., two or more metal ions involved in catalysis), the presence of two (or more) closely spaced metal ions gives an additional advantage in terms of (i) charge delocalisation, (ii) smaller activation barriers, (iii) the ability to bind larger substrates, (iv) enhanced electrostatic activation of substrates, and (v) decreased transition-state energies. Among this group of proteins, enzymes that catalyze the hydrolysis of ester and amide bonds form a very prominent family, the metallohydrolases. These enzymes are involved in a multitude of biological functions, and an increasing number of them gain attention for translational research in medicine and biotechnology. Their functional versatility and catalytic proficiency are largely due to the presence of metal ions in their active sites. In this chapter, we thus discuss and compare the reaction mechanisms of several closely related enzymes with a view to highlighting the functional diversity bestowed upon them by their metal ion cofactors.
Collapse
Affiliation(s)
- Nataša Mitić
- Department of Chemistry, National University of Ireland, Maynooth, Maynooth, Co. Kildare, Ireland.
| | - Manfredi Miraula
- Department of Chemistry, National University of Ireland, Maynooth, Maynooth, Co. Kildare, Ireland; School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Christopher Selleck
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Kieran S Hadler
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Elena Uribe
- Department of Biochemistry and Molecular Biology, University of Concepción, Concepción, Chile
| | - Marcelo M Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
38
|
Daumann LJ, Schenk G, Gahan LR. Metallo-β-lactamases and Their Biomimetic Complexes. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Phelan EK, Miraula M, Selleck C, Ollis DL, Schenk G, Mitić N. Metallo-β-Lactamases: A Major Threat to Human Health. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ajmb.2014.43011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|