1
|
Islam MR, Markatos C, Pirmettis I, Papadopoulos M, Karageorgos V, Liapakis G, Fahmy H. Design, Synthesis, and Biological Evaluations of Novel Thiazolo[4,5-d]pyrimidine Corticotropin Releasing Factor (CRF) Receptor Antagonists as Potential Treatments for Stress Related Disorders and Congenital Adrenal Hyperplasia (CAH). Molecules 2024; 29:3647. [PMID: 39125051 PMCID: PMC11314199 DOI: 10.3390/molecules29153647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Corticotropin-releasing factor (CRF) is a key neuropeptide hormone that is secreted from the hypothalamus. It is the master hormone of the HPA axis, which orchestrates the physiological and behavioral responses to stress. Many disorders, including anxiety, depression, addiction relapse, and others, are related to over-activation of this system. Thus, new molecules that may interfere with CRF receptor binding may be of value to treat neuropsychiatric stress-related disorders. Also, CRF1R antagonists have recently emerged as potential treatment options for congenital adrenal hyperplasia. Previously, several series of CRF1 receptor antagonists were developed by our group. In continuation of our efforts in this direction, herein we report the synthesis and biological evaluation of a new series of CRF1R antagonists. Representative compounds were evaluated for their binding affinities compared to antalarmin. Four compounds (2, 5, 20, and 21) showed log IC50 values of -8.22, -7.95, -8.04, and -7.88, respectively, compared to -7.78 for antalarmin. This result indicates that these four compounds are superior to antalarmin by 2.5, 1.4, 1.7, and 1.25 times, respectively. It is worth mentioning that compound 2, in terms of IC50, is among the best CRF1R antagonists ever developed in the last 40 years. The in silico physicochemical properties of the lead compounds showed good drug-like properties. Thus, further research in this direction may lead to better and safer CRF receptor antagonists that may have clinical applications, particularly for stress-related disorders and the treatment of congenital adrenal hyperplasia.
Collapse
Affiliation(s)
- Md Rabiul Islam
- Department of Pharmaceutical Science, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA;
| | - Christos Markatos
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece; (C.M.); (V.K.); (G.L.)
| | - Ioannis Pirmettis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece; (I.P.); (M.P.)
| | - Minas Papadopoulos
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece; (I.P.); (M.P.)
| | - Vlasios Karageorgos
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece; (C.M.); (V.K.); (G.L.)
| | - George Liapakis
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece; (C.M.); (V.K.); (G.L.)
| | - Hesham Fahmy
- Department of Pharmaceutical Science, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA;
| |
Collapse
|
2
|
Bamou FZ, Le TM, Tayeb BA, Tahaei SAS, Minorics R, Zupkó I, Szakonyi Z. Antiproliferative Activity of (-)-Isopulegol-based 1,3-Oxazine, 1,3-Thiazine and 2,4-Diaminopyrimidine Derivatives. ChemistryOpen 2022; 11:e202200169. [PMID: 36200514 PMCID: PMC9535514 DOI: 10.1002/open.202200169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/25/2022] [Indexed: 11/08/2022] Open
Abstract
A series of novel heterocyclic structures, namely 1,3-oxazines, 1,3-thiazines and 2,4-diaminopyrimidines, were designed and synthesised. The bioassay tests demonstrated that, among these analogues, 2,4-diaminopyridine derivatives showed significant antiproliferative activity against different human cancer cell lines (A2780, SiHa, HeLa, MCF-7 and MDA-MB-231). Pyrimidines substituted with N2 -(p-trifluoromethyl)aniline, in particular, displayed a potent inhibitory effect on the growth of cancer cells. Structure-activity relationships were also studied from the aspects of stereochemistry on the aminodiol moiety as well as exploring the effects of substituents on the pyrimidine scaffold.
Collapse
Affiliation(s)
- Fatima Z. Bamou
- Institute of Pharmaceutical Chemistry andMTA-SZTE Stereochemistry Research GroupHungarian Academy of SciencesUniversity of SzegedEötvös u. 66720SzegedHungary
| | - Tam M. Le
- Institute of Pharmaceutical Chemistry andMTA-SZTE Stereochemistry Research GroupHungarian Academy of SciencesUniversity of SzegedEötvös u. 66720SzegedHungary
| | - Bizhar A. Tayeb
- Department of Pharmacodynamics and BiopharmacyUniversity of SzegedEötvös u. 66720SzegedHungary
| | - Seyyed A. S. Tahaei
- Department of Pharmacodynamics and BiopharmacyUniversity of SzegedEötvös u. 66720SzegedHungary
| | - Renáta Minorics
- Department of Pharmacodynamics and BiopharmacyUniversity of SzegedEötvös u. 66720SzegedHungary
| | - István Zupkó
- Department of Pharmacodynamics and BiopharmacyUniversity of SzegedEötvös u. 66720SzegedHungary
| | - Zsolt Szakonyi
- Institute of Pharmaceutical Chemistry andMTA-SZTE Stereochemistry Research GroupHungarian Academy of SciencesUniversity of SzegedEötvös u. 66720SzegedHungary
| |
Collapse
|
3
|
Islam MR, Fahmy H. Thiazolopyrimidine Scaffold as a Promising Nucleus for Developing Anticancer Drugs: a Review in Last Decade. Anticancer Agents Med Chem 2022; 22:2942-2955. [PMID: 35410622 DOI: 10.2174/1871520622666220411110528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/27/2021] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
Abstract
The thiazolopyrimidine nucleus is a bioisostericanalog of purine and an important class of N-containing heterocycles. Thiazolopyrimidine scaffolds are considered a promising class of bioactive compounds that encompass diverse biological activities such as antibacterial, antiviral, antifungal, anticancer, corticotrophin-releasing factor antagonists, anti-inflammatory, antituberculosis, and glutamic receptors antagonists. Despite the importance of thiazolopyrimidines from a pharmacological viewpoint, there is hardly a comprehensive review on this important heterocyclic nucleus. Throughout the years, those scaffolds have been studied extensively for its anticancer properties and several compounds were designed, synthesized, and evaluated for their anticancer effects with activity in the µM to nM range. However, there are hardly any reviews covering the anticancer effects of thiazolopyrimidines. In this review, an effort was made to compile literatures covering the anticancer activity of thiazolopyrimidines reported in the last decade (2010-2020). Nearly thirty articles were reviewed and compounds which IC50 < 50 µM against at least 50% of the used cell lines were listed in this review. The best ten compounds (10a, 14b, 17g, 18,25e, 25k, 34e, 41i, 49a, & 49c) show the best anticancer activity against the corresponding cell lines during the last 10 years are highlighted. By highlighting the most active compounds, this review article sheds light on the structural features associated with the strongest anticancer effects to provide guidance to future research aiming to develop anticancer molecules.
Collapse
Affiliation(s)
- Md Rabiul Islam
- Department of Pharmaceutical Science, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA
| | - Hesham Fahmy
- Department of Pharmaceutical Science, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
4
|
Design, synthesis, structural optimization, SAR, in silico prediction of physicochemical properties and pharmacological evaluation of novel & potent thiazolo[4,5-d]pyrimidine corticotropin releasing factor (CRF) receptor antagonists. Eur J Pharm Sci 2021; 169:106084. [PMID: 34856350 DOI: 10.1016/j.ejps.2021.106084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 11/21/2022]
Abstract
Corticotropin-releasing factor (CRF) is a 41-amino-acid neuropeptide secreted from the hypothalamus and is the main regulator of the hypothalamus-pituitary-adrenocortical (HPA) axis. CRF is the master hormone which modulates physiological and behavioral responses to stress. Many disorders including anxiety, depression, addictive disorders and others are related to over activation of the CRF system. This suggests that new molecules which can interfere with CRF binding to its receptors may be potential candidates for neuropsychiatric drugs to treat stress-related disorders. Previously, three series of pyrimidine and fused pyrimidine CRF1 receptor antagonists were synthesized by our group and specific binding assays, competitive binding studies and determination of the ability to antagonize the agonist-stimulated accumulation of cAMP (the second messenger for CRF receptors) were reported. In continuation of our efforts in this direction, in the current manuscript, we report the synthesis & biological evaluation of a new series of CRF1 receptor antagonists. Seven compounds showed promising binding affinity with the best two compounds (compounds 6 & 43) displaying a superior binding affinity to all of our previous compounds. Compounds 6 & 43 have only 4 times and 2 times less binding affinity than the standard CRF antagonist antalarmin, respectively. Thus, our two best lead compounds (compound 6 & 43) can be considered potent CRF receptor antagonists with binding affinity of 41.0 & 19.2 nM versus 9.7 nM for antalarmin.
Collapse
|
5
|
Elgiushy HR, Abou-Taleb NA, Holz GG, Chepurny OG, Pirmettis I, Kakabakos S, Karageorgos V, Liapakis G, Albohy A, Abouzid KAM, Hammad SF. Synthesis, in vitro biological investigation, and molecular dynamics simulations of thiazolopyrimidine based compounds as corticotrophin releasing factor receptor-1 antagonists. Bioorg Chem 2021; 114:105079. [PMID: 34174633 PMCID: PMC8387444 DOI: 10.1016/j.bioorg.2021.105079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 11/23/2022]
Abstract
Corticotrophin releasing factor receptor-1 (CRFR1) is a potential target for treatment of depression and anxiety through modifying stress response. A series of new thiazolo[4,5-d]pyrimidine derivatives were designed, prepared and biologically evaluated as potential CRFR1 antagonists. Four compounds produced more than fifty percent inhibition in the [125I]-Tyr0-sauvagine specific binding assay. Assessment of binding affinities revealed that compound (3-(2,4-dimethoxyphenyl)-7-(dipropylamino)-5-methylthiazolo[4,5-d]pyrimidin-2(3H)-one) 8c was the best candidate with highest binding affinity (Ki = 32.1 nM). Further evaluation showed the ability of compound 8c to inhibit CRF induced cAMP accumulation in a dose response manner. Docking and molecular dynamics simulations were used to investigate potential binding modes of synthesized compounds as well as the stability of 8c-CRFR1 complex. These studies suggest similar allosteric binding of 8c compared to that of the co-crystalized ligand CP-376395 in 4K5Y pdb file.
Collapse
Affiliation(s)
- Hossam R Elgiushy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Ain Helwan 11795, Cairo, Egypt; Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, 21934 Alexandria, Egypt
| | - Nageh A Abou-Taleb
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Ain Helwan 11795, Cairo, Egypt
| | - George G Holz
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Oleg G Chepurny
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Ioannis Pirmettis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Sotirios Kakabakos
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Vlasios Karageorgos
- Department of Pharmacology, School of Medicine, University of Crete, Voutes, 71003, Heraklion, Crete, Greece
| | - George Liapakis
- Department of Pharmacology, School of Medicine, University of Crete, Voutes, 71003, Heraklion, Crete, Greece
| | - Amgad Albohy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Suez Desert Road, Cairo 11837, Egypt
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia 11566, Cairo, Egypt; Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt.
| | - Sherif F Hammad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Ain Helwan 11795, Cairo, Egypt; Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, 21934 Alexandria, Egypt.
| |
Collapse
|
6
|
Sakellaris S, Matsoukas MT, Karageorgos V, Poulaki S, Kuppast B, Margioris A, Venihaki M, Fahmy H, Liapakis G. Selective antagonism of CRF1 receptor by a substituted pyrimidine. Hormones (Athens) 2019; 18:215-221. [PMID: 30980254 DOI: 10.1007/s42000-019-00105-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/20/2019] [Indexed: 01/13/2023]
Abstract
The corticotrophin-releasing factor (CRF) and its type 1 receptor (CRF1R) regulate the hypothalamic-pituitary-adrenal axis, as well as other systems, thus playing a crucial role in the maintenance of homeostasis. Non-peptide CRF1R-selective antagonists exert therapeutic effects on experimental animals with abnormal regulation of their homeostatic mechanisms. However, none of them is as yet in clinical use. In an effort to develop novel small non-peptide CRF1R-selective antagonists, we have synthesized a series of substituted pyrimidines described in a previous study. These small molecules bind to CRF1R, with analog 3 having the highest affinity. Characteristic structural features of analog 3 are a N,N-bis(methoxyethyl)amino group at position 6 and a methyl in the alkythiol group at position 5. Based on the binding profile of analog 3, we selected it in the present study for further pharmacological characterization. The results of this study suggest that analog 3 is a potent CRF1R-selective antagonist, blocking the ability of sauvagine, a CRF-related peptide, to stimulate cAMP accumulation in HEK 293 cells via activation of CRF1R, but not via CRF2R. Moreover, analog 3 blocked sauvagine to stimulate the proliferation of macrophages, further supporting its antagonistic properties. We have also constructed molecular models of CRF1R to examine the interactions of this receptor with analog 3 and antalarmin, a prototype CRF1R-selective non-peptide antagonist, which lacks the characteristic structural features of analog 3. Our data facilitate the design of novel non-peptide CRF1R antagonists for clinical use.
Collapse
Affiliation(s)
- Stelios Sakellaris
- Department of Pharmacology, School of Medicine, University of Crete, Voutes, Heraklion, 71003, Crete, Greece
| | | | - Vlasios Karageorgos
- Department of Pharmacology, School of Medicine, University of Crete, Voutes, Heraklion, 71003, Crete, Greece
| | - Smaragda Poulaki
- Department of Clinical Chemistry, School of Medicine, University of Crete, Voutes, Heraklion, 71003, Crete, Greece
| | - Bhimanna Kuppast
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD, 57007, USA
| | - Andrew Margioris
- Department of Clinical Chemistry, School of Medicine, University of Crete, Voutes, Heraklion, 71003, Crete, Greece
| | - Maria Venihaki
- Department of Clinical Chemistry, School of Medicine, University of Crete, Voutes, Heraklion, 71003, Crete, Greece
| | - Hesham Fahmy
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD, 57007, USA
| | - George Liapakis
- Department of Pharmacology, School of Medicine, University of Crete, Voutes, Heraklion, 71003, Crete, Greece.
| |
Collapse
|
7
|
Teleb M, Kuppast B, Spyridaki K, Liapakis G, Fahmy H. Synthesis of 2-imino and 2-hydrazono thiazolo[4,5- d ]pyrimidines as corticotropin releasing factor (CRF) antagonists. Eur J Med Chem 2017; 138:900-908. [DOI: 10.1016/j.ejmech.2017.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/27/2017] [Accepted: 07/11/2017] [Indexed: 12/18/2022]
|
8
|
Kuppast B, Fahmy H. Thiazolo[4,5-d]pyrimidines as a privileged scaffold in drug discovery. Eur J Med Chem 2016; 113:198-213. [DOI: 10.1016/j.ejmech.2016.02.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 01/01/2023]
|
9
|
Long J, Lee WS, Chough C, Bae IH, Kim BM. Synthesis toward CRHR1 Antagonists through 2,7-Dimethylpyrazolo[1,5-α][1,3,5]triazin-4(3H)-one C–H Arylation. J Org Chem 2015; 80:4716-21. [DOI: 10.1021/jo502894r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jinghai Long
- Department
of Chemistry,
College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Woong-Sup Lee
- Department
of Chemistry,
College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Chieyeon Chough
- Department
of Chemistry,
College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Il Hak Bae
- Department
of Chemistry,
College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - B. Moon Kim
- Department
of Chemistry,
College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| |
Collapse
|
10
|
Ivanova B, Spiteller M. Quinoxalines as potent selective CRFRs ligands for monitoring and brain diagnostic. Bioorg Chem 2014; 58:53-64. [PMID: 25437530 DOI: 10.1016/j.bioorg.2014.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/16/2014] [Accepted: 10/22/2014] [Indexed: 01/15/2023]
Abstract
The paper highlighted quinoxalines as potent ligands to corticotropin-releasing factor receptor types 1 and 2. The content includes design and structure-activity relationship of 50 model substances to CRFR1, CRFR2α and CRF2β, respectively. It is important to bear in mind, that our concept has based on challenging research task, designing for selective CRFRs ligands. Because,: (i) These macromolecules can bond more than one ligand, thus causing for a distinct physiological response; (ii) CRFRs also participate readily in protein-protein interactions; (iii) CRFRs have two step activation mechanism and; (iv) CRFR1 has low selectivity. In spite of, numerous research efforts, which have been devoted to the isolation of series peptidic and non-peptidic CRFRs agonists, the poor penetration across blood-brain barrier restricts, their wide application in the clinical practice. Furthermore, the biological role of CRFR2 is not yet fully understood. For that reason, the studies of the structure-activity relationship have significant impact in the field. The great advantages of quinoxalines as prospective ligands are based on their: (a) One-step synthetic road, using mild experimental conditions and, allowing to involve various functional groups in the molecular scaffold as well as good-to-excellent yields, employing Fischer and Hinsberg methods; (b) High selectivity to CRFRs sub-types and; (c) Tunable fluorescence emission within the frame of a large scale of the electromagnetic spectrum ∈ 500-700 nm.
Collapse
Affiliation(s)
- Bojidarka Ivanova
- Lehrstuhl für Analytische Chemie, Institut für Umweltforschung, Fakultät für Chemie, Universität Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Nordrhein-Westfalen, Germany.
| | - Michael Spiteller
- Lehrstuhl für Analytische Chemie, Institut für Umweltforschung, Fakultät für Chemie, Universität Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Nordrhein-Westfalen, Germany
| |
Collapse
|
11
|
One-pot synthesis and antiproliferative activity of novel 2,4-diaminopyrimidine derivatives bearing piperidine and piperazine moieties. Eur J Med Chem 2014; 84:127-34. [DOI: 10.1016/j.ejmech.2014.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/10/2014] [Accepted: 07/06/2014] [Indexed: 02/06/2023]
|