1
|
Ahmed NM, Mohamed MS, Awad SM, Abd El-Hameed RH, El-tawab NAA, Gaballah MS, Said AM. Design, synthesis, molecular modelling and biological evaluation of novel 6-amino-5-cyano-2-thiopyrimidine derivatives as potent anticancer agents against leukemia and apoptotic inducers. J Enzyme Inhib Med Chem 2024; 39:2304625. [PMID: 38348824 PMCID: PMC10866072 DOI: 10.1080/14756366.2024.2304625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Herein, a novel series of 6-amino-5-cyano-2-thiopyrimidines and condensed pyrimidines analogues were prepared. All the synthesized compounds (1a-c, 2a-c, 3a-c, 4a-r and 5a-c) were evaluated for in vitro anticancer activity by the National Cancer Institute (NCI; MD, USA) against 60 cell lines. Compound 1c showed promising anticancer activity and was selected for the five-dose testing. Results demonstrated that compound 1c possessed broad spectrum anti-cancer activity against the nine cancerous subpanels tested with selectivity ratio ranging from 0.7 to 39 at the GI50 level with high selectivity towards leukaemia. Mechanistic studies showed that Compound 1c showed comparable activity to Duvelisib against PI3Kδ (IC50 = 0.0034 and 0.0025 μM, respectively) and arrested cell cycle at the S phase and displayed significant increase in the early and late apoptosis in HL60 and leukaemia SR cells. The necrosis percentage showed a significant increase from 1.13% to 3.41% in compound 1c treated HL60 cells as well as from 1.51% to 4.72% in compound 1c treated leukaemia SR cells. Also, compound 1c triggered apoptosis by activating caspase 3, Bax, P53 and suppressing Bcl2. Moreover, 1c revealed a good safety profile against human normal lung fibroblast cell line (WI-38 cells). Molecular analysis of Duvelisib and compound 1c in PI3K was performed. Finally, these results suggest that 2-thiopyrimidine derivative 1c might serve as a model for designing novel anticancer drugs in the future.
Collapse
Affiliation(s)
- Naglaa M. Ahmed
- Pharmaceutical Organic Chemistry Department, Helwan University, Ein-Helwan, Egypt
| | - Mosaad S. Mohamed
- Pharmaceutical Organic Chemistry Department, Helwan University, Ein-Helwan, Egypt
| | - Samir M. Awad
- Pharmaceutical Organic Chemistry Department, Helwan University, Ein-Helwan, Egypt
| | | | | | - Mohamed S. Gaballah
- Biochemistry and Molecular Biology Department, Helwan University, Ein-Helwan, Egypt
| | - Ahmed M. Said
- Pharmaceutical Organic Chemistry Department, Helwan University, Ein-Helwan, Egypt
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, USA
- Athenex Inc, Buffalo, NY, USA
| |
Collapse
|
2
|
Sow S, Thiam M, Odame F, Thiam EI, Diouf O, Ellena J, Gaye M, Tshentu Z. Crystal structure of 1-(1,3-benzo-thia-zol-2-yl)-3-(4-bromo-benzo-yl)thio-urea. Acta Crystallogr E Crystallogr Commun 2024; 80:663-666. [PMID: 38845707 PMCID: PMC11151310 DOI: 10.1107/s2056989024004742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024]
Abstract
The chemical reaction of 4-bromo-benzoyl-chloride and 2-amino-thia-zole in the presence of potassium thio-cyanate yielded a white solid formulated as C15H10BrN3OS2, which consists of 4-bromo-benzamido and 2-benzo-thia-zolyl moieties connected by a thio-urea group. The 4-bromo-benzamido and 2-benzo-thia-zolyl moieties are in a trans conformtion (sometimes also called s-trans due to the single bond) with respect to the N-C bond. The dihedral angle between the mean planes of the 4-bromo-phenyl and the 2-benzo-thia-zolyl units is 10.45 (11)°. The thio-urea moiety, -C-NH-C(=S) -NH- fragment forms a dihedral angle of 8.64 (12)° with the 4-bromo-phenyl ring and is almost coplanar with the 2-benzo-thia-zolyl moiety, with a dihedral angle of 1.94 (11)°. The mol-ecular structure is stabilized by intra-molecular N-H⋯O hydrogen bonds, resulting in the formation of an S(6) ring. In the crystal, pairs of adjacent mol-ecules inter-act via inter-molecular hydrogen bonds of type C-H⋯N, C-H⋯S and N-H⋯S, resulting in mol-ecular layers parallel to the ac plane.
Collapse
Affiliation(s)
- Salif Sow
- Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Mariama Thiam
- Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Felix Odame
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa
| | - Elhadj Ibrahima Thiam
- Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Ousmane Diouf
- Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Javier Ellena
- Departamento de Química - Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia
- Instituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil
| | - Mohamed Gaye
- Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Zenixole Tshentu
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa
| |
Collapse
|
3
|
Thapa S, Biradar MS, Nargund SL, Ahmad I, Agrawal M, Patel H, Lamsal A. Synthesis, Molecular Docking, Molecular Dynamic Simulation Studies, and Antitubercular Activity Evaluation of Substituted Benzimidazole Derivatives. Adv Pharmacol Pharm Sci 2024; 2024:9986613. [PMID: 38577412 PMCID: PMC10994708 DOI: 10.1155/2024/9986613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024] Open
Abstract
Tuberculosis, also known as TB, is a widespread bacterial infection that remains a significant global health issue. This study focuses on conducting a thorough investigation into the synthesis, evaluation of anti-Tb activity, molecular docking, and molecular dynamic simulation of substituted benzimidazole derivatives. A series of twelve substituted benzimidazole derivatives (1-12) were successfully synthesized, employing a scaffold consisting of electron-withdrawing and electron-donating groups. The newly synthesized compounds were defined by their FTIR, 1H NMR, and mass spectra. The microplate Alamar blue assay (MABA) was used to evaluate the antimycobacterial activity of the synthesized compound against Mycobacterium tuberculosis (Mtb). Compounds 7 (MIC = 0.8 g/mL) and 8 (MIC = 0.8 g/mL) demonstrated exceptional potential to inhibit M. tuberculosis compared to the standard drug (isoniazid). In addition, the synthesized compounds were docked with the Mtb KasA protein (PDB ID: 6P9K), and the results of molecular docking and molecular dynamic simulation confirmed the experimental results, as compounds 7 and 8 exhibited the highest binding energy of -7.36 and -7.17 kcal/mol, respectively. The simulation results such as the RMSD value, RMSF value, radius of gyration, and hydrogen bond analysis illustrated the optimum potential of compounds 7 and 8 to inhibit the M. tuberculosis strain. Hydrogen bond analysis suggested that compound 7 has greater stability and affinity towards the KasA protein compared to compound 8. Moreover, both compounds (7 and 8) were safe for acute inhalation and cutaneous sensitization. These two compounds have the potential to be potent M. tuberculosis inhibitors.
Collapse
Affiliation(s)
- Shankar Thapa
- Department of Pharmacy, Universal College of Medical Sciences, Bhairahawa 32900, Nepal
- Department of Pharmaceutical Chemistry, Nargund College of Pharmacy, Bengaluru 560085, Karnataka, India
- Department of Pharmacy, Madan Bhandari Academy of Health Sciences, Hetauda, Nepal
| | - Mahalakshmi Suresha Biradar
- Department of Pharmaceutical Chemistry, Nargund College of Pharmacy, Bengaluru 560085, Karnataka, India
- Department of Pharmaceutical Chemistry, Al-Ameen College of Pharmacy, Bengaluru 560027, Karnataka, India
| | - Shachindra L. Nargund
- Department of Pharmaceutical Chemistry, Nargund College of Pharmacy, Bengaluru 560085, Karnataka, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule 424002, Maharashtra, India
| | - Mohit Agrawal
- School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram, Haryana, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India
| | - Ashish Lamsal
- Department of Pharmacy, Universal College of Medical Sciences, Bhairahawa 32900, Nepal
| |
Collapse
|
4
|
Abd El-Hameed RH, Mohamed MS, Awad SM, Hassan BB, Khodair MAEF, Mansour YE. Novel benzo chromene derivatives: design, synthesis, molecular docking, cell cycle arrest, and apoptosis induction in human acute myeloid leukemia HL-60 cells. J Enzyme Inhib Med Chem 2023; 38:405-422. [DOI: 10.1080/14756366.2022.2151592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Rania H. Abd El-Hameed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Mosaad S. Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Samir M. Awad
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Bardes B. Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Yara E. Mansour
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
5
|
Chalkappa PKB, Aralihalli S, Sudileti M, Aithal SJ, Praveen BM, Birjadar K. The medicinal panorama of benzimidazoles and their scaffolds as anticancer and antithrombotic agents: A review. Arch Pharm (Weinheim) 2023; 356:e2300206. [PMID: 37440107 DOI: 10.1002/ardp.202300206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/14/2023]
Abstract
Nitrogen-containing heterocyclic scaffolds have become a prospective pharmacophore with therapeutic importance due to their biological similarities with natural and synthetic drugs. Among all nitrogen heterocyclic compounds, benzimidazoles and their derivatives are privileged molecules structurally akin to naturally available nucleotides, enabling them to intercommunicate with numerous biopolymers in biological systems. This reason enlightens modern researchers worldwide to assess their potential significance in the context of synthetic and biological chemistry. Therefore, it is crucial to merge the latest data with the prior documentation to apprehend the ongoing situation of the benzimidazole moiety in various therapeutic zones of research. The current work displays that the benzimidazole center is a versatile nucleus that offers the necessary data of synthetic alterations for pre-existing compounds to provide new scaffolds to resist numerous therapeutic sectors, including those associated with anticancer and antithrombosis. Due to the potential significance of benzimidazoles, this review aims to emphasize the latest innovations in synthesizing several other notable benzimidazole substrates and their significant pharmacological prospects for the future, including anticancer and antithrombosis.
Collapse
Affiliation(s)
| | - Sudhakara Aralihalli
- Department of Chemistry, RajaRajeswari College of Engineering, Banglore, Karnataka, India
| | - Murali Sudileti
- Department of Chemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | | | | | - Kedarnath Birjadar
- Department of Chemistry, Srinivas University, Mangaluru, Karnataka, India
| |
Collapse
|
6
|
Identification of Photocatalytic Alkaloids from Coptidis Rhizome by an Offline HPLC/CC/SCD Approach. Molecules 2022; 27:molecules27196179. [PMID: 36234715 PMCID: PMC9570981 DOI: 10.3390/molecules27196179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Natural products continue to be a valuable source of active metabolites; however, researchers of natural products are mostly focused on the biological effects, and their chemical utility has been less explored. Furthermore, low throughput is a bottleneck for classical natural product research. In this work, a new offline HPLC/CC/SCD (high performance liquid chromatography followed by co-crystallization and single crystal diffraction) workflow was developed that greatly expedites the discovery of active compounds from crude natural product extracts. The photoactive total alkaloids of the herbal medicine Coptidis rhizome were firstly separated by HPLC, and the individual peaks were collected. A suitable coformer was screened by adding it to the individual peak solution and observing the precipitation, which was then redissolved and used for co-crystallization. Seven new co-crystals were obtained, and all the single crystals were subjected to X-ray diffraction analysis. The molecular structures of seven alkaloids from milligrams of crude extract were resolved within three days. NDS greatly decreases the required crystallization amounts of alkaloids to the nanoscale and enables rapid stoichiometric inclusion of all the major alkaloids with full occupancy, typically without disorder, affording well-refined structures. It is noteworthy that anomalous scattering by the coformer sulfur atoms enables reliable assignment of absolute configuration of stereogenic centers. Moreover, the identified alkaloids were firstly found to be photocatalysts for the green synthesis of benzimidazoles. This study demonstrates a new and green phytochemical workflow that can greatly accelerate natural product discovery from complex samples.
Collapse
|
7
|
Sindhu G, Kholiya R, Kidwai S, Singh P, Singh R, Rawat DS. Design and synthesis of benzimidazole derivatives as antimycobacterial agents. J Biochem Mol Toxicol 2022; 36:e23123. [PMID: 35686933 DOI: 10.1002/jbt.23123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/09/2022] [Accepted: 05/29/2022] [Indexed: 11/10/2022]
Abstract
A series of 2,5-disubstituted benzimidazole derivatives was synthesized with the aim to identify compounds with potent anti-TB activity. All the compounds were screened in vitro against cultured Mycobacterium tuberculosis H37 Rv strain and found to be exhibiting MIC99 values in the range of 0.195-100 µM. Out of 43 synthesized compounds, two compounds 11h and 13e showed better anti-TB activity than the reference drug isoniazid.
Collapse
Affiliation(s)
| | - Rohit Kholiya
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Saqib Kidwai
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Padam Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Diwan S Rawat
- Department of Chemistry, University of Delhi, New Delhi, India
| |
Collapse
|
8
|
3-Alkenyl-2-oxindoles: Synthesis, antiproliferative and antiviral properties against SARS-CoV-2. Bioorg Chem 2021; 114:105131. [PMID: 34243074 PMCID: PMC8241580 DOI: 10.1016/j.bioorg.2021.105131] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/24/2021] [Indexed: 01/25/2023]
Abstract
Sets of 3-alkenyl-2-oxindoles (6,10,13) were synthesized in a facile synthetic pathway through acid dehydration (EtOH/HCl) of the corresponding 3-hydroxy-2-oxoindolines (5,9,12). Single crystal (10a,c) and powder (12a,26f) X-ray studies supported the structures. Compounds 6c and 10b are the most effective agents synthesized (about 3.4, 3.3 folds, respectively) against PaCa2 (pancreatic) cancer cell line relative to the standard reference used (Sunitinib). Additionally, compound 10b reveals antiproliferative properties against MCF7 (breast) cancer cell with IC50 close to that of Sunitinib. CAM testing reveals that compounds 6 and 10 demonstrated qualitative and quantitative decreases in blood vessel count and diameter with efficacy comparable to that of Sunitinib, supporting their anti-angiogenic properties. Kinase inhibitory properties support their multi-targeted inhibitory activities against VEGFR-2 and c-kit in similar behavior to that of Sunitinib. Cell cycle analysis studies utilizing MCF7 exhibit that compound 6b arrests the cell cycle at G1/S phase while, 10b reveals accumulation of the tested cell at S phase. Compounds 6a and 10b reveal potent antiviral properties against SARS-CoV-2 with high selectivity index relative to the standards (hydroxychloroquine, chloroquine). Safe profile of the potent synthesized agents, against normal cells (VERO-E6, RPE1), support the possible development of better hits based on the attained observations.
Collapse
|
9
|
Rakib EM, Boga C, Calvaresi M, Chigr M, Franchi P, Gualandi I, Ihammi A, Lucarini M, Micheletti G, Spinelli D, Tonelli D. A multidisciplinary study of chemico-physical properties of different classes of 2-aryl-5(or 6)-nitrobenzimidazoles: NMR, electrochemical behavior, ESR, and DFT calculations. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
10
|
Tahlan S, Narasimhan B, Lim SM, Ramasamy K, Mani V, Shah SAA. Design, Synthesis, SAR Study, Antimicrobial and Anticancer Evaluation of Novel 2-Mercaptobenzimidazole Azomethine Derivatives. Mini Rev Med Chem 2021; 20:1559-1571. [PMID: 30179132 DOI: 10.2174/1389557518666180903151849] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/24/2018] [Accepted: 08/14/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Various analogues of benzimidazole are found to be biologically and therapeutically potent against several ailments. Benzimidazole when attached with heterocyclic rings has shown wide range of potential activities. So, from the above provided facts, we altered benzimidazole derivatives so that more potent antagonists could be developed. In the search for a new category of antimicrobial and anticancer agents, novel azomethine of 2-mercaptobenzimidazole derived from 3-(2- (1H-benzo[d]imidazol-2-ylthio)acetamido)benzohydrazide were synthesized. RESULTS AND DISCUSSION The synthesized analogues were characterized by FT-IR, 1H/13C-NMR and MS studies as well C, H, N analysis. All synthesized compounds were evaluated for in vitro antibacterial activity against Gram-positive (B. subtilis), Gram-negative (E. coli, P. aeruginosa, K. pneumoniae and S. typhi) strains and in vitro antifungal activity against C. albicans and A. niger strains by serial dilution method, the minimum inhibitory concentration (MIC) described in μM/ml. The in vitro anticancer activity of synthesized compounds was determined against human colorectal carcinoma cell line (HCT- 116) using 5-fluorouracil as standard drug. CONCLUSION In general, most of the synthesized derivatives exhibited significant antimicrobial and anticancer activities. Compounds 8, 10, 15, 16, 17, 20 and 22 showed significant antimicrobial activity towards tested bacterial and fungal strains and compound 26 exhibited significant anticancer activity.
Collapse
Affiliation(s)
- Sumit Tahlan
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, India
| | | | - Siong Meng Lim
- Faculty of Pharmacy, University Technology MARA Cawangan Selangor Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia, 42300, Selangor, Darul Ehsan, Malaysia
| | - Kalavathy Ramasamy
- Faculty of Pharmacy, University Technology MARA Cawangan Selangor Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia, 42300, Selangor, Darul Ehsan, Malaysia
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, University Technology MARA Cawangan Selangor Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia, 42300, Selangor, Darul Ehsan, Malaysia
| |
Collapse
|
11
|
Alzhrani ZMM, Alam MM, Nazreen S. Recent advancements on Benzimidazole: A versatile scaffold in medicinal chemistry. Mini Rev Med Chem 2021; 22:365-386. [PMID: 33797365 DOI: 10.2174/1389557521666210331163810] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/30/2020] [Accepted: 02/25/2021] [Indexed: 11/22/2022]
Abstract
Benzimidazole is nitrogen containing fused heterocycle which has been extensively explored in medicinal chemistry. Benzimidizole nucleus has been found to possess various biological activities such as anticancer, antimicrobial, anti-inflammatory, antiviral, antitubercular and antidiabetic. A number of benzimidazoles such as bendamustine, pantoprazole have been approved for the treatment of various illnesses whereas galeterone and GSK461364 are in clinical trials. The present review article gives an overview about the different biological activities exhibited by the benzimidazole derivatives as well as different methods used for the synthesis of benzimidazole derivatives for the past ten years.
Collapse
Affiliation(s)
| | - Mohammad Mahboob Alam
- Department of Chemistry, Faculty of Science, Albaha University, Albaha. Saudi Arabia
| | - Syed Nazreen
- Department of Chemistry, Faculty of Science, Albaha University, Albaha. Saudi Arabia
| |
Collapse
|
12
|
Patel JJ, Patel AP, Chikhalia KH. An efficient Pd-catalyzed intramolecular cyclization reaction followed by formation of benzimidazole derivatives: Synthesis of novel quinolin-fused benzo[d] azeto[1,2-a]benzimidazole analogues. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2020.1819325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Janki J. Patel
- Department of Chemistry, Veer Narmad South Gujarat University, Surat, India
| | - Anuj P. Patel
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| | | |
Collapse
|
13
|
Dhameliya TM, Patel KI, Tiwari R, Vagolu SK, Panda D, Sriram D, Chakraborti AK. Design, synthesis, and biological evaluation of benzo[d]imidazole-2-carboxamides as new anti-TB agents. Bioorg Chem 2020; 107:104538. [PMID: 33349456 DOI: 10.1016/j.bioorg.2020.104538] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/17/2020] [Accepted: 12/04/2020] [Indexed: 01/25/2023]
Abstract
Tuberculosis is the leading cause of death globally among infectious diseases. Due to the development of resistance of Mycobacterium tuberculosis to currently used anti-TB medicines and the TB-HIV synergism the urgent need to develop novel anti-mycobacterial agents has been realized. The drug-to-target path has been the successful strategy for new anti-TB drug development. All the six drug candidates that have shown promise during the clinical trials and some of these being approved for treatment against MDR TB are the results of phenotype screening of small molecule compound libraries. In search of compounds belonging to novel pharmacophoric class that could be subjected to whole cell assay to generate new anti-TB leads the benzo[d]imidazole-2-carboxamide moiety has been designed as a novel anti-TB scaffold. The design was based on the identification of the benzimidazole ring as a prominent substructure of the FDA approved drugs, the structural analysis of reported anti-TB benzimidazoles, and the presence of the C-2 carboxamido functionality in novel bioisoteric anti-TB benzothiazoles. Twenty seven final compounds have been prepared via NH4Cl-catalyzed amidation of ethyl benzo[d]imidazole-2-carboxylates, as the required intermediates, obtained through a green "all water" one-pot synthetic route following a tandem N-arylation-reduction-cyclocondensation procedure. All of the synthesised target compounds were assessed for anti-TB potential using H37Rv ATCC27294 strain. Thirteen compounds were found with better MIC (0.78-6.25 µg/mL) than the standard drugs and being non-cytotoxic nature (<50% inhibition against RAW 264.7 cell lines at 50 µg/mL). The compound 8e exhibited best anti-TB activity (MIC: 2.15 µM and selectivity index: > 60) and a few others e.g., 8a, 8f, 8k and 8o are the next best anti-TB hits (MIC: 1.56 µg/mL). The determination and analysis of various physiochemical parameters revealed favorable druglike properties of the active compounds. The compounds 8a-l and 8o, with MIC values of ≤ 6.25 μg/mL, have high LipE values (10.66-11.77) that are higher than that of the suggested value of > 6 derived from empirical evidence for quality drug candidates and highlight their therapeutic potential. The highest LipE value of 11.77 of the best active compound 8e with the MIC of 0.78 μg/mL indicates its better absorption and clearance as a probable clinical candidate for anti-TB drug discovery. These findings highlight the discovery of benzimidazole-2-carboxamides for further development as new anti-TB agents.
Collapse
Affiliation(s)
- Tejas M Dhameliya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062 Punjab, India
| | - Kshitij I Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062 Punjab, India
| | - Rishu Tiwari
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | - Siva Krishna Vagolu
- Department of Pharmacy, Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, India
| | - Dulal Panda
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, India
| | - Asit K Chakraborti
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062 Punjab, India; Department of Chemistry, Indian Institute of Technology - Ropar, Rupnagar, Punjab 140 001, India.
| |
Collapse
|
14
|
Motamen S, Quinn RJ. Analysis of Approaches to Anti-tuberculosis Compounds. ACS OMEGA 2020; 5:28529-28540. [PMID: 33195903 PMCID: PMC7658936 DOI: 10.1021/acsomega.0c03177] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/15/2020] [Indexed: 05/04/2023]
Abstract
Mycobacterium tuberculosis (Mtb) remains a deadly pathogen two decades after the announcement of tuberculosis (TB) as a global health emergency by the World Health Organization. Medicinal chemistry efforts to synthesize potential drugs to shorten TB treatments have not always been successful. Here, we analyze physiochemical properties of 39 TB drugs and 1271 synthetic compounds reported in 40 publications from 2006 to early 2020. We also propose a new TB space of physiochemical properties that may provide more appropriate guidelines for design of anti-TB drugs.
Collapse
Affiliation(s)
- Sara Motamen
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
15
|
Importance of Fluorine in Benzazole Compounds. Molecules 2020; 25:molecules25204677. [PMID: 33066333 PMCID: PMC7587361 DOI: 10.3390/molecules25204677] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
Fluorine-containing heterocycles continue to receive considerable attention due to their unique properties. In medicinal chemistry, the incorporation of fluorine in small molecules imparts a significant enhancement their biological activities compared to non-fluorinated molecules. In this short review, we will highlight the importance of incorporating fluorine as a basic appendage in benzothiazole and benzimidazole skeletons. The chemistry and pharmacological activities of heterocycles containing fluorine during the past years are compiled and discussed.
Collapse
|
16
|
Sirim MM, Krishna VS, Sriram D, Unsal Tan O. Novel benzimidazole-acrylonitrile hybrids and their derivatives: Design, synthesis and antimycobacterial activity. Eur J Med Chem 2020; 188:112010. [DOI: 10.1016/j.ejmech.2019.112010] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/04/2019] [Accepted: 12/23/2019] [Indexed: 01/06/2023]
|
17
|
Insuasty D, Castillo J, Becerra D, Rojas H, Abonia R. Synthesis of Biologically Active Molecules through Multicomponent Reactions. Molecules 2020; 25:E505. [PMID: 31991635 PMCID: PMC7038231 DOI: 10.3390/molecules25030505] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 02/02/2023] Open
Abstract
Focusing on the literature progress since 2002, the present review explores the highly significant role that multicomponent reactions (MCRs) have played as a very important tool for expedite synthesis of a vast number of organic molecules, but also, highlights the fact that many of such molecules are biologically active or at least have been submitted to any biological screen. The selected papers covered in this review must meet two mandatory requirements: (1) the reported products should be obtained via a multicomponent reaction; (2) the reported products should be biologically actives or at least tested for any biological property. Given the diversity of synthetic approaches utilized in MCRs, the highly diverse nature of the biological activities evaluated for the synthesized compounds, and considering their huge structural variability, much of the reported data are organized into concise schemes and tables to facilitate comparison, and to underscore the key points of this review.
Collapse
Affiliation(s)
- Daniel Insuasty
- Grupo de Investigación en Química y Biología, Departamento de Química y Biología, Universidad del Norte, Km 5 vía Puerto Colombia 1569, Barranquilla Atlántico 081007, Colombia;
| | - Juan Castillo
- Grupo de Catálisis, Escuela de Ciencias Químicas, Universidad Pedagógica y Tecnológica de Colombia UPTC, Avenida Central del Norte 39-115, Tunja 150003, Colombia; (J.C.); (D.B.); (H.R.)
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| | - Diana Becerra
- Grupo de Catálisis, Escuela de Ciencias Químicas, Universidad Pedagógica y Tecnológica de Colombia UPTC, Avenida Central del Norte 39-115, Tunja 150003, Colombia; (J.C.); (D.B.); (H.R.)
| | - Hugo Rojas
- Grupo de Catálisis, Escuela de Ciencias Químicas, Universidad Pedagógica y Tecnológica de Colombia UPTC, Avenida Central del Norte 39-115, Tunja 150003, Colombia; (J.C.); (D.B.); (H.R.)
| | - Rodrigo Abonia
- Research Group of Heterocyclic Compounds, Department of Chemistry, Universidad del Valle, Cali A. A. 25360, Colombia
| |
Collapse
|
18
|
Tahlan S, Kumar S, Narasimhan B. Pharmacological significance of heterocyclic 1 H-benzimidazole scaffolds: a review. BMC Chem 2019; 13:101. [PMID: 31410412 PMCID: PMC6685272 DOI: 10.1186/s13065-019-0625-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/31/2019] [Indexed: 11/19/2022] Open
Abstract
Heterocyclic compounds are inevitable in a numerous part of life sciences. These molecules perform various noteworthy functions in nature, medication and innovation. Nitrogen-containing heterocycles exceptionally azoles family are the matter of interest in synthesis attributable to the way that they happen pervasively in pharmacologically dynamic natural products, multipurpose arranged useful materials also profoundly powerful pharmaceuticals and agrochemicals. Benzimidazole moiety is the key building block for several heterocyclic scaffolds that play central role in the biologically functioning of essential molecules. They are considered as promising class of bioactive scaffolds encompassing diverse varieties of activities like antiprotozoal, antihelminthic, antimalarial, antiviral, anti-inflammatory, antimicrobial, anti-mycobacterial and antiparasitic. Therefore in the present review we tried to compile the various pharmacological activities of different derivatives of heterocyclic benzimidazole moiety.
Collapse
Affiliation(s)
- Sumit Tahlan
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001 India
| | - Sanjiv Kumar
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001 India
| | | |
Collapse
|
19
|
2-(3,4-Dimethoxyphenyl)-N-(4-methoxyphenyl)-1-propyl-1H-benzo[d]imidazole-5-carboxamide. MOLBANK 2019. [DOI: 10.3390/m1079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
2-(3,4-Dimethoxyphenyl)-N-(4-methoxyphenyl)-1-propyl-1H-benzo[d]imidazole-5-carboxamide was synthesized by the ‘one-pot’ reductive cyclization of N-(4-methoxyphenyl)-3-nitro-4-(propylamino)benzamide with 3,4-dimethoxybenzaldehyde, using sodium dithionite as a reductive cyclizing agent using DMSO as a solvent. The structure of newly synthesized compound was elucidated based on IR, 1H-NMR, 13C-NMR, and LC-MS data.
Collapse
|
20
|
Bansal Y, Kaur M, Bansal G. Antimicrobial Potential of Benzimidazole Derived Molecules. Mini Rev Med Chem 2019; 19:624-646. [PMID: 29090668 DOI: 10.2174/1389557517666171101104024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/12/2016] [Accepted: 09/15/2016] [Indexed: 01/07/2023]
Abstract
Structural resemblance of benzimidazole nucleus with purine nucleus in nucleotides makes benzimidazole derivatives attractive ligands to interact with biopolymers of a living system. The most prominent benzimidazole compound in nature is N-ribosyldimethylbenzimidazole, which serves as an axial ligand for cobalt in vitamin B12. This structural similarity prompted medicinal chemists across the globe to synthesize a variety of benzimidazole derivatives and to screen those for various biological activities, such as anticancer, hormone antagonist, antiviral, anti-HIV, anthelmintic, antiprotozoal, antimicrobial, antihypertensive, anti-inflammatory, analgesic, anxiolytic, antiallergic, coagulant, anticoagulant, antioxidant and antidiabetic activities. Hence, benzimidazole nucleus is considered as a privileged structure in drug discovery, and it is exploited by many research groups to develop numerous compounds that are purported to be antimicrobial. Despite a large volume of research in this area, no novel benzimidazole derived compound has emerged as clinically effective antimicrobial drug. In the present review, we have compiled various reports on benzimidazole derived antimicrobials, classified as monosubstituted, disubstituted, trisubstituted and tetrasubstituted benzimidazoles, bisbenzimidazoles, fused-benzimidazoles, and benzimidazole derivative-metal complexes. The purpose is to collate these research reports, and to generate a generalised outlay of benzimidazole derived molecules that can assist the medicinal chemists in selecting appropriate combination of substituents around the nucleus for designing potent antimicrobials.
Collapse
Affiliation(s)
- Yogita Bansal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| | - Manjinder Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| | - Gulshan Bansal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| |
Collapse
|
21
|
|
22
|
Fan YL, Jin XH, Huang ZP, Yu HF, Zeng ZG, Gao T, Feng LS. Recent advances of imidazole-containing derivatives as anti-tubercular agents. Eur J Med Chem 2018; 150:347-365. [PMID: 29544148 DOI: 10.1016/j.ejmech.2018.03.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/02/2018] [Accepted: 03/04/2018] [Indexed: 12/20/2022]
Abstract
Tuberculosis still remains one of the most common, communicable, and leading deadliest diseases known to mankind throughout the world. Drug-resistance in Mycobacterium tuberculosis which threatens to worsen the global tuberculosis epidemic has caused great concern in recent years. To overcome the resistance, the development of new drugs with novel mechanisms of actions is of great importance. Imidazole-containing derivatives endow with various biological properties, and some of them demonstrated excellent anti-tubercular activity. As the most emblematic example, 4-nitroimidazole delamanid has already received approval for treatment of multidrug-resistant tuberculosis infected patients. Thus, imidazole-containing derivatives have caused great interests in discovery of new anti-tubercular agents. Numerous of imidazole-containing derivatives were synthesized and screened for their in vitro and in vivo anti-mycobacterial activities against both drug-sensitive and drug-resistant Mycobacterium tuberculosis pathogens. This review aims to outline the recent advances of imidazole-containing derivatives as anti-tubercular agents, and summarize the structure-activity relationship of these derivatives. The enriched structure-activity relationship may pave the way for the further rational development of imidazole-containing derivatives as anti-tubercular agents.
Collapse
Affiliation(s)
- Yi-Lei Fan
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou, PR China
| | - Xiao-Hong Jin
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Zhong-Ping Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, PR China.
| | - Hai-Feng Yu
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Zhi-Gang Zeng
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Tao Gao
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, PR China.
| | - Lian-Shun Feng
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, PR China
| |
Collapse
|
23
|
A simple and efficient synthesis of benzimidazoles containing piperazine or morpholine skeleton at C-6 position as glucosidase inhibitors with antioxidant activity. Bioorg Chem 2018; 76:468-477. [DOI: 10.1016/j.bioorg.2017.12.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 01/10/2023]
|
24
|
Akhtar W, Khan MF, Verma G, Shaquiquzzaman M, Rizvi MA, Mehdi SH, Akhter M, Alam MM. Therapeutic evolution of benzimidazole derivatives in the last quinquennial period. Eur J Med Chem 2016; 126:705-753. [PMID: 27951484 DOI: 10.1016/j.ejmech.2016.12.010] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/10/2016] [Accepted: 12/03/2016] [Indexed: 12/21/2022]
Abstract
Benzimidazole, a fused heterocycle bearing benzene and imidazole has gained considerable attention in the field of contemporary medicinal chemistry. The moiety is of substantial importance because of its wide array of pharmacological activities. This nitrogen containing heterocycle is a part of a number of therapeutically used agents. Moreover, a number of patents concerning this moiety in the last few years further highlight its worth. The present review covers the recent work published by scientists across the globe during last five years.
Collapse
Affiliation(s)
- Wasim Akhtar
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India
| | - Mohemmed Faraz Khan
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India
| | - Garima Verma
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India
| | - M Shaquiquzzaman
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India
| | - M A Rizvi
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Syed Hassan Mehdi
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mymoona Akhter
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India
| | - M Mumtaz Alam
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
25
|
Benzimidazole-core as an antimycobacterial agent. Pharmacol Rep 2016; 68:1254-1265. [DOI: 10.1016/j.pharep.2016.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/27/2016] [Accepted: 08/04/2016] [Indexed: 12/18/2022]
|
26
|
Anand A, Kulkarni MV, Joshi SD, Dixit SR. One pot Click chemistry: A three component reaction for the synthesis of 2-mercaptobenzimidazole linked coumarinyl triazoles as anti-tubercular agents. Bioorg Med Chem Lett 2016; 26:4709-4713. [PMID: 27595420 DOI: 10.1016/j.bmcl.2016.08.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 08/13/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022]
Abstract
2-Propargylthiobenzimidazole 1, 4-bromomethyl coumarins/1-aza-coumarins 2/3 and sodium azide have been reacted in one pot under Click chemistry conditions to give exclusively 1,4-disubstituted triazoles 5a-n. Anti-tubercular assays against M. tuberculosis (H37Rv) coupled with in silico molecular docking studies indicated that dimethyl substituents 5c and 5d showed promising activity with higher C-score values.
Collapse
Affiliation(s)
- Ashish Anand
- Department of Studies in Chemistry, Karnatak University, Pavate Nagar, Dharwad 580003, Karnataka, India
| | - Manohar V Kulkarni
- Department of Studies in Chemistry, Karnatak University, Pavate Nagar, Dharwad 580003, Karnataka, India.
| | - Shrinivas D Joshi
- Novel Drug Design and Discovery Laboratory, Department of Pharmaceutical Chemistry, S.E.T's College of Pharmacy, Sangolli Rayanna Nagar, Dharwad 580002, Karnataka, India
| | - Sheshagiri R Dixit
- Novel Drug Design and Discovery Laboratory, Department of Pharmaceutical Chemistry, S.E.T's College of Pharmacy, Sangolli Rayanna Nagar, Dharwad 580002, Karnataka, India
| |
Collapse
|
27
|
Mai S, Zhao Y, Song Q. Chemoselective acylation of benzimidazoles with phenylacetic acids under different Cu catalysts to give fused five-membered N-heterocycles or tertiary amides. Org Biomol Chem 2016; 14:8685-90. [PMID: 27430929 DOI: 10.1039/c6ob01167e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
C-N bond formation via a copper-catalyzed aerobic oxidative decarboxylative tandem protocol was realized. The phenylacetic acids which contain ortho-X (X = F or Br) on the aromatic ring will render a fused five-membered heterocycle via a tandem aromatic nucleophilic substitution and aerobic oxidative decarboxylative acylation at the C(sp(2))-H bond of benzimidazoles under the Cu(OAc)2/K2CO3/BF3·Et2O catalytic system, while with CuBr as the catalyst and pyridine as the base, N-acylation occurred and tertiary amides were obtained.
Collapse
Affiliation(s)
- Shaoyu Mai
- Institute of Next Generation Matter Transformation, College of Chemical Engineering at Huaqiao University, China.
| | | | | |
Collapse
|
28
|
Gong JX, He Y, Cui ZL, Guo YW. Synthesis, spectral characterization, and antituberculosis activity of thiazino[3,2-A]benzimidazole derivatives. PHOSPHORUS SULFUR 2016. [DOI: 10.1080/10426507.2015.1135149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Jing-Xu Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ya He
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhen-Lin Cui
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
29
|
Shruthi N, Poojary B, Kumar V, Hussain MM, Rai VM, Pai VR, Bhat M, Revannasiddappa BC. Novel benzimidazole–oxadiazole hybrid molecules as promising antimicrobial agents. RSC Adv 2016. [DOI: 10.1039/c5ra23282a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In the present study, we describe the design and expeditious synthesis of novel 2-aryl-5-(3-aryl-[1,2,4]-oxadiazol-5-yl)-1-methyl-1H-benzo[d]imidazole hybrid molecules as promising antimicrobial agents.
Collapse
Affiliation(s)
- N. Shruthi
- Department of Chemistry
- Mangalore University
- Mangalagangothri-574199
- India
| | - Boja Poojary
- Department of Chemistry
- Mangalore University
- Mangalagangothri-574199
- India
| | - Vasantha Kumar
- Department of Chemistry
- Mangalore University
- Mangalagangothri-574199
- India
| | | | | | - Vinitha R. Pai
- Department of Biochemistry
- Yenepoya University
- Mangalore
- India
| | - Mahima Bhat
- Department of Chemistry
- Mangalore University
- Mangalagangothri-574199
- India
| | - B. C. Revannasiddappa
- Department of Pharmacology
- N.G.S.M. Institute of Pharmaceutical Sciences
- Mangalore-575 018
- India
| |
Collapse
|
30
|
New Non-Toxic Semi-Synthetic Derivatives from Natural Diterpenes Displaying Anti-Tuberculosis Activity. Molecules 2015; 20:18264-78. [PMID: 26457701 PMCID: PMC6331924 DOI: 10.3390/molecules201018264] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 11/17/2022] Open
Abstract
We report herein the synthesis of six diterpene derivatives, three of which are new, generated through known organic chemistry reactions that allowed structural modification of the existing natural products kaurenoic acid (1) and copalic acid (2). The new compounds were fully characterized using high resolution mass spectrometry, infrared spectroscopy, 1H- and 13C-NMR experiments. We also report the evaluation of the anti-tuberculosis potential for all compounds, which showed some promising results for Micobacterium tuberculosis inhibition. Moreover, the toxicity for each of the most active compounds was also assessed.
Collapse
|
31
|
Kalalbandi VKA, Seetharamappa J. 1-[(2E)-3-Phenylprop-2-enoyl]-1H-benzimidazoles as anticancer agents: synthesis, crystal structure analysis and binding studies of the most potent anticancer molecule with serum albumin. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00293a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The anticancer activity of 1H-benzimidazoles was studied against NCI 60 cell panel. Compound 3f showed antitumor activity with good to moderate selectivity ratio. Mechanism of interaction of 3f with protein was studied by spectral methods.
Collapse
|