1
|
Guo S, Hua L, Liu W, Liu H, Chen Q, Li Y, Li X, Zhao L, Li R, Zhang Z, Zhang C, Zhu L, Sun H, Zhao H. Multiple metal exposure and metabolic syndrome in elderly individuals: A case-control study in an active mining district, Northwest China. CHEMOSPHERE 2023; 326:138494. [PMID: 36966925 DOI: 10.1016/j.chemosphere.2023.138494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
The prevalence of metabolic syndrome (MetS) is increasing at an alarming rate worldwide, particularly among elderly individuals. Exposure to various metals has been linked to the development of MetS. However, limited studies have focused attention on the elderly population living in active mining districts. Participants with MetS (N = 292) were matched for age (±2 years old) and sex with a healthy subject (N = 292). We measured the serum levels of 14 metals in older people aged 65-85 years. Conditional logistic regression, restricted cubic spline model, multiple linear regression, and Bayesian Kernel Machine Regression (BKMR) were applied to estimate potential associations between multiple metals and the risk of MetS. Serum levels of Sb and Fe were significantly higher than the controls (0.58 μg/L vs 0.46 μg/L, 2167 μg/L vs 2042 μg/L, p < 0.05), while Mg was significantly lower (20035 μg/L vs 20,394 μg/L, p < 0.05). An increased risk of MetS was associated with higher serum Sb levels (adjusted odds ratio (OR) = 1.61 for the highest tertile vs. the lowest tertile, 95% CI = 1.08-2.40, p-trend = 0.018) and serum Fe levels (adjusted OR = 1.55 for the highest tertile, 95% CI = 1.04-2.33, p-trend = 0.032). Higher Mg levels in serum may have potential protective effects on the development of MetS (adjusted OR = 0.61 for the highest tertile, 95% CI = 0.41-0.91, p-trend = 0.013). A joint exposure analysis by the BKMR model revealed that the mixture of 12 metals (except Tl and Cd) was associated with increased risk of MetS. Our results indicated that exposure to Sb and Fe might increase the risk of MetS in an elderly population living in mining-intensive areas. Further work is needed to confirm the protective effect of Mg on MetS.
Collapse
Affiliation(s)
- Sai Guo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Liting Hua
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wu Liu
- Jingyuan County Center for Disease Control and Prevention, Baiyin, Gansu, 730699, China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China
| | - Qiusheng Chen
- Institute of Agro-product Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Yongcheng Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoxiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruoqi Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zining Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chong Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongzhi Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
2
|
Zhang R, Xiao N, Xu Q, Gong Q, Kong F, Jiang H. Pleiotropic effects of a mitochondrion-targeted glutathione reductase inhibitor on restraining tumor cells. Eur J Med Chem 2023; 248:115069. [PMID: 36610249 DOI: 10.1016/j.ejmech.2022.115069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Mitochondria has been identified as a target for tumor therapy. Agents preferentially concentrated in mitochondria may exert more potent antitumor effects by interfering with the normal function of mitochondria. Glutathione reductase (GR) in mitochondria is a crucial antioxidant enzyme to maintain mitochondrial function, and has been recognized as an important target for the development of anticancer drugs. Herein, we present a triphenylphosphonium-modified anticancer agent, MT-1, which can preferentially accumulate in mitochondria and bind to GR by covalent binding manner. As a result, morphology and function of mitochondria were severely damaged, as well as cellular energy supply was severely impeded due to the simultaneously inhibition against mitochondrial respiration and glycolysis. Moreover, MT-1 was found to bind to a completely new site of GR (C278) that has never considered as binding site of inhibitors before. This new binding mode led to the change of GR structure, which affected the stability of the transition state of the catalytic process, and finally led to the inhibition of GR activity. Thus, current study provided a potentially novel tumor therapeutic strategy by targeting novel sites of GR in mitochondrion.
Collapse
Affiliation(s)
- Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Na Xiao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agriculture University, Tai'an, Shandong, 271018, China
| | - Qi Xu
- School of Pharmaceutical Sciences, Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Qiuyu Gong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fandong Kong
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China.
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
3
|
Chakraborty S, Sircar E, Bhattacharyya C, Choudhuri A, Mishra A, Dutta S, Bhatta S, Sachin K, Sengupta R. S-Denitrosylation: A Crosstalk between Glutathione and Redoxin Systems. Antioxidants (Basel) 2022; 11:1921. [PMID: 36290644 PMCID: PMC9598160 DOI: 10.3390/antiox11101921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 08/27/2023] Open
Abstract
S-nitrosylation of proteins occurs as a consequence of the derivatization of cysteine thiols with nitric oxide (NO) and is often associated with diseases and protein malfunction. Aberrant S-nitrosylation, in addition to other genetic and epigenetic factors, has gained rapid importance as a prime cause of various metabolic, respiratory, and cardiac disorders, with a major emphasis on cancer and neurodegeneration. The S-nitrosoproteome, a term used to collectively refer to the diverse and dynamic repertoire of S-nitrosylated proteins, is relatively less explored in the field of redox biochemistry, in contrast to other covalently modified versions of the same set of proteins. Advancing research is gradually unveiling the enormous clinical importance of S-nitrosylation in the etiology of diseases and is opening up new avenues of prompt diagnosis that harness this phenomenon. Ever since the discovery of the two robust and highly conserved S-nitrosoglutathione reductase and thioredoxin systems as candidate denitrosylases, years of rampant speculation centered around the identification of specific substrates and other candidate denitrosylases, subcellular localization of both substrates and denitrosylases, the position of susceptible thiols, mechanisms of S-denitrosylation under basal and stimulus-dependent conditions, impact on protein conformation and function, and extrapolating these findings towards the understanding of diseases, aging and the development of novel therapeutic strategies. However, newer insights in the ever-expanding field of redox biology reveal distinct gaps in exploring the crucial crosstalk between the redoxins/major denitrosylase systems. Clarifying the importance of the functional overlap of the glutaredoxin, glutathione, and thioredoxin systems and examining their complementary functions as denitrosylases and antioxidant enzymatic defense systems are essential prerequisites for devising a rationale that could aid in predicting the extent of cell survival under high oxidative/nitrosative stress while taking into account the existence of the alternative and compensatory regulatory mechanisms. This review thus attempts to highlight major gaps in our understanding of the robust cellular redox regulation system, which is upheld by the concerted efforts of various denitrosylases and antioxidants.
Collapse
Affiliation(s)
- Surupa Chakraborty
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Esha Sircar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India
| | - Camelia Bhattacharyya
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Ankita Choudhuri
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Akansha Mishra
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Sreejita Dutta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Sneha Bhatta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Kumar Sachin
- Department of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| | - Rajib Sengupta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| |
Collapse
|
4
|
Gaikwad M, Konkimalla VB, Salunke-Gawali S. Metal complexes as topoisomerase inhibitors. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Lai Z, He M, Lin C, Ouyang W, Liu X. Interactions of antimony with biomolecules and its effects on human health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113317. [PMID: 35182796 DOI: 10.1016/j.ecoenv.2022.113317] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Antimony (Sb) pollution has increased health risks to humans as a result of extensive application in diverse fields. Exposure to different levels of Sb and its compounds will directly or indirectly affect the normal function of the human body, whereas limited human health data and simulation studies delay the understanding of this element. In this review, we summarize current research on the effects of Sb on human health from different perspectives. First, the exposure pathways, concentration and excretion of Sb in humans are briefly introduced, and several studies have revealed that human exposure to high levels of Sb will cause higher concentrations in body tissues. Second, interactions between Sb and biomolecules or other nonbiomolecules affected biochemical processes such as gene expression and hormone secretion, which are vital for causing and understanding health effects and mechanisms. Finally, we discuss the different health effects of Sb at the biological level from small molecules to individual. In conclusion, exposure to high levels of Sb compounds will increase the risk of disease by affecting different cell signaling pathways. In addition, the appropriate form and dose of Sb contribute to inhibit the development of specific diseases. Key challenges and gaps in toxicity or benefit effects and mechanisms that still hinder risk assessment of human health are also identified in this review. Systematic studies on the relationships between the biochemical process of Sb and human health are needed.
Collapse
Affiliation(s)
- Ziyang Lai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China.
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| |
Collapse
|
6
|
Gold(I) Complexes with P-Donor Ligands and Their Biological Evaluation. Processes (Basel) 2021. [DOI: 10.3390/pr9122100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Gold(I) complexes with phosphine ligands—[Au(TrippyPhos)Cl] (1) (TrippyPhos = 1-[2-[bis(tert-butyl)phosphino]phenyl]-3,5-diphenyl-1H-pyrazole), [Au(BippyPhos)Cl]0.5CH2Cl2 (2) (BippyPhos = 5-(di-tert-butylphosphino)-1′, 3′, 5′-triphenyl-1′H-[1,4′]bipyrazole), and [Au(meCgPPh)Cl] (3) (meCgPPh = 1,3,5,7-tetramethyl-6-phenyl-2,4,8-trioxa-6-phosphaadamantane—were investigated as types of bioactive gold metallodrugs. Complexes (1)–(3) were characterized using IR, 1H, 13C, 31P NMR spectroscopy, elemental analysis and mass spectrometry (FAB-MS). Complexes of (1) and (2) exhibited substantial in vitro cytotoxicity (IC50 = 0.5–7.0 μM) against both the cisplatin-sensitive and -resistant variants of the A2780 human ovarian carcinoma cell line, as well as against the A549 human lung carcinoma, K562 chronic myelogenous leukemia, and HeLa (human cervix carcinoma) cells. However, among the compounds studied, complex (2) showed the most promising biological properties: the highest stability in biologically relevant media, selectivity towards cancer cells over the non-cancer cells (HUVEC, human umbilical vein endothelial cells), and the highest inhibitory effect on cytosolic NADPH-dependent reductases in A2780 and A2780cis cells among the gold complexes under analysis.
Collapse
|
7
|
Wu S, Wu Z, Ge Q, Zheng X, Yang Z. Antitumor activity of tridentate pincer and related metal complexes. Org Biomol Chem 2021; 19:5254-5273. [PMID: 34059868 DOI: 10.1039/d1ob00577d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Pincer complexes featuring tunable tridentate ligand frameworks are one of the most actively studied classes of metal-based complexes. Currently, growing attention is devoted to the cytotoxicity of pincer and related metal complexes. The antiproliferative activity of numerous pincer complexes has been reported. Pincer tridentate ligand scaffolds show different coordination modes and offer multiple options for directed structural modifications. This review summarizes the significant progress in the research studies of the antitumor activity of pincer and related platinum(ii), gold(iii), palladium(ii), copper(ii), iron(iii), ruthenium(ii), nickel(ii) and some other metal complexes, in order to provide a reference for designing novel metal coordination drug candidates with promising antitumor activity.
Collapse
Affiliation(s)
- Shulei Wu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Zaoduan Wu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Qianyi Ge
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Xing Zheng
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Zehua Yang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| |
Collapse
|
8
|
Almeida JC, Amim RS, Pessoa C, Lourenço MC, Mendes IC, Lessa JA. Bismuth(III) complexes with pyrazineformamide thiosemicarbazones: Investigation on the antimicrobial and cytotoxic effects. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Synthesis, Spectroscopic Characterization, Structural Studies, and In Vitro Antitumor Activities of Pyridine-3-carbaldehyde Thiosemicarbazone Derivatives. J CHEM-NY 2020. [DOI: 10.1155/2020/2960165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eight new thiosemicarbazone derivatives, 6-(1-trifluoroethoxy)pyridine-3-carbaldehyde thiosemicarbazone (1), 6-(4′-fluorophenyl)pyridine-3-carbaldehyde thiosemicarbazone (2), 5-chloro-pyridine-3-carbaldehyde thiosemicarbazone (3), 2-chloro-5-bromo-pyridine-3-carbaldehyde thiosemicarbazone (4), 6-(3′,4′-dimethoxyphenyl)pyridine-3-carbaldehyde thiosemicarbazone (5), 2-chloro-5-fluor-pyridine-3-carbaldehyde thiosemicarbazone, (6), 5-iodo-pyridine-3-carbaldehyde thiosemicarbazone (7), and 6-(3′,5′-dichlorophenyl)pyridine-3-carbaldehyde thiosemicarbazone (8) were synthesized, from the reaction of the corresponding pyridine-3-carbaldehyde with thiosemicarbazide. The synthesized compounds were characterized by ESI-Mass, UV-Vis, IR, and NMR (1H, 13C, 19F) spectroscopic techniques. Molar mass values and spectroscopic data are consistent with the proposed structural formulas. The molecular structure of 7 has been also confirmed by single crystal X-ray diffraction. In the solid state 7 exists in the E conformation about the N2-N3 bond; 7 also presents the E conformation in solution, as evidenced by 1H NMR spectroscopy. The in vitro antitumor activity of the synthesized compounds was studied on six human tumor cell lines: H460 (lung large cell carcinoma), HuTu80 (duodenum adenocarcinoma), DU145 (prostate carcinoma), MCF-7 (breast adenocarcinoma), M-14 (amelanotic melanoma), and HT-29 (colon adenocarcinoma). Furthermore, toxicity studies in 3T3 normal cells were carried out for the prepared compounds. The results were expressed as IC50 and the selectivity index (SI) was calculated. Biological studies revealed that 1 (IC50 = 3.36 to 21.35 μM) displayed the highest antiproliferative activity, as compared to the other tested thiosemicarbazones (IC50 = 40.00 to >582.26 μM) against different types of human tumor cell lines. 1 was found to be about twice as cytotoxic (SI = 1.82) than 5-fluorouracile (5-FU) against the M14 cell line, indicating its efficiency in inhibiting the cell growth even at low concentrations. A slightly less efficient activity was shown by 1 towards the HuTu80 and MCF7 tumor cell lines, as compared to that of 5-FU. Therefore, 1 can be considered as a promising candidate to be used as a pharmacological agent, since it presents significant activity and was found to be more innocuous than the 5-FU anticancer drug against the 3T3 mouse embryo fibroblast cells.
Collapse
|
10
|
Bjørklund G, Pivina L, Dadar M, Semenova Y, Rahman MM, Chirumbolo S, Aaseth J. Depleted uranium and Gulf War Illness: Updates and comments on possible mechanisms behind the syndrome. ENVIRONMENTAL RESEARCH 2020; 181:108927. [PMID: 31796256 DOI: 10.1016/j.envres.2019.108927] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Indications of proximal tubule effects have been observed in recent surveillance study of Gulf War veterans exposed to depleted uranium (DU). This gives some support for the suspicion that DU may represent one of the causes for the so-called Persian Gulf syndrome. Proposed effects may be especially harmful if the toxicity hits the mitochondrial DNA since the mitochondria lack the nucleotide excision repair mechanism, which is needed for repairing bulky adducts that have been associated with DU. It is a plausible working hypothesis that a significant part of the symptoms from various organs, which have been observed among veterans from Gulf War 1 and that have been grouped under the name of the Persian Gulf syndrome, may be explained as a consequence of mitochondrial DNA damage in various cell types and organs. Interpretation of observations, on military personnel and civilians after Gulf War 1, is associated with difficulties because of the abundance of potential confounding factors. The symptoms observed on veterans from Gulf War 1 may be attributed to a multiplicity of substances functioning directly or indirectly as mitochondrial mutagens. A concise analysis of the cascade of toxic effects initiated by DU exposure in the human body is the subject of this article.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway.
| | - Lyudmila Pivina
- Semey Medical University, Semey, Kazakhstan; CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Yuliya Semenova
- Semey Medical University, Semey, Kazakhstan; CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; CONEM Scientific Secretary, Verona, Italy
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway; IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
11
|
In vitro assessment of the cytotoxicity of Gallium(III) complexes with Isoniazid-Derived Hydrazones: Effects on clonogenic survival of HCT-116 cells. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Wei X, Yang Y, Ge J, Lin X, Liu D, Wang S, Zhang J, Zhou G, Li S. Synthesis, characterization, DNA/BSA interactions and in vitro cytotoxicity study of palladium(II) complexes of hispolon derivatives. J Inorg Biochem 2019; 202:110857. [PMID: 31669695 DOI: 10.1016/j.jinorgbio.2019.110857] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/17/2019] [Accepted: 09/12/2019] [Indexed: 01/09/2023]
Abstract
Thirteen novel palladium(II) complexes of the general formula [Pd(bipy)(O,O'-dkt)](PF6), (where bipy is 2,2'-bipyridine and O,O'-dkt is β-diketonate ligand hispolon or its derivative) have been prepared through a metal-ligand coordination method that involves spontaneous formation of the corresponding diketonate scaffold. The obtained palladium(II) complexes have been characterized by NMR spectroscopy, ESI-mass spectrometry as well as elemental analysis. The cytotoxicity analysis indicates that most of the obtained palladium(II) complexes show promising growth inhibition in three human cancer cell lines. Flow cytometry analysis shows complex 3e could promote intracellular reactive oxygen species (ROS) accumulation and lead cancer cell death. And the suppression of ROS accumulation and the rescue of cell viability in HeLa cells by N-acetyl-L-cysteine (NAC) suggest the possible link between the increase in ROS generation and cytotoxicity of complex 3e. Flow cytometry analysis also reveal that complex 3e cause cell cycle arrest in the G2/M phase and collapse of the mitochondrial membrane potential, promote the generation of ROS and lead to tumor cell apoptosis. The interactions of complex 3e with calf thymus DNA (CT-DNA) have been evaluated by UV-Vis spectroscopy, fluorescence quenching experiments and viscosity measurements, which reveal that the complex interact with CT-DNA through minor groove binding and/or electrostatic interactions. Further, the results of fluorescence titration and site marker competitive experiment on bovine serum albumin (BSA) suggest that complex 3e can quench the fluorescence of BSA via a static quenching process and bind to BSA in Sudlow's site II.
Collapse
Affiliation(s)
- Xiaonan Wei
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China; Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Yaxing Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China; Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Jiangfeng Ge
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China; Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Xue Lin
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China; Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Dandan Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China; Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China.
| | - Shuxiang Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China; Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China; Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Guoqiang Zhou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China; Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China.
| | - Shenghui Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China; Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
13
|
Kowalik M, Masternak J, Barszcz B. Recent Research Trends on Bismuth Compounds in Cancer Chemoand Radiotherapy. Curr Med Chem 2019; 26:729-759. [DOI: 10.2174/0929867324666171003113540] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 12/15/2022]
Abstract
Background:Application of coordination chemistry in nanotechnology is a rapidly developing research field in medicine. Bismuth complexes have been widely used in biomedicine with satisfactory therapeutic effects, mostly in Helicobacter pylori eradication, but also as potential antimicrobial and anti-leishmanial agents. Additionally, in recent years, application of bismuth-based compounds as potent anticancer drugs has been studied extensively.Methods:Search for data connected with recent trends on bismuth compounds in cancer chemo- and radiotherapy was carried out using web-based literature searching tools such as ScienceDirect, Springer, Royal Society of Chemistry, American Chemical Society and Wiley. Pertinent literature is covered up to 2016.Results:In this review, based on 213 papers, we highlighted a number of current problems connected with: (i) characterization of bismuth complexes with selected thiosemicarbazone, hydrazone, and dithiocarbamate classes of ligands as potential chemotherapeutics. Literature results derived from 50 papers show that almost all bismuth compounds inhibit growth and proliferation of breast, colon, ovarian, lung, and other tumours; (ii) pioneering research on application of bismuth-based nanoparticles and nanodots for radiosensitization. Results show great promise for improvement in therapeutic efficacy of ionizing radiation in advanced radiotherapy (described in 36 papers); and (iii) research challenges in using bismuth radionuclides in targeted radioimmunotherapy, connected with choice of adequate radionuclide, targeting vector, proper bifunctional ligand and problems with 213Bi recoil daughters toxicity (derived from 92 papers).Conclusion:This review presents recent research trends on bismuth compounds in cancer chemo- and radiotherapy, suggesting directions for future research.
Collapse
Affiliation(s)
- Mateusz Kowalik
- Institute of Chemistry, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Joanna Masternak
- Institute of Chemistry, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Barbara Barszcz
- Institute of Chemistry, Jan Kochanowski University in Kielce, Kielce, Poland
| |
Collapse
|
14
|
Aleksanyan DV, Churusova SG, Klemenkova ZS, Aysin RR, Rybalkina EY, Nelyubina YV, Artyushin OI, Peregudov AS, Kozlov VA. Extending the Application Scope of Organophosphorus(V) Compounds in Palladium(II) Pincer Chemistry. Organometallics 2019. [DOI: 10.1021/acs.organomet.8b00867] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Diana V. Aleksanyan
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow, 119991 Russia
| | - Svetlana G. Churusova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow, 119991 Russia
| | - Zinaida S. Klemenkova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow, 119991 Russia
| | - Rinat R. Aysin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow, 119991 Russia
| | - Ekaterina Yu. Rybalkina
- Institute of Carcinogenesis, Blokhin Russian Cancer Research Center, Kashirskoe shosse 24, Moscow, 115478 Russia
| | - Yulia V. Nelyubina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow, 119991 Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow, 117901 Russia
| | - Oleg I. Artyushin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow, 119991 Russia
| | - Alexander S. Peregudov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow, 119991 Russia
| | - Vladimir A. Kozlov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow, 119991 Russia
| |
Collapse
|
15
|
Scalcon V, Bindoli A, Rigobello MP. Significance of the mitochondrial thioredoxin reductase in cancer cells: An update on role, targets and inhibitors. Free Radic Biol Med 2018; 127:62-79. [PMID: 29596885 DOI: 10.1016/j.freeradbiomed.2018.03.043] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/21/2018] [Accepted: 03/24/2018] [Indexed: 12/26/2022]
Abstract
Thioredoxin reductase 2 (TrxR2) is a key component of the mitochondrial thioredoxin system able to transfer electrons to peroxiredoxin 3 (Prx3) in a reaction mediated by thioredoxin 2 (Trx2). In this way, both the level of hydrogen peroxide and thiol redox state are modulated. TrxR2 is often overexpressed in cancer cells conferring apoptosis resistance. Due to their exposed flexible arm containing selenocysteine, both cytosolic and mitochondrial TrxRs are inhibited by a large number of molecules. The various classes of inhibitors are listed and the molecules acting specifically on TrxR2 are extensively described. Particular emphasis is given to gold(I/III) complexes with phosphine, carbene or other ligands and to tamoxifen-like metallocifens. Also chemically unrelated organic molecules, including natural compounds and their derivatives, are taken into account. An important feature of many TrxR2 inhibitors is provided by their nature of delocalized lipophilic cations that allows their accumulation in mitochondria exploiting the organelle membrane potential. The consequences of TrxR2 inhibition are presented focusing especially on the impact on mitochondrial pathophysiology. Inhibition of TrxR2, by hindering the activity of Trx2 and Prx3, increases the mitochondrial concentration of reactive oxygen species and shifts the thiol redox state toward a more oxidized condition. This is reflected by alterations of specific targets involved in the release of pro-apoptotic factors such as cyclophilin D which acts as a regulator of the mitochondrial permeability transition pore. Therefore, the selective inhibition of TrxR2 could be utilized to induce cancer cell apoptosis.
Collapse
Affiliation(s)
- Valeria Scalcon
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.
| | - Alberto Bindoli
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; Institute of Neuroscience (CNR), Padova Section, c/o Department of Biomedical Sciences, Viale G. Colombo 3, 35131 Padova, Italy
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.
| |
Collapse
|
16
|
Holik HA, Uehara T, Nemoto S, Rokugawa T, Tomizawa Y, Sakuma A, Mizuno Y, Suzuki H, Arano Y. Coordination-Mediated Synthesis of 67Ga-Labeled Purification-Free Trivalent Probes for in Vivo Imaging of Saturable Systems. Bioconjug Chem 2018; 29:2909-2919. [DOI: 10.1021/acs.bioconjchem.8b00337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Holis A. Holik
- Laboratory of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Sumedang 46363, Indonesia
| | - Tomoya Uehara
- Laboratory of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Soki Nemoto
- Laboratory of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Takemi Rokugawa
- Laboratory of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yuumi Tomizawa
- Laboratory of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ayako Sakuma
- Laboratory of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yuki Mizuno
- Laboratory of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
- Laboratory of Physical Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Hiroyuki Suzuki
- Laboratory of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yasushi Arano
- Laboratory of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
17
|
Oliveira AA, Perdigão GMC, Rodrigues LE, da Silva JG, Souza-Fagundes EM, Takahashi JA, Rocha WR, Beraldo H. Cytotoxic and antimicrobial effects of indium(iii) complexes with 2-acetylpyridine-derived thiosemicarbazones. Dalton Trans 2018; 46:918-932. [PMID: 28009892 DOI: 10.1039/c6dt03657k] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Complexes [In(2Ac4oClPh)Cl2(MeOH)] (1), [In(2Ac4pFPh)Cl2(MeOH)] (2), [In(2Ac4pClPh)Cl2(MeOH)] (3) and [In(2Ac4pIPh)Cl2(MeOH)] (4) were obtained with N(4)-ortho-chlorophenyl-2-acetylpyridine thiosemicarbazone (H2Ac4oClPh), N(4)-para-fluorophenyl-2-acetylpyridine thiosemicarbazone (H2Ac4pFPh), N(4)-para-chlorophenyl-2-acetylpyridine thiosemicarbazone (H2Ac4pClPh) and N(4)-para-iodophenyl-2-acetylpyridine thiosemicarbazone (H2Ac4pIPh). Theoretical studies suggested that the coordinated methanol molecule can be easily replaced by DMSO used in the preparation of stock solutions, with the formation of [In(L)Cl2(DMSO)] (HL = thiosemicarbazonate ligand), and that the replacement of DMSO by water is unfavorable. However, for all complexes the displacement of one or two chloride ligands by water in aqueous solution is extremely favorable. The cytotoxic activity of the compounds was evaluated against HL-60, Jurkat and THP-1 leukemia and against MDA-MB-231 and HCT-116 solid tumor cell lines, as well as against Vero non-malignant cells. The cytotoxicity and selectivity indexes (SI) increased in several cases for the indium(iii) complexes in comparison with the free thiosemicarbazones. The antimicrobial activity of the compounds was investigated against Candida albicans, Candida dubliniensis, Candida lusitaniae and Candida parapsilosis. In many cases complexation resulted in a substantial increase of the antifungal activity. Complexes (1-4) were revealed to be very active against C. lusitaniae and C. dubliniensis. Structure-activity relationship (SAR) studies were carried out to identify the physico-chemical properties that might be involved in the antifungal action, as well as in the cytotoxic effect of the compounds against HL-60 cells. In both cases, correlations between the bioactivity and physico-chemical properties did not appreciably change when the chloride ligands in [In(L)Cl2(DMSO)] were replaced by water molecules, suggesting [In(L)Cl(H2O)(DMSO)]+ or [In(L)(H2O)2(DMSO)]2+ to be the species that interact with the biological media.
Collapse
Affiliation(s)
- Alexandre A Oliveira
- Departamento de Química, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil.
| | - Gabriele M C Perdigão
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Luana E Rodrigues
- Departamento de Química, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil.
| | - Jeferson G da Silva
- Departamento de Farmácia, Universidade Federal de Juiz de Fora, Campus Governador Valadares, 35010-177 Governador Valadares, MG, Brazil
| | - Elaine M Souza-Fagundes
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Jacqueline A Takahashi
- Departamento de Química, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil.
| | - Willian R Rocha
- Departamento de Química, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil.
| | - Heloisa Beraldo
- Departamento de Química, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
18
|
Zhang J, Zhang B, Li X, Han X, Liu R, Fang J. Small molecule inhibitors of mammalian thioredoxin reductase as potential anticancer agents: An update. Med Res Rev 2018; 39:5-39. [DOI: 10.1002/med.21507] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
- School of Pharmacy; Lanzhou University; Lanzhou China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Xiao Han
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Ruijuan Liu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
- School of Pharmacy; Lanzhou University; Lanzhou China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| |
Collapse
|
19
|
Churusova SG, Aleksanyan DV, Rybalkina EY, Nelyubina YV, Peregudov AS, Klemenkova ZS, Kozlov VA. Non-classical N-metallated Pd(II) pincer complexes featuring amino acid pendant arms: Synthesis and biological activity. Polyhedron 2018. [DOI: 10.1016/j.poly.2017.08.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Synthesis of gold(I) phosphine complexes containing the 2-BrC 6 F 4 PPh 2 ligand: Evaluation of anticancer activity in 2D and 3D spheroidal models of HeLa cancer cells. Eur J Med Chem 2018; 145:291-301. [DOI: 10.1016/j.ejmech.2017.12.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/27/2022]
|
21
|
Venkatachalam TK, Bernhardt PV, Stimson DHR, Pierens GK, Bhalla R, Reutens DC. A Novel Strategy to Introduce 18F, a Positron Emitting Radionuclide, into a Gallium Nitrate Complex: Synthesis, NMR, X-Ray Crystal Structure, and Preliminary Studies on Radiolabelling with 18F. Aust J Chem 2018. [DOI: 10.1071/ch17334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A hexan-3,4-dione bis(4N-phenylthiosemicarbazone) gallium nitrate complex was synthesised and the structure was confirmed by NMR studies. The complex was prepared using an appropriately substituted dithiosemicarbazone and sodium methoxide in anhydrous methanol. The structure was further confirmed using single crystal X-ray crystallography. The crystal structure of gallium nitrate complex of diphenylthiosemicarbazone comprise a planar configuration of the tetradentate coordinated thiosemicarbazone with the Ga3+ ion, with the nitrate ligand occupying the apical coordination site. The X-ray structure of the gallium fluoride complex of pentan-2,3-dione bis(4N-phenylthiosemicarbazone) has been determined and confirms exchange of the nitrate can be achieved with fluoride. We show facile exchange of 18F, a positron emitter, to form the 18F-gallium complex under mild conditions, thus providing confirmation that such a transformation can be used to introduce 18F directly into nitrate-coordinated complexes of gallium-thiosemicarbozone complexes, a new labelling strategy for the preparation of imaging agents.
Collapse
|
22
|
Srinivasa Reddy T, Privér SH, Rao VV, Mirzadeh N, Bhargava SK. Gold(i) and gold(iii) phosphine complexes: synthesis, anticancer activities towards 2D and 3D cancer models, and apoptosis inducing properties. Dalton Trans 2018; 47:15312-15323. [DOI: 10.1039/c8dt01724g] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Herein we report the synthesis of gold(i) and gold(iii) complexes of tris(4-methoxyphenyl)phosphine and tris(2,6-dimethoxyphenyl)phosphine and their anticancer activity towards 2D and 3D cancer models.
Collapse
Affiliation(s)
- T. Srinivasa Reddy
- Centre for Advanced Materials & Industrial Chemistry (CAMIC)
- School of Science
- RMIT University
- Melbourne 3001
- Australia
| | - Steven H. Privér
- Centre for Advanced Materials & Industrial Chemistry (CAMIC)
- School of Science
- RMIT University
- Melbourne 3001
- Australia
| | - Vijay V. Rao
- Centre for Advanced Materials & Industrial Chemistry (CAMIC)
- School of Science
- RMIT University
- Melbourne 3001
- Australia
| | - Nedaossadat Mirzadeh
- Centre for Advanced Materials & Industrial Chemistry (CAMIC)
- School of Science
- RMIT University
- Melbourne 3001
- Australia
| | - Suresh K. Bhargava
- Centre for Advanced Materials & Industrial Chemistry (CAMIC)
- School of Science
- RMIT University
- Melbourne 3001
- Australia
| |
Collapse
|
23
|
Wang YT, Fang Y, Zhao M, Li MX, Ji YM, Han QX. Cu(ii), Ga(iii) and In(iii) complexes of 2-acetylpyridine N(4)-phenylthiosemicarbazone: synthesis, spectral characterization and biological activities. MEDCHEMCOMM 2017; 8:2125-2132. [PMID: 30108730 PMCID: PMC6084159 DOI: 10.1039/c7md00415j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 10/07/2017] [Indexed: 11/21/2022]
Abstract
In this paper, synthesis and characterization of metal complexes [Cu2(L)3]ClO4 (1), [Ga(L)2]NO3·2H2O (2) and [In(L)2]NO3·H2O (3) (HL = 2-acetylpyridine N(4)-phenylthiosemicarbazone) was carried out, including elemental analysis, spectral analysis (IR, UV-vis, NMR), and X-ray crystallography. Complex 1 contains one S-bridged binuclear [Cu2(L)3]+ unit, where two Cu atoms display diverse coordination geometries: one being square planar geometry and the other octahedral geometry. Both 2 and 3 are mononuclear complexes, and the metal centers in 2 and 3 are chelated by two NNS tridentate ligands possessing a distorted octahedral geometry. Biological studies show that all the complexes possess a wide spectrum of modest to effective antibacterial activities and remarkable cytotoxicities against HepG2 cells, and 1, in particular, with an IC50 value of 0.19 ± 0.06 μM, is 113-fold and 28-fold more cytotoxic than HL and the antitumor drug mitoxantrone, respectively. In addition, 3 exhibits excellent photoluminescence properties. Upon the addition of 1 equiv of In3+ ions, a remarkable fluorescence intensity of HL and fluorescent color change (from transparent to light-green) could be observed with 365 nm light, indicating that this ligand may be used as a promising colorimetric and fluorescent probe for In3+ detection.
Collapse
Affiliation(s)
- Yu-Ting Wang
- Henan Key Laboratory of Polyoxometalates , Institute of Molecular and Crystal Engineering , College of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , PR China . ; ; ; Tel: +86 371 23881589
- College of Chemistry and Environment , Henan Institute of Finance and Banking , Zhengzhou 450046 , PR China
| | - Yan Fang
- Henan Key Laboratory of Polyoxometalates , Institute of Molecular and Crystal Engineering , College of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , PR China . ; ; ; Tel: +86 371 23881589
| | - Meng Zhao
- Henan Key Laboratory of Polyoxometalates , Institute of Molecular and Crystal Engineering , College of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , PR China . ; ; ; Tel: +86 371 23881589
| | - Ming-Xue Li
- Henan Key Laboratory of Polyoxometalates , Institute of Molecular and Crystal Engineering , College of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , PR China . ; ; ; Tel: +86 371 23881589
| | - Yu-Mei Ji
- Henan Key Laboratory of Polyoxometalates , Institute of Molecular and Crystal Engineering , College of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , PR China . ; ; ; Tel: +86 371 23881589
| | - Qiu-Xia Han
- Henan Key Laboratory of Polyoxometalates , Institute of Molecular and Crystal Engineering , College of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , PR China . ; ; ; Tel: +86 371 23881589
| |
Collapse
|
24
|
Churusova SG, Aleksanyan DV, Rybalkina EY, Susova OY, Brunova VV, Aysin RR, Nelyubina YV, Peregudov AS, Gutsul EI, Klemenkova ZS, Kozlov VA. Highly Cytotoxic Palladium(II) Pincer Complexes Based on Picolinylamides Functionalized with Amino Acids Bearing Ancillary S-Donor Groups. Inorg Chem 2017; 56:9834-9850. [DOI: 10.1021/acs.inorgchem.7b01348] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Svetlana G. Churusova
- A. N. Nesmeyanov
Institute of Organoelement Compounds, Russian Academy of Sciences, Ulitsa Vavilova 28, Moscow 119991, Russia
| | - Diana V. Aleksanyan
- A. N. Nesmeyanov
Institute of Organoelement Compounds, Russian Academy of Sciences, Ulitsa Vavilova 28, Moscow 119991, Russia
| | - Ekaterina Yu. Rybalkina
- Institute of Carcinogenesis, N. N. Blokhin Russian Cancer Research Center, Kashirskoe Shosse 24, Moscow 115478, Russia
| | - Olga Yu. Susova
- Institute of Carcinogenesis, N. N. Blokhin Russian Cancer Research Center, Kashirskoe Shosse 24, Moscow 115478, Russia
| | - Valentina V. Brunova
- A. N. Nesmeyanov
Institute of Organoelement Compounds, Russian Academy of Sciences, Ulitsa Vavilova 28, Moscow 119991, Russia
| | - Rinat R. Aysin
- A. N. Nesmeyanov
Institute of Organoelement Compounds, Russian Academy of Sciences, Ulitsa Vavilova 28, Moscow 119991, Russia
| | - Yulia V. Nelyubina
- A. N. Nesmeyanov
Institute of Organoelement Compounds, Russian Academy of Sciences, Ulitsa Vavilova 28, Moscow 119991, Russia
| | - Alexander S. Peregudov
- A. N. Nesmeyanov
Institute of Organoelement Compounds, Russian Academy of Sciences, Ulitsa Vavilova 28, Moscow 119991, Russia
| | - Evgenii I. Gutsul
- A. N. Nesmeyanov
Institute of Organoelement Compounds, Russian Academy of Sciences, Ulitsa Vavilova 28, Moscow 119991, Russia
| | - Zinaida S. Klemenkova
- A. N. Nesmeyanov
Institute of Organoelement Compounds, Russian Academy of Sciences, Ulitsa Vavilova 28, Moscow 119991, Russia
| | - Vladimir A. Kozlov
- A. N. Nesmeyanov
Institute of Organoelement Compounds, Russian Academy of Sciences, Ulitsa Vavilova 28, Moscow 119991, Russia
| |
Collapse
|
25
|
Garcia CV, Parrilha GL, Rodrigues BL, Barbeira PJ, Clarke RM, Storr T, Beraldo H. Cobalt(III) complexes with 2-acetylpyridine-derived Schiff bases: Studies investigating ligand release upon reduction. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.12.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Molecular and supramolecular properties of nitroaromatic thiosemicarbazones: Synthesis, spectroscopy, X-ray structure elucidation and DFT calculations. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.11.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Synthesis, characterization and biological activity of gallium(III) complexes with non-symmetrical NO-donor Schiff bases. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Oliveira AA, Franco LL, dos Santos RG, Perdigão GMC, da Silva JG, Souza-Fagundes EM, Beraldo H. Neutron activation of In(iii) complexes with thiosemicarbazones leads to the production of potential radiopharmaceuticals for the treatment of breast cancer. NEW J CHEM 2017. [DOI: 10.1039/c7nj01547j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
114mIn(iii) complexes with 2-acetylpyridine-derived thiosemicarbazones show potent cytotoxic activity.
Collapse
Affiliation(s)
- Alexandre A. Oliveira
- Departamento de Química
- Universidade Federal de Minas Gerais
- 31270-901 Belo Horizonte
- Brazil
| | - Lucas L. Franco
- Departamento de Química
- Universidade Federal de Minas Gerais
- 31270-901 Belo Horizonte
- Brazil
| | - Raquel G. dos Santos
- Centro de Desenvolvimento da Tecnologia Nuclear
- CDTN
- 31270-901 Belo Horizonte
- Brazil
| | - Gabriele M. C. Perdigão
- Departamento de Fisiologia e Biofísica
- Universidade Federal de Minas Gerais
- 31270-901 Belo Horizonte
- Brazil
| | - Jeferson G. da Silva
- Departamento de Farmácia
- Universidade Federal de Juiz de Fora
- Campus Governador Valadares
- 35010-177 Governador Valadares
- Brazil
| | - Elaine M. Souza-Fagundes
- Departamento de Fisiologia e Biofísica
- Universidade Federal de Minas Gerais
- 31270-901 Belo Horizonte
- Brazil
| | - Heloisa Beraldo
- Departamento de Química
- Universidade Federal de Minas Gerais
- 31270-901 Belo Horizonte
- Brazil
| |
Collapse
|
29
|
Xie L, Luo Z, Zhao Z, Chen T. Anticancer and Antiangiogenic Iron(II) Complexes That Target Thioredoxin Reductase to Trigger Cancer Cell Apoptosis. J Med Chem 2016; 60:202-214. [DOI: 10.1021/acs.jmedchem.6b00917] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lina Xie
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Zuandi Luo
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Zhennan Zhao
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
30
|
Firmino GSS, de Souza MVN, Pessoa C, Lourenco MCS, Resende JALC, Lessa JA. Synthesis and evaluation of copper(II) complexes with isoniazid-derived hydrazones as anticancer and antitubercular agents. Biometals 2016; 29:953-963. [DOI: 10.1007/s10534-016-9968-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 08/28/2016] [Indexed: 02/06/2023]
|
31
|
Alam MN, Huq F. Comprehensive review on tumour active palladium compounds and structure–activity relationships. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.02.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Zhang Z, Gou Y, Wang J, Yang K, Qi J, Zhou Z, Liang S, Liang H, Yang F. Four copper(II) compounds synthesized by anion regulation: Structure, anticancer function and anticancer mechanism. Eur J Med Chem 2016; 121:399-409. [PMID: 27309677 DOI: 10.1016/j.ejmech.2016.05.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 11/27/2022]
Abstract
Copper (Cu) compounds are a promising candidate for next generation metal anticancer drugs. Therefore, we regulated anions to synthesize four mononuclear and binuclear Cu(II) compounds derived from thiosemicarbazone Schiff base ligands and characterized them. Four of these compounds showed very high cytotoxicity to cancer cell lines in vitro. These Cu(II) compounds strongly promoted the apoptosis of BEL-7404 cells and had a capacity to arrest the cell cycle at S phase of those cells. Furthermore, reactive oxygen species (ROS), mitochondrial membrane potential and Western blot analyses revealed that these Cu(II) compounds exert their cytotoxicity through an ROS-mediated intrinsic mitochondrial pathway accompanied by the regulation of Bcl-2 family proteins.
Collapse
Affiliation(s)
- Zhenlei Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People's Republic of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Yi Gou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Jun Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Kun Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Jinxu Qi
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Zuping Zhou
- Guangxi Universities Key Laboratory of Stem Cell and Pharmaceutical Biotechnology, Guangxi Normal University, Guilin, Guangxi, China
| | - Shichu Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People's Republic of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Feng Yang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People's Republic of China, Guangxi Normal University, Guilin, Guangxi, China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China.
| |
Collapse
|
33
|
Metal complexes of 3-(4-bromophenyl)-1-pyridin-2-ylprop-2-en-1-one thiosemicarbazone: cytotoxic activity and investigation on the mode of action of the gold(III) complex. Biometals 2016; 29:515-26. [DOI: 10.1007/s10534-016-9933-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/05/2016] [Indexed: 12/28/2022]
|
34
|
Fanelli M, Formica M, Fusi V, Giorgi L, Micheloni M, Paoli P. New trends in platinum and palladium complexes as antineoplastic agents. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.11.004] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Hadjikakou S, Ozturk I, Banti C, Kourkoumelis N, Hadjiliadis N. Recent advances on antimony(III/V) compounds with potential activity against tumor cells. J Inorg Biochem 2015; 153:293-305. [DOI: 10.1016/j.jinorgbio.2015.06.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/03/2015] [Accepted: 06/06/2015] [Indexed: 11/25/2022]
|
36
|
Tenchiu AC, Ventouri IK, Ntasi G, Palles D, Kokotos G, Kovala-Demertzi D, Kostas ID. Synthesis of a palladium complex with a β-d-glucopyranosyl-thiosemicarbazone and its application in the Suzuki–Miyaura coupling of aryl bromides with phenylboronic acid. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Gandin V, Fernandes AP. Metal- and Semimetal-Containing Inhibitors of Thioredoxin Reductase as Anticancer Agents. Molecules 2015; 20:12732-56. [PMID: 26184149 PMCID: PMC6331895 DOI: 10.3390/molecules200712732] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/18/2015] [Accepted: 07/08/2015] [Indexed: 11/17/2022] Open
Abstract
The mammalian thioredoxin reductases (TrxRs) are a family of selenium-containing pyridine nucleotide disulfide oxidoreductases playing a central role in cellular redox homeostasis and signaling pathways. Recently, these selenoproteins have emerged as promising therapeutic targets for anticancer drug development, often being overexpressed in tumor cells and contributing to drug resistance. Herein, we summarize the current knowledge on metal- and semimetal-containing molecules capable of hampering mammalian TrxRs, with an emphasis on compounds reported in the last decade.
Collapse
Affiliation(s)
- Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy.
| | - Aristi P Fernandes
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
38
|
Boselli L, Carraz M, Mazères S, Paloque L, González G, Benoit-Vical F, Valentin A, Hemmert C, Gornitzka H. Synthesis, Structures, and Biological Studies of Heterobimetallic Au(I)–Ru(II) Complexes Involving N-Heterocyclic Carbene-Based Multidentate Ligands. Organometallics 2015. [DOI: 10.1021/om501158m] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Luca Boselli
- CNRS, LCC (Laboratoire
de Chimie de Coordination), 205 route
de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
- Université
de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| | - Maëlle Carraz
- Université
de Toulouse; UPS; UMR 152 Pharma-DEV; Université Toulouse 3;
Faculté des sciences pharmaceutiques; 35 Chemin des maraîchers, F-31062 Toulouse Cedex 9, France
- Institut de Recherche
pour le Développement; IRD; UMR 152 Pharma-DEV, F-31062 Toulouse Cedex
9, France
| | - Serge Mazères
- CNRS, Institut
de Pharmacologie et de Biologie Structurale, Toulouse, France
- Université de
Toulouse, UPS, IPBS, Toulouse, France
| | - Lucie Paloque
- Université
de Toulouse; UPS; UMR 152 Pharma-DEV; Université Toulouse 3;
Faculté des sciences pharmaceutiques; 35 Chemin des maraîchers, F-31062 Toulouse Cedex 9, France
- Institut de Recherche
pour le Développement; IRD; UMR 152 Pharma-DEV, F-31062 Toulouse Cedex
9, France
| | - Germán González
- Université
de Toulouse; UPS; UMR 152 Pharma-DEV; Université Toulouse 3;
Faculté des sciences pharmaceutiques; 35 Chemin des maraîchers, F-31062 Toulouse Cedex 9, France
- Institut de Recherche
pour le Développement; IRD; UMR 152 Pharma-DEV, F-31062 Toulouse Cedex
9, France
| | - Françoise Benoit-Vical
- CNRS, LCC (Laboratoire
de Chimie de Coordination), 205 route
de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
- Université
de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| | - Alexis Valentin
- Université
de Toulouse; UPS; UMR 152 Pharma-DEV; Université Toulouse 3;
Faculté des sciences pharmaceutiques; 35 Chemin des maraîchers, F-31062 Toulouse Cedex 9, France
- Institut de Recherche
pour le Développement; IRD; UMR 152 Pharma-DEV, F-31062 Toulouse Cedex
9, France
| | - Catherine Hemmert
- CNRS, LCC (Laboratoire
de Chimie de Coordination), 205 route
de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
- Université
de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| | - Heinz Gornitzka
- CNRS, LCC (Laboratoire
de Chimie de Coordination), 205 route
de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
- Université
de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| |
Collapse
|