1
|
He J, Wang Y, Su C, Hu Y, Hu W, Hu L, Wang H. Synthesis and anti-tumor activities of three newly designed organotin(IV) carboxylates complexes. J Inorg Biochem 2024; 258:112609. [PMID: 38820620 DOI: 10.1016/j.jinorgbio.2024.112609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 06/02/2024]
Abstract
Three distinctive end group-containing organotin (IV) carboxylates complexes (YDCOOSn, CLCOOSn and BZCOOSn) were designed and synthesized. Together with theoretical calculations, a thorough examination was carried out to investigate the photophysical properties of these compounds. The cytotoxicity of the synthesized compounds was tested using normal cell line GES-1 and was assessed against four cancer cell lines (A549, Hela, H1299 and HepG2). The outcomes of the experiments demonstrated that these complexes had superior selectivity than cisplatin towards cancerous cells, particularly in the A549 cell line. BZCOOSn was selected as a candidate compound for additional research because it exhibited the lowest IC50 value and the most impressive inducing effect on cell death and G2/M phase arrest. Increased caspase-3 and -9 enzyme activity, a decline in mitochondrial membrane potential (MMP), characteristic nuclear apoptotic morphology, and an accumulation of intracellular reactive oxygen species (ROS) were seen in A549 exposed to BZCOOSn. These findings demonstrated that BZCOOSn exhibited strong cytotoxicity by triggering cell death in A549 via the mitochondrial route. Furthermore, using the scratch wound healing assay, it was discovered that BZCOOSn reduced the migration of A549 cancerous cells. These data all pointed to BZCOOSn as a possible candidate for more research and development as a chemotherapeutic drug.
Collapse
Affiliation(s)
- Jing He
- School of Preclinical Medicine, Wannan Medical College, Wuhu 241002, People's Republic of China
| | - Yuqing Wang
- School of pharmacy, Wannan Medical College, Wuhu 241002, People's Republic of China
| | - Chang Su
- School of Clinical Medicine, Wannan Medical College, Wuhu 241002, People's Republic of China
| | - Yuqing Hu
- School of Clinical Medicine, Wannan Medical College, Wuhu 241002, People's Republic of China
| | - Weihua Hu
- Reproductive Medicine Center of the First Affiliated Hospital of Wannan Medical College, Wuhu 241002, People's Republic of China
| | - Lei Hu
- School of pharmacy, Wannan Medical College, Wuhu 241002, People's Republic of China.
| | - Hui Wang
- School of pharmacy, Wannan Medical College, Wuhu 241002, People's Republic of China.
| |
Collapse
|
2
|
Yang B, Lin Y, Huang Y, Shen YQ, Chen Q. Thioredoxin (Trx): A redox target and modulator of cellular senescence and aging-related diseases. Redox Biol 2024; 70:103032. [PMID: 38232457 PMCID: PMC10827563 DOI: 10.1016/j.redox.2024.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/03/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Thioredoxin (Trx) is a compact redox-regulatory protein that modulates cellular redox state by reducing oxidized proteins. Trx exhibits dual functionality as an antioxidant and a cofactor for diverse enzymes and transcription factors, thereby exerting influence over their activity and function. Trx has emerged as a pivotal biomarker for various diseases, particularly those associated with oxidative stress, inflammation, and aging. Recent clinical investigations have underscored the significance of Trx in disease diagnosis, treatment, and mechanistic elucidation. Despite its paramount importance, the intricate interplay between Trx and cellular senescence-a condition characterized by irreversible growth arrest induced by multiple aging stimuli-remains inadequately understood. In this review, our objective is to present a comprehensive and up-to-date overview of the structure and function of Trx, its involvement in redox signaling pathways and cellular senescence, its association with aging and age-related diseases, as well as its potential as a therapeutic target. Our review aims to elucidate the novel and extensive role of Trx in senescence while highlighting its implications for aging and age-related diseases.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
3
|
Antonenko T, Gracheva Y, Shpakovsky D, Vorobyev M, Tafeenko V, Mazur D, Milaeva E. Cytotoxic activity of organotin compounds containing non-steroidal anti-inflammatory drugs. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Jastrząb A, Skrzydlewska E. Regulacja układu zależnego od tioredoksyny jako element farmakoterapii w chorobach z zaburzeniami równowagi redoks. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.6952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Streszczenie
Działanie wielu czynników egzogennych, a także zaburzone procesy metaboliczne komórek przyczyniają się do nasilonego wytwarzania oksydantów, a to zaburza równowagę redoks, wywołując zmiany metaboliczne, w tym śmierci lub transformacji nowotworowej komórek. Jednak każda komórka zawiera antyoksydanty, które mają zapobiegać tego typu sytuacjom. Jednym z układów antyoksydacyjnych, funkcjonujących w komórkach, jest układ zależny od tioredoksyny, w skład którego wchodzą: tioredoksyna (Trx), reduktaza tioredoksyny (TrxR) oraz peroksydaza tioredoksyny (TPx), które mogą redukować utlenione składniki komórek kosztem fosforanu dinukleotydu nikotynoamidoadeninowego (NADPH). Działanie takie wynika z budowy przestrzennej Trx oraz TrxR, która umożliwia wytworzenie wewnątrzcząsteczkowego mostka disulfidowego w obrębie cząsteczki tioredoksyny oraz dwóch międzycząsteczkowych mostków selenosulfidowych w obrębie dimeru reduktazy tioredoksyny. Inną, równie istotną funkcją układu zależnego od tioredoksyny jest regulowanie ekspresji wielu białek za pośrednictwem takich czynników jak czynnik transkrypcyjnego NF-κB oraz kinaza regulująca apoptozę (ASK-1), które uruchamiają kaskady przemian metabolicznych prowadzących ostatecznie do proliferacji lub apoptozy komórek. Wzrost ekspresji/aktywności składników systemu zależnego od Trx obserwuje się w rozwoju wielu nowotworów. Dlatego też poszukiwanie selektywnych inhibitorów tioredoksyny lub reduktazy tioredoksyny jest obecnie jednym z głównych kierunków badań w farmakoterapii nowotworów. Wykazano, że wiele naturalnie występujących związków polifenolowych pochodzenia naturalnego o działaniu antyoksydacyjnym (np. kwercetyna czy kurkumina) powoduje inaktywację układu Trx-TrxR. Jednocześnie wiele syntetycznych związków, w tym związki kompleksowe, które stosowane są w terapii przeciwnowotworowej (np. cisplatyna, auranofina, moteksafina gadolinu), również hamują działanie układu zależnego od Trx.
Collapse
Affiliation(s)
- Anna Jastrząb
- Zakład Chemii Nieorganicznej i Analitycznej , Uniwersytet Medyczny w Białymstoku
| | | |
Collapse
|
5
|
Abstract
One of the systems responsible for maintaining cellular redox homeostasis is the thioredoxin-dependent system. An equally important function of this system is the regulation of the expression of many proteins by the transcription factor NF-κB or the apoptosis regulating kinase (ASK-1). Since it has been shown that the Trx-dependent system can contribute to both the enhancement of tumour angiogenesis and growth as well as apoptosis of neoplastic cells, the search for compounds that inhibit the level/activity of Trx and/or TrxR and thus modulate the course of the neoplastic process is ongoing. It has been shown that many naturally occurring polyphenolic compounds inactivate elements of the thioredoxin system. In addition, the effectiveness of Trx is inhibited by imidazole derivatives, while the activity of TrxR is reduced by transition metal ions complexes, dinitrohalobenzene derivatives, Michael acceptors, nitrosourea and ebselen. In addition, research is ongoing to identify new selective Trx/TrxR inhibitors.
Collapse
Affiliation(s)
- Anna Jastrząb
- Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
6
|
Anasamy T, Chee CF, Wong YF, Heh CH, Kiew LV, Lee HB, Chung LY. Triorganotin complexes in cancer chemotherapy: Mechanistic insights and future perspectives. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Theebaa Anasamy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy University of Malaya Kuala Lumpur Malaysia
| | - Chin Fei Chee
- Nanotechnology and Catalysis Research Centre University of Malaya Kuala Lumpur Malaysia
| | - Yuen Fei Wong
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy University of Malaya Kuala Lumpur Malaysia
| | - Choon Han Heh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy University of Malaya Kuala Lumpur Malaysia
| | - Lik Voon Kiew
- Department of Pharmacology, Faculty of Medicine University of Malaya Kuala Lumpur Malaysia
| | - Hong Boon Lee
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy University of Malaya Kuala Lumpur Malaysia
- School of Biosciences, Faculty of Health and Medical Sciences Taylor's University Subang Jaya Selangor Malaysia
| | - Lip Yong Chung
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy University of Malaya Kuala Lumpur Malaysia
| |
Collapse
|
7
|
Khatkar P, Ahlawat A, Asija S, Singh V. Synthesis, characterization, in vitro antimicrobial, DNA binding activity and QSAR studies of diorganotin(IV) complexes of Schiff bases derived from 2-benzoyl-1 H-indene-1,3(2 H)-dione and 4-substituted benzoic acid hydrazides. PHOSPHORUS SULFUR 2020. [DOI: 10.1080/10426507.2020.1821026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Priyanka Khatkar
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Aarti Ahlawat
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Sonika Asija
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Vikramjeet Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, India
| |
Collapse
|
8
|
Hopff SM, Onambele LA, Brandenburg M, Berkessel A, Prokop A. Discovery of a cobalt (III) salen complex that induces apoptosis in Burkitt like lymphoma and leukemia cells, overcoming multidrug resistance in vitro. Bioorg Chem 2020; 104:104193. [PMID: 32947134 DOI: 10.1016/j.bioorg.2020.104193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/19/2020] [Accepted: 08/02/2020] [Indexed: 01/09/2023]
Abstract
A very small number of cobalt complexes is examined in oncology research. In this work, we investigate the cobalt (III) salen complex MBR-60 that turns out to be a promising anticancer drug. It induces apoptosis in Nalm6 leukemia and BJAB lymphoma cells and overcomes multidrug resistances by blocking the drug efflux pump P-glycoprotein. It further develops the apoptotic effects over the intrinsic pathway. An activation of caspase-3, caspase-8 and caspase-9 can be detected by western blot analysis. The independence of CD95 is shown by similar apoptotic inductions in BJAB and BJAB FADDdn cells. MBR-60 displays synergistic effects with daunorubicin and vincristine and has a selectivity to tumor cells. In comparison to the apoptotic effects of MBR-60 in BJAB lymphoma cells, the cobalt-free ligand 5 does not influence these cells. The research highlights that a cobalt complex has a therapeutic potential for cancer treating with a focus on drug-resistant tumors.
Collapse
Affiliation(s)
- Sina M Hopff
- Department of Pediatric Hematology/Oncology, Children's Hospital Cologne, Amsterdamer Straße 59, 50735 Cologne, Germany.
| | - Liliane A Onambele
- Department of Pediatric Hematology/Oncology, Children's Hospital Cologne, Amsterdamer Straße 59, 50735 Cologne, Germany
| | - Marc Brandenburg
- Department of Chemistry, Organic Chemistry, University of Cologne, Greinstraße 4, 50939 Cologne, Germany
| | - Albrecht Berkessel
- Department of Chemistry, Organic Chemistry, University of Cologne, Greinstraße 4, 50939 Cologne, Germany
| | - Aram Prokop
- Department of Pediatric Hematology/Oncology, Children's Hospital Cologne, Amsterdamer Straße 59, 50735 Cologne, Germany; Department of Pediatric Hematology/Oncology, Helios Clinic Schwerin, Wismarsche Straße 393-397, 19055 Schwerin, Germany
| |
Collapse
|
9
|
Xiong K, Qian C, Yuan Y, Wei L, Liao X, He L, Rees TW, Chen Y, Wan J, Ji L, Chao H. Necroptosis Induced by Ruthenium(II) Complexes as Dual Catalytic Inhibitors of Topoisomerase I/II. Angew Chem Int Ed Engl 2020; 59:16631-16637. [PMID: 32533618 DOI: 10.1002/anie.202006089] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/10/2020] [Indexed: 12/29/2022]
Abstract
Inducing necroptosis in cancer cells is an effective approach to circumvent drug-resistance. Metal-based triggers have, however, rarely been reported. Ruthenium(II) complexes containing 1,1-(pyrazin-2-yl)pyreno[4,5-e][1,2,4]triazine were developed with a series of different ancillary ligands (Ru1-7). The combination of the main ligand with bipyridyl and phenylpyridyl ligands endows Ru7 with superior nucleus-targeting properties. As a rare dual catalytic inhibitor, Ru7 effectively inhibits the endogenous activities of topoisomerase (topo) I and II and kills cancer cells by necroptosis. The cell signaling pathway from topo inhibition to necroptosis was elucidated. Furthermore, Ru7 displays significant antitumor activity against drug-resistant cancer cells in vivo. To the best of our knowledge, Ru7 is the first Ru-based necroptosis-inducing chemotherapeutic agent.
Collapse
Affiliation(s)
- Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Chen Qian
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yixian Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Lin Wei
- College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Liting He
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Thomas W Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jian Wan
- College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.,College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, P. R. China
| |
Collapse
|
10
|
Xiong K, Qian C, Yuan Y, Wei L, Liao X, He L, Rees TW, Chen Y, Wan J, Ji L, Chao H. Necroptosis Induced by Ruthenium(II) Complexes as Dual Catalytic Inhibitors of Topoisomerase I/II. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Chen Qian
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yixian Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Lin Wei
- College of ChemistryCentral China Normal University Wuhan 430079 P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Liting He
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Thomas W. Rees
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Jian Wan
- College of ChemistryCentral China Normal University Wuhan 430079 P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
- College of Chemistry and Environmental EngineeringShenzhen University Shenzhen 518071 P. R. China
| |
Collapse
|
11
|
A Pt(IV)-based mononitro-naphthalimide conjugate with minimized side-effects targeting DNA damage response via a dual-DNA-damage approach to overcome cisplatin resistance. Bioorg Chem 2020; 101:104011. [PMID: 32599363 DOI: 10.1016/j.bioorg.2020.104011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 01/09/2023]
Abstract
Platinum(Pt)(II) drugs and new Pt(IV) agents behave the dysregulation of apoptosis as the result of DNA damage repair and thus, are less effective in the treatment of resistant tumors. Herein, mononitro-naphthalimide Pt(IV) complex 10b with minimized side-effects was reported targeting DNA damage response via a dual-DNA-damage approach to overcome cisplatin resistance. 10b displayed remarkably evaluated antitumor (70.10%) activities in vivo compared to that of cisplatin (52.88%). The highest fold increase (FI) (5.08) for A549cisR cells and the lowest (0.72) for A549 indicated 10b preferentially accumulated in resistant cell lines. The possible molecular mechanism indicates that 10b targets resistant cells in a totally different way from the existing Pt drugs. The cell accumulation and the Pt levels in genomic DNA from 10b is almost 5 folds higher than that of cisplatin and oxaliplatin, indicating the naphthalimide moiety in 10b exhibits preferentially DNA damage. Using 5'-dGMP as a DNA model, the DNA-binding properties of 10b (1 mM) with 5'-dGMP (3 mM) in the presence of ascorbic acid (5 mM) deduced that 10b was generated by the combination of cisplatin with 5'-dGMP after reduction by ascorbic acid. Moreover, 10b promoted the expression of p53 gene and protein more effectively than cisplatin, leading to the increased anticancer activity. The up-regulated γH2A.X and down-regulated RAD51 indicates that 10b not only induced severe DNA damage but also inhibited the DNA damage repair, thus resulting in its higher cytotoxicity in comparison to that of cisplatin. Their preferential accumulation in cancer cells (SMMC-7721) compared to the matched normal cells (HL-7702 cells) demonstrated that they were potentially safe for clinical therapeutic use. In addition, the higher therapeutic indices of 10b for 4T1 cells in vivo indicated that naphthalimide-Pt(IV) conjugates behaved a vital function in the treatment of breast cancer. For the first time, our study implies a significant strategy for Pt drugs to treat resistance cancer targeting DNA damage repair via dual DNA damage mechanism in a totally new field.
Collapse
|
12
|
Martínez García JC, Montes Tolentino P, Hernández Ahuactzi IF, Godoy Alcantar C, Ariza-Castolo A, Guerrero Alvarez JA. Diorganotin(IV)benzoates: Structure, stability and equilibrium analysis by 1H and 119Sn NMR spectroscopy in acid solution. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Yao J, Duan D, Song ZL, Zhang J, Fang J. Sanguinarine as a new chemical entity of thioredoxin reductase inhibitor to elicit oxidative stress and promote tumor cell apoptosis. Free Radic Biol Med 2020; 152:659-667. [PMID: 31931095 DOI: 10.1016/j.freeradbiomed.2020.01.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/17/2022]
Abstract
The alteration of redox homeostasis is a hallmark of cancer cells. As a critical player in regulating cellular redox signaling, thioredoxin reductase (TrxR) enzymes are increasingly recognized as attractive targets for anticancer drug development. We reported herein the natural product sanguinarine (SAN) as a potent inhibitor of TrxR with a new chemical scaffold. Inhibition of TrxR leads to accumulation of the oxidized thioredoxin, elicits oxidative stress, and finally promotes apoptosis of cancer cells. Further synthesis of different model compounds of SAN demonstrated that the phenanthridinium unit is responsible for the TrxR inhibition. The core structure of SAN, e.g., the phenanthridinium moiety, is different from those of known TrxR inhibitors, and thus SAN is a new chemical entity of TrxR inhibitors and may serve a lead for further development. In addition, as the phenanthridinium scaffold is widely present in natural products, the disclosure of TrxR inhibition by such unit sheds light in understanding the pharmacological actions of these molecules.
Collapse
Affiliation(s)
- Juan Yao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China; School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Dongzhu Duan
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China; Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji, 721013, China
| | - Zi-Long Song
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
14
|
Targeting drug delivery system for platinum(Ⅳ)-Based antitumor complexes. Eur J Med Chem 2020; 194:112229. [PMID: 32222677 DOI: 10.1016/j.ejmech.2020.112229] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 12/22/2022]
Abstract
Classical platinum(II) anticancer agents are widely-used chemotherapeutic drugs in the clinic against a range of cancers. However, severe systemic toxicity and drug resistance have become the main obstacles which limit their application and effectiveness. Because divalent cisplatin analogues are easily destroyed in vivo, their bioavailability is low and no selective to tumor tissues. The platinum(IV) prodrugs are attractive compounds for cancer treatment because they have great advantages, e.g., higher stability in biological media, aqueous solubility and no cross-resistance with cisplatin, which may become the next generation of platinum anticancer drugs. In addition, platinum(IV) drugs could be taken orally, which could be more acceptable to cancer patients, breaking the current situation that platinum(II) drugs can only be given by injection. The coupling of platinum(IV) complexes with tumor targeting groups avoids the disadvantages such as instability in blood, irreversible binding to plasma proteins, rapid renal clearance, and non-specific distribution in normal tissues. Because of the above advantages, the combination of platinum complexes and tumor targeting groups has become the hottest field in the research and development of new platinum drugs. These approaches can be roughly categorized into two groups: active and passive targeted strategies. This review concentrates on various targeting and delivery strategies for platinum(IV) complexes to improve the efficacy and reduce the side effects of platinum-based anticancer drugs. We have made a summary of the related articles on platinum(IV) targeted delivery in recent years. We believe the results of the studies described in this review will provide new ideas and strategies for the development of platinum drugs.
Collapse
|
15
|
Anasamy T, Chee CF, Kiew LV, Chung LY. In vivo antitumour properties of tribenzyltin carboxylates in a 4T1 murine metastatic mammary tumour model: Enhanced efficacy by PLGA nanoparticles. Eur J Pharm Sci 2019; 142:105140. [PMID: 31704345 DOI: 10.1016/j.ejps.2019.105140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/11/2019] [Accepted: 11/04/2019] [Indexed: 01/26/2023]
Abstract
This study reports the in vivo performance of two tribenzyltin carboxylate complexes, tri(4-fluorobenzyl)tin[(N,N-diisopropylcarbamothioyl)sulfanyl]acetate (C1) and tribenzyltin isonicotinate (C9), in their native form as well as in a poly(lactic-co-glycolic acid) (PLGA)-based nanoformulation, to assess their potential to be translated into clinically useful agents. In a 4T1 murine metastatic mammary tumour model, single intravenous administration of C1 (2.7 mg/kg) and C9 (2.1 mg/kg; 2.1 mg/kg C9 is equivalent to 2.7 mg/kg C1) induced greater tumour growth delay than cisplatin and doxorubicin at equivalent doses, while a double-dose regimen demonstrated a much greater tumour growth delay than the single-dose treated groups. To improve the efficacy of the complexes in vivo, C1 and C9 were further integrated into PLGA nanoparticles to yield nanosized PLGA-C1 (183.7 ± 0.8 nm) and PLGA-C9 (163.2 ± 1.2 nm), respectively. Single intravenous administration of PLGA-C1 (2.7 mg C1 equivalent/kg) and PLGA-C9 (2.1 mg C9 equivalent/kg) induced greater tumour growth delay (33% reduction in the area under curve compared to that of free C1 and C9). Multiple-dose administration of PLGA-C1 (5.4 mg C1 equivalent/kg) and PLGA-C9 (4.2 mg C9 equivalent/kg) induced tumour growth suppression at the end of the study (21.7 and 34.6% reduction relative to the size on day 1 for the double-dose regimen; 73.5 and 79.0% reduction relative to the size on day 1 for the triple-dose regimen, respectively). Such tumour growth suppression was not observed in mice receiving multiple-dose regimens of free C1 and C9. Histopathological analysis revealed that metastasis to the lung and liver was inhibited in mice receiving PLGA-C1 and PLGA-C9. The current study has demonstrated the improved in vivo antitumour efficacies of C1 and C9 compared with conventional chemotherapy drugs and the enhancement of the efficacies of these agents via a robust PLGA-based nanoformulation and multiple-drug administration approach.
Collapse
Affiliation(s)
- Theebaa Anasamy
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chin Fei Chee
- Nanotechnology and Catalysis Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Lik Voon Kiew
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Lip Yong Chung
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
16
|
Synthesis, structural properties, DFT studies, antimicrobial activities and DNA binding interactions of two newly synthesized organotin(IV) carboxylates. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.066] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Banti CN, Hadjikakou SK, Sismanoglu T, Hadjiliadis N. Anti-proliferative and antitumor activity of organotin(IV) compounds. An overview of the last decade and future perspectives. J Inorg Biochem 2019; 194:114-152. [PMID: 30851663 DOI: 10.1016/j.jinorgbio.2019.02.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 01/06/2023]
Abstract
Organotins(IV) exhibit significant in vitro anti-proliferative activity, while the in vivo tests are encouraging. The recent reports on the anti-proliferative activity of organotin(IV) compounds are summarized in this review. The period covered by this work goes back to 2009 until late 2018, while the earlier ones, are included over the previous review of our group published by S.K. Hadjikakou, N. Hadjiliadis, in Coord Chem Rev, 253 (2009) 235-249. During the last decade (2009-2018), >300 organotin(IV) derivatives with oxygen-donor ligands, such as carboxylic acids, amino-acids, Non Steroidal Anti-inflammatory Drugs (NSAIDs), biological active derivatives or natural products, organotins(IV) with sulfur containing ligands such as thiones, thiosemicarbazones, dithiocarbamates, organotin(IV) compounds of oximes and organotins(IV) with amines or semicarbazones were screened for their anti-proliferative effect against various cancer cell lines and their results are included in numerous reports over this period. Although much work has been carried out on organotin(IV) derivatives with O-donor ligands, however significant fewer reports are found on organotins(IV) with oximes as ligands.
Collapse
Affiliation(s)
- Christina N Banti
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Sotiris K Hadjikakou
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
| | - Tuba Sismanoglu
- Istanbul University, Engineering Faculty, Department Chemistry, Istanbul, Turkey
| | - Nick Hadjiliadis
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
18
|
Synthesis, characterization, in vitro antimicrobial and QSAR studies of diorganotin(IV) complexes of Schiff bases derived from 2-(3-methylbutanoyl)-1H-indene-1,3(2H)-dione and 4-substituted anilines. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2308-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Scalcon V, Bindoli A, Rigobello MP. Significance of the mitochondrial thioredoxin reductase in cancer cells: An update on role, targets and inhibitors. Free Radic Biol Med 2018; 127:62-79. [PMID: 29596885 DOI: 10.1016/j.freeradbiomed.2018.03.043] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/21/2018] [Accepted: 03/24/2018] [Indexed: 12/26/2022]
Abstract
Thioredoxin reductase 2 (TrxR2) is a key component of the mitochondrial thioredoxin system able to transfer electrons to peroxiredoxin 3 (Prx3) in a reaction mediated by thioredoxin 2 (Trx2). In this way, both the level of hydrogen peroxide and thiol redox state are modulated. TrxR2 is often overexpressed in cancer cells conferring apoptosis resistance. Due to their exposed flexible arm containing selenocysteine, both cytosolic and mitochondrial TrxRs are inhibited by a large number of molecules. The various classes of inhibitors are listed and the molecules acting specifically on TrxR2 are extensively described. Particular emphasis is given to gold(I/III) complexes with phosphine, carbene or other ligands and to tamoxifen-like metallocifens. Also chemically unrelated organic molecules, including natural compounds and their derivatives, are taken into account. An important feature of many TrxR2 inhibitors is provided by their nature of delocalized lipophilic cations that allows their accumulation in mitochondria exploiting the organelle membrane potential. The consequences of TrxR2 inhibition are presented focusing especially on the impact on mitochondrial pathophysiology. Inhibition of TrxR2, by hindering the activity of Trx2 and Prx3, increases the mitochondrial concentration of reactive oxygen species and shifts the thiol redox state toward a more oxidized condition. This is reflected by alterations of specific targets involved in the release of pro-apoptotic factors such as cyclophilin D which acts as a regulator of the mitochondrial permeability transition pore. Therefore, the selective inhibition of TrxR2 could be utilized to induce cancer cell apoptosis.
Collapse
Affiliation(s)
- Valeria Scalcon
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.
| | - Alberto Bindoli
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; Institute of Neuroscience (CNR), Padova Section, c/o Department of Biomedical Sciences, Viale G. Colombo 3, 35131 Padova, Italy
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.
| |
Collapse
|
20
|
Wang Q, Li G, Liu Z, Tan X, Ding Z, Ma J, Li L, Li D, Han J, Wang B. Naphthalimide Platinum(IV) Compounds as Antitumor Agents with Dual DNA Damage Mechanism to Overcome Cisplatin Resistance. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800799] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qingpeng Wang
- Institute of Biopharmaceutical Research; Liaocheng University; 252059 Liaocheng P.R. China
| | - Guoshuai Li
- Institute of Biopharmaceutical Research; Liaocheng University; 252059 Liaocheng P.R. China
| | - Zhifang Liu
- Institute of Biopharmaceutical Research; Liaocheng University; 252059 Liaocheng P.R. China
| | - Xiaoxiao Tan
- Institute of Biopharmaceutical Research; Liaocheng University; 252059 Liaocheng P.R. China
| | - Zhuang Ding
- Institute of Biopharmaceutical Research; Liaocheng University; 252059 Liaocheng P.R. China
| | - Jing Ma
- Institute of Chemical Biology; College of Pharmacy; Henan University; 475004 Kaifeng P.R. China
| | - Lanjie Li
- Institute of Biopharmaceutical Research; Liaocheng University; 252059 Liaocheng P.R. China
| | - Dacheng Li
- Institute of Biopharmaceutical Research; Liaocheng University; 252059 Liaocheng P.R. China
| | - Jun Han
- Institute of Biopharmaceutical Research; Liaocheng University; 252059 Liaocheng P.R. China
| | - Bingquan Wang
- Institute of Biopharmaceutical Research; Liaocheng University; 252059 Liaocheng P.R. China
| |
Collapse
|
21
|
Wang Q, Tan X, Liu Z, Li G, Zhang R, Wei J, Wang S, Li D, Wang B, Han J. Design and synthesis of a new series of low toxic naphthalimide platinum(IV) antitumor complexes with dual DNA damage mechanism. Eur J Pharm Sci 2018; 124:127-136. [PMID: 30153524 DOI: 10.1016/j.ejps.2018.08.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/08/2018] [Accepted: 08/23/2018] [Indexed: 01/31/2023]
Abstract
Naphthalimide platinum(IV) antitumor complexes with potential dual DNA damage mechanism were designed, synthesized and evaluated for antitumor activities. The incorporation of DNA targeted naphthalimide group to the platinum(IV) system exerts much positive impacts on their antitumor efficacy. The mechanism research reveals that the title compounds could interact with dsDNA in platinum(IV) form via the naphthalimide group and cause DNA lesion. The further reduction would release platinum(II) complexes and naphthalimide acids which would induce remarkable secondary damage to DNA. Furthermore, the naphthalimide platinum(IV) compounds could combine with human serum albumin via electrostatic force, which are favourable for their storage and transport in blood. Moreover, the title compounds exhibit higher accumulation in tumor cells, and exert lower toxic and higher safe properties than oxaliplatin in vivo.
Collapse
Affiliation(s)
- Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China.
| | - Xiaoxiao Tan
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Zhifang Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Guoshuai Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Jinjian Wei
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, PR China
| | - Shiben Wang
- College of Pharmacy, Liaocheng University, Liaocheng 252059, PR China
| | - Dacheng Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China.
| | - Bingquan Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| |
Collapse
|
22
|
Novel curcumin analogue hybrids: Synthesis and anticancer activity. Eur J Med Chem 2018; 156:493-509. [PMID: 30025345 DOI: 10.1016/j.ejmech.2018.07.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 11/21/2022]
Abstract
In this study, twenty curcumin analogue hybrids as potential anticancer agents through regulation protein of TrxR were designed and synthesized. Results of anticancer activity showed that 5,7-dimethoxy-3-(3-(2-((1E, 4E)-3-oxo-5-(pyridin-2-yl)penta-1,4-dien-1- yl)phenoxy)propoxy)-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (compound 7d) could induce gastric cancer cells apoptosis by arresting cell cycle, break mitochondria function and inhibit TrxR activity. Meanwhile, western blot revealed that this compound could dramatically up expression of Bax/Bcl-2 ratio and high expression of TrxR oxidation. These results preliminarily show that the important role of ROS mediated activation of ASK1/MAPK signaling pathways by this title compound.
Collapse
|
23
|
Streciwilk W, Terenzi A, Cheng X, Hager L, Dabiri Y, Prochnow P, Bandow JE, Wölfl S, Keppler BK, Ott I. Fluorescent organometallic rhodium(I) and ruthenium(II) metallodrugs with 4-ethylthio-1,8-naphthalimide ligands: Antiproliferative effects, cellular uptake and DNA-interaction. Eur J Med Chem 2018; 156:148-161. [PMID: 30006161 DOI: 10.1016/j.ejmech.2018.06.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 12/28/2022]
Abstract
Fluorescent 4-ethylthio-1,8-naphthalimides containing rhodium(I) N-heterocyclic carbene (NHC) and ruthenium (II) NHC fragments were synthesised and evaluated for their antiproliferative effects, cellular uptake and DNA-binding activity. Both types of organometallics triggered ligand dependent efficient cytotoxic effects against tumor cells with the rhodium(I) NHC derivatives causing stronger effects than the ruthenium (II) NHC analogues. Antiproliferative effects could also be observed against several pathogenic Gram-positive bacterial strains, whereas the growth of Gram-negative bacteria was not substantially affected. Cellular uptake was confirmed by atomic absorption spectroscopy as well as by fluorescence microscopy indicating a general ligand dependent accumulation in the cells. An in-depth study on the interaction with DNA confirmed insertion of the naphthalimide moiety between the planar bases of B-DNA via an intercalation mechanism, as well as its stacking on top of the quartets of G-quadruplex structures. Furthermore, additional coordinative binding of the organometallic complexes to the model DNA base 9-ethylguanine could be detected. The studied compounds thus represent promising bioorganometallics featuring strong pharmacological effects in combination with excellent cellular imaging properties.
Collapse
Affiliation(s)
- Wojciech Streciwilk
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethoven Straße 55, 38106, Braunschweig, Germany
| | - Alessio Terenzi
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Straße 42, A-1090, Vienna, Austria
| | - Xinlai Cheng
- Department of Pharmacy and Molecular Biotechnology, Division of Pharmaceutical Biology, University of Heidelberg, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany
| | - Laura Hager
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Straße 42, A-1090, Vienna, Austria
| | - Yasamin Dabiri
- Department of Pharmacy and Molecular Biotechnology, Division of Pharmaceutical Biology, University of Heidelberg, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany
| | - Pascal Prochnow
- Applied Microbiology, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Julia Elisabeth Bandow
- Applied Microbiology, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Stefan Wölfl
- Department of Pharmacy and Molecular Biotechnology, Division of Pharmaceutical Biology, University of Heidelberg, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Straße 42, A-1090, Vienna, Austria
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethoven Straße 55, 38106, Braunschweig, Germany.
| |
Collapse
|
24
|
Zhang J, Zhang B, Li X, Han X, Liu R, Fang J. Small molecule inhibitors of mammalian thioredoxin reductase as potential anticancer agents: An update. Med Res Rev 2018; 39:5-39. [DOI: 10.1002/med.21507] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
- School of Pharmacy; Lanzhou University; Lanzhou China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Xiao Han
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Ruijuan Liu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
- School of Pharmacy; Lanzhou University; Lanzhou China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| |
Collapse
|
25
|
Antonenko T, Shpakovsky D, Vorobyov M, Gracheva Y, Kharitonashvili E, Dubova L, Shevtsova E, Tafeenko V, Aslanov L, Iksanova A, Shtyrlin Y, Milaeva E. Antioxidative vs
cytotoxic activities of organotin complexes bearing 2,6-di-tert
-butylphenol moieties. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4381] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- T.A. Antonenko
- Department of Medicinal Chemistry and Fine Organic Synthesis; Lomonosov Moscow State University; Moscow 119991 Russia
| | - D.B. Shpakovsky
- Department of Medicinal Chemistry and Fine Organic Synthesis; Lomonosov Moscow State University; Moscow 119991 Russia
| | - M.A. Vorobyov
- Department of Medicinal Chemistry and Fine Organic Synthesis; Lomonosov Moscow State University; Moscow 119991 Russia
| | - Yu.A. Gracheva
- Department of Medicinal Chemistry and Fine Organic Synthesis; Lomonosov Moscow State University; Moscow 119991 Russia
| | - E.V. Kharitonashvili
- Department of Medicinal Chemistry and Fine Organic Synthesis; Lomonosov Moscow State University; Moscow 119991 Russia
| | - L.G. Dubova
- Institute of Physiologically Active Compounds of Russian Academy of Sciences; Chernogolovka 142432 Russia
| | - E.F. Shevtsova
- Institute of Physiologically Active Compounds of Russian Academy of Sciences; Chernogolovka 142432 Russia
| | - V.A. Tafeenko
- Department of Medicinal Chemistry and Fine Organic Synthesis; Lomonosov Moscow State University; Moscow 119991 Russia
| | - L.A. Aslanov
- Department of Medicinal Chemistry and Fine Organic Synthesis; Lomonosov Moscow State University; Moscow 119991 Russia
| | - A.G. Iksanova
- Kazan (Volga Region) Federal University; Kazan 420008 Russia
| | - Yu.G. Shtyrlin
- Kazan (Volga Region) Federal University; Kazan 420008 Russia
| | - E.R. Milaeva
- Department of Medicinal Chemistry and Fine Organic Synthesis; Lomonosov Moscow State University; Moscow 119991 Russia
- Kazan (Volga Region) Federal University; Kazan 420008 Russia
| |
Collapse
|
26
|
Ji L, Yang S, Li S, Liu S, Tang S, Liu Z, Meng X, Yu S. A novel triazolonaphthalimide induces apoptosis and inhibits tumor growth by targeting DNA and DNA-associated processes. Oncotarget 2018; 8:37394-37408. [PMID: 28445124 PMCID: PMC5514917 DOI: 10.18632/oncotarget.16962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 03/27/2017] [Indexed: 12/28/2022] Open
Abstract
DNA and DNA-associated processes have been classes of the most important targets of chemotherapeutic drugs. As classic DNA intercalators and topoisomerase inhibitors, naphthalimides have been extensively investigated as potential anti-cancer drugs. We recently synthesized a novel series of triazolonaphthalimides with excellent anti-cancer activities. In the present study, one of the most potent triazolonaphthalimides, LSS-11, was investigated. LSS-11 bound to DNA in vitro and in cell mainly by minor groove binding and significantly increased the stability of DNA, which could be fundamental for the biological activities of LSS-11. In addition to inhibiting DNA topoisomerase II-catalyzed decatenation of knotted circulated DNA, LSS-11 dramatically inhibited DNA replication mediated by polymerase chain reaction and isothermal helicase-dependent amplification, as well as the expression of luciferase driven by a minimal TA promoter in cell. Furthermore, LSS-11 exhibited strong cytotoxicity in selected human colon cancer cell lines by inducing cell cycle arrest and apoptosis, which was accompanied by DNA damage response. Finally, LSS-11 potently inhibited the growth of S180 murine sarcoma and SW480 human colorectal cancer xenografts in vivo without significant major toxicities. These results suggest that LSS-11 deserves further research and development as a novel anti-cancer agent, and provided new understandings of mechanisms by which LSS-11 inhibited multiple DNA-associated processes and tumor growth.
Collapse
Affiliation(s)
- Liyan Ji
- Department of Chemical Biology, Peking University School of Pharmaceutical Sciences, Beijing 100191, China.,International Institute for Translational Chinese Medicine, Guangzhou Traditional Chinese Medicine University, Guangzhou 510006, China
| | - Simin Yang
- Department of Chemical Biology, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - Shasha Li
- Department of Chemical Biology, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - Shan Liu
- Department of Chemical Biology, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - Shunan Tang
- Department of Chemical Biology, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou Traditional Chinese Medicine University, Guangzhou 510006, China
| | - Xiangbao Meng
- Department of Chemical Biology, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - Siwang Yu
- Department of Chemical Biology, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| |
Collapse
|
27
|
Yan FF, Ma CL, Li QL, Zhang SL, Ru J, Cheng S, Zhang RF. Syntheses, structures and anti-tumor activity of four organotin(iv) dicarboxylates based on (1,3,4-thiadiazole-2,5-diyldithio)diacetic acid. NEW J CHEM 2018. [DOI: 10.1039/c8nj00431e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four novel organotin complexes, derived from flexible (1,3,4-thiadiazole-2,5-diyldithio)diacetic acid (H2tzda), have been synthesized and characterized by elemental analysis, FT-IR, NMR and X-ray crystallography.
Collapse
Affiliation(s)
- Fei-Fei Yan
- Institution of Functional Organic Molecules and Materials
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Chun-Lin Ma
- Institution of Functional Organic Molecules and Materials
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Qian-Li Li
- Institution of Functional Organic Molecules and Materials
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Shao-Liang Zhang
- Institution of Functional Organic Molecules and Materials
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Jing Ru
- Institution of Functional Organic Molecules and Materials
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Shuang Cheng
- School of Agriculture
- Liaocheng University
- Liaocheng
- China
| | - Ru-Fen Zhang
- Institution of Functional Organic Molecules and Materials
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| |
Collapse
|
28
|
Structural, electronic, and reactivity parameters of some triorganotin(IV) carboxylates: a DFT analysis. Struct Chem 2017. [DOI: 10.1007/s11224-017-1068-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Sharma A, Jain A, Saxena S. Diorganotin(IV) complexes of flexible N-protected amino acids and ketoximes: preparation and structure – antimicrobial activity relationship. CAN J CHEM 2016. [DOI: 10.1139/cjc-2015-0126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diorganotin(IV) complexes of flexible N-protected amino acids and ketoximes having the compositions Me2Sn [[Formula: see text]CHRCOO][ON = C6H10] (where R = –CH2CH(CH3)2, –CH(CH3)C2H5,–CH2C6H5, –CH(CH3)2) and Me2Sn[[Formula: see text]CHRCOO][ON=CR′R″] (where R = –CH2CH(CH3)2, –CH(CH3)C2H5, –CH2C6H5, R′ = R″ = CH3; R = –CH(CH3)C2H5, –CH2C6H5, –CH(CH3)2, R′ = CH3, R″ = C6H5) were prepared by the reaction of dimethyltin(IV) dichloride with sodium salts of flexible N-protected amino acids and ketoximes in 1:1:1 molar ratio in refluxing dry benzene. The synthesized complexes were characterized by elemental analyses and IR, multinuclear NMR (1H, 13C, and 119Sn), and mass spectral studies. Plausible structures of these complexes have been suggested on the basis of molecular weight measurements and spectral data. 119Sn NMR spectral data indicate the presence of pentacoordinated tin centres in these complexes. Some of the synthesized complexes and their ligands were also screened for their in vitro antimicrobial activity.
Collapse
Affiliation(s)
- Arti Sharma
- Department of Chemistry, University of Rajasthan, Jaipur 302004, India
- Department of Chemistry, University of Rajasthan, Jaipur 302004, India
| | - Asha Jain
- Department of Chemistry, University of Rajasthan, Jaipur 302004, India
- Department of Chemistry, University of Rajasthan, Jaipur 302004, India
| | - Sanjiv Saxena
- Department of Chemistry, University of Rajasthan, Jaipur 302004, India
- Department of Chemistry, University of Rajasthan, Jaipur 302004, India
| |
Collapse
|
30
|
Zhang YY, Zhang RF, Zhang SL, Cheng S, Li QL, Ma CL. Syntheses, structures and anti-tumor activity of four new organotin(iv) carboxylates based on 2-thienylselenoacetic acid. Dalton Trans 2016; 45:8412-21. [DOI: 10.1039/c6dt00532b] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
With the 2-thienylselenoacetic acid ligand, four new organotin complexes have been synthesized and characterized by X-ray crystallography, elemental analysis, FT-IR and NMR (1H,13C, and119Sn) spectroscopy.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Ru-Fen Zhang
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Shao-Liang Zhang
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Shuang Cheng
- School of Agriculture
- Liaocheng University
- Liaocheng
- China
| | - Qian-Li Li
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Chun-Lin Ma
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| |
Collapse
|
31
|
Oehninger L, Spreckelmeyer S, Holenya P, Meier SM, Can S, Alborzinia H, Schur J, Keppler BK, Wölfl S, Ott I. Rhodium(I) N-Heterocyclic Carbene Bioorganometallics as in Vitro Antiproliferative Agents with Distinct Effects on Cellular Signaling. J Med Chem 2015; 58:9591-600. [PMID: 26595649 DOI: 10.1021/acs.jmedchem.5b01159] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Organometallics with N-heterocyclic carbene (NHC) ligands have triggered major interest in inorganic medicinal chemistry. Complexes of the type Rh(I)(NHC)(COD)X (where X is Cl or I, COD is cyclooctadiene, and NHC is a dimethylbenzimidazolylidene) represent a promising type of new metallodrugs that have been explored by advanced biomedical methods only recently. In this work, we have synthesized and characterized several complexes of this type. As observed by mass spectrometry, these complexes remained stable over at least 3 h in aqueous solution, after which hydrolysis of the halido ligands occurred and release of the NHC ligand was evident. Effects against mitochondria and general cell tumor metabolism were noted at higher concentrations, whereas phosphorylation of HSP27, p38, ERK1/2, FAK, and p70S6K was induced substantially already at lower exposure levels. Regarding the antiproliferative activity in tumor cells, a clear preference for iodido over chlorido secondary ligands was noted, as well as effects of the substituents of the NHC ligand.
Collapse
Affiliation(s)
- Luciano Oehninger
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig , Beethovenstraße 55, D-38106 Braunschweig, Germany
| | - Sarah Spreckelmeyer
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig , Beethovenstraße 55, D-38106 Braunschweig, Germany
| | - Pavlo Holenya
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Samuel M Meier
- Department of Analytical Chemistry, University of Vienna , Waehringer Straße 38, 1090 Vienna, Austria
| | - Suzan Can
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Hamed Alborzinia
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Julia Schur
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig , Beethovenstraße 55, D-38106 Braunschweig, Germany
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, University of Vienna , Waehringer Straße 42, 1090 Vienna, Austria
| | - Stefan Wölfl
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig , Beethovenstraße 55, D-38106 Braunschweig, Germany
| |
Collapse
|
32
|
Gandin V, Fernandes AP. Metal- and Semimetal-Containing Inhibitors of Thioredoxin Reductase as Anticancer Agents. Molecules 2015; 20:12732-56. [PMID: 26184149 PMCID: PMC6331895 DOI: 10.3390/molecules200712732] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/18/2015] [Accepted: 07/08/2015] [Indexed: 11/17/2022] Open
Abstract
The mammalian thioredoxin reductases (TrxRs) are a family of selenium-containing pyridine nucleotide disulfide oxidoreductases playing a central role in cellular redox homeostasis and signaling pathways. Recently, these selenoproteins have emerged as promising therapeutic targets for anticancer drug development, often being overexpressed in tumor cells and contributing to drug resistance. Herein, we summarize the current knowledge on metal- and semimetal-containing molecules capable of hampering mammalian TrxRs, with an emphasis on compounds reported in the last decade.
Collapse
Affiliation(s)
- Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy.
| | - Aristi P Fernandes
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|