1
|
Kempson J, Zhao R, Pawluczyk J, Wang B, Zhang H, Hou X, Allen MP, Wu DR, Li P, Yip S, Smith A, Traeger SC, Huang S, Cutrone J, Mukherjee S, Sfouggatakis C, Poss M, Scola PM, Meanwell NA, Carter PH, Mathur A. Challenges with the Synthesis of a Macrocyclic Thioether Peptide: From Milligram to Multigram Using Solid Phase Peptide Synthesis (SPPS). J Org Chem 2024; 89:6639-6650. [PMID: 38651358 DOI: 10.1021/acs.joc.4c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
We describe an optimization and scale-up of the 45-membered macrocyclic thioether peptide BMS-986189 utilizing solid-phase peptide synthesis (SPPS). Improvements to linear peptide isolation, macrocyclization, and peptide purification were demonstrated to increase the throughput and purification of material on scale and enabled the synthesis and purification of >60 g of target peptide. Taken together, not only these improvements resulted in a 28-fold yield increase from the original SPPS approach, but also the generality of this newly developed SPPS purification sequence has found application in the synthesis and purification of other macrocyclic thioether peptides.
Collapse
Affiliation(s)
- James Kempson
- Research and Early Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Rulin Zhao
- Research and Early Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Joseph Pawluczyk
- Research and Early Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Bei Wang
- Research and Early Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Huiping Zhang
- Research and Early Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Xiaoping Hou
- Research and Early Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Martin P Allen
- Research and Early Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Dauh-Rurng Wu
- Research and Early Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Peng Li
- Research and Early Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Shiuhang Yip
- Research and Early Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Aaron Smith
- Research and Early Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Sarah C Traeger
- Research and Early Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Stella Huang
- Research and Early Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Jingfang Cutrone
- Research and Early Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Subha Mukherjee
- Chemical and Process Development, Bristol-Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Chris Sfouggatakis
- Chemical and Process Development, Bristol-Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Michael Poss
- Research and Early Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Paul M Scola
- Research and Early Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Nicholas A Meanwell
- Research and Early Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Percy H Carter
- Research and Early Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Arvind Mathur
- Research and Early Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
2
|
Murali R, Zhang H, Cai Z, Lam L, Greene M. Rational Design of Constrained Peptides as Protein Interface Inhibitors. Antibodies (Basel) 2021; 10:antib10030032. [PMID: 34449551 PMCID: PMC8395526 DOI: 10.3390/antib10030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/26/2022] Open
Abstract
The lack of progress in developing targeted therapeutics directed at protein–protein complexes has been due to the absence of well-defined ligand-binding pockets and the extensive intermolecular contacts at the protein–protein interface. Our laboratory has developed approaches to dissect protein–protein complexes focusing on the superfamilies of erbB and tumor necrosis factor (TNF) receptors by the combined use of structural biology and computational biology to facilitate small molecule development. We present a perspective on the development and application of peptide inhibitors as well as immunoadhesins to cell surface receptors performed in our laboratory.
Collapse
Affiliation(s)
- Ramachandran Murali
- Cedars-Sinai Medical Center, Department of Biomedical Science, Research Division of Immunology, Los Angeles, CA 90211, USA
- Correspondence: (R.M.); (M.G.)
| | - Hongtao Zhang
- Department of Pathology and Laboratory of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.Z.); (Z.C.); (L.L.)
| | - Zheng Cai
- Department of Pathology and Laboratory of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.Z.); (Z.C.); (L.L.)
| | - Lian Lam
- Department of Pathology and Laboratory of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.Z.); (Z.C.); (L.L.)
| | - Mark Greene
- Department of Pathology and Laboratory of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.Z.); (Z.C.); (L.L.)
- Correspondence: (R.M.); (M.G.)
| |
Collapse
|
3
|
Rubin GM, Ding Y. Recent advances in the biosynthesis of RiPPs from multicore-containing precursor peptides. J Ind Microbiol Biotechnol 2020; 47:659-674. [PMID: 32617877 PMCID: PMC7666021 DOI: 10.1007/s10295-020-02289-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) compose a large structurally and functionally diverse family of natural products. The biosynthesis system of RiPPs typically involves a precursor peptide comprising of a leader and core motif and nearby processing enzymes that recognize the leader and act on the core for producing modified peptides. Interest in RiPPs has increased substantially in recent years as improvements in genome mining techniques have dramatically improved access to these peptides and biochemical and engineering studies have supported their applications. A less understood, intriguing feature in the RiPPs biosynthesis is the precursor peptides of multiple RiPPs families produced by bacteria, fungi and plants carrying multiple core motifs, which we term "multicore". Herein, we present the prevalence of the multicore systems, their biosynthesis and engineering for applications.
Collapse
Affiliation(s)
- Garret M Rubin
- Department of Medicinal Chemistry, and Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, 32610, USA
| | - Yousong Ding
- Department of Medicinal Chemistry, and Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
4
|
Balaraman S, Ramalingam R. The structural and functional reliability of Circulins of
Chassalia parvifolia
for peptide therapeutic scaffolding. J Cell Biochem 2018; 119:3999-4008. [DOI: 10.1002/jcb.26557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/30/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Senthilkumar Balaraman
- Bioinformatics Division, School of Bio Sciences and TechnologyVellore Institute of Technology UniversityVelloreTamil NaduIndia
| | - Rajasekaran Ramalingam
- Bioinformatics Division, School of Bio Sciences and TechnologyVellore Institute of Technology UniversityVelloreTamil NaduIndia
| |
Collapse
|
6
|
Fan LQ, Du GX, Li PF, Li MW, Sun Y, Zhao LM. Improved breast cancer cell-specific intracellular drug delivery and therapeutic efficacy by coupling decoration with cell penetrating peptide and SP90 peptide. Biomed Pharmacother 2016; 84:1783-1791. [DOI: 10.1016/j.biopha.2016.10.102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/24/2016] [Accepted: 10/30/2016] [Indexed: 12/11/2022] Open
|
7
|
Abstract
Sickle-cell disease affects millions of individuals worldwide, but the global incidence is concentrated in Africa. The burden of sickle-cell disease is expected to continue to rise over the coming decades, adding to stress on the health infrastructures of many countries. Although the molecular cause of sickle-cell disease has been known for more than half a century, treatment options remain greatly limited. Allogeneic haemopoietic stem-cell transplantation is the only existing cure but is limited to specialised clinical centres and remains inaccessible for most patients. Induction of fetal haemoglobin production is a promising strategy for the treatment of sickle-cell disease. In this Series paper, we review scientific breakthroughs in epidemiology, genetics, and molecular biology that have brought reactivation of fetal haemoglobin to the forefront of sickle-cell disease research. Improved knowledge of the regulation of fetal haemoglobin production in human beings and the development of genome editing technology now support the design of innovative therapies for sickle-cell disease that are based on fetal haemoglobin.
Collapse
Affiliation(s)
- Guillaume Lettre
- Montreal Heart Institute, Montreal, QC, Canada; Université de Montréal, Montreal, QC, Canada.
| | - Daniel E Bauer
- Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School and Harvard Stem Cell Institute, Boston, MA, USA.
| |
Collapse
|
8
|
Modell AE, Blosser SL, Arora PS. Systematic Targeting of Protein-Protein Interactions. Trends Pharmacol Sci 2016; 37:702-713. [PMID: 27267699 DOI: 10.1016/j.tips.2016.05.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/14/2016] [Accepted: 05/16/2016] [Indexed: 12/22/2022]
Abstract
Over the past decade, protein-protein interactions (PPIs) have gone from being neglected as 'undruggable' to being considered attractive targets for the development of therapeutics. Recent advances in computational analysis, fragment-based screening, and molecular design have revealed promising strategies to address the basic molecular recognition challenge: how to target large protein surfaces with specificity. Several systematic and complementary workflows have been developed to yield successful inhibitors of PPIs. Here we review the major contemporary approaches utilized for the discovery of inhibitors and focus on a structure-based workflow, from the selection of a biological target to design.
Collapse
Affiliation(s)
- Ashley E Modell
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Sarah L Blosser
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Paramjit S Arora
- Department of Chemistry, New York University, New York, NY 10003, USA
| |
Collapse
|
10
|
Fouché M, Schäfer M, Berghausen J, Desrayaud S, Blatter M, Piéchon P, Dix I, Martin Garcia A, Roth HJ. Design and Development of a Cyclic Decapeptide Scaffold with Suitable Properties for Bioavailability and Oral Exposure. ChemMedChem 2016; 11:1048-59. [DOI: 10.1002/cmdc.201600082] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/09/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Marianne Fouché
- Global Discovery Chemistry/Macrocycles; Novartis Institute for BioMedical Research; Basel 4002 Switzerland
| | - Michael Schäfer
- Global Discovery Chemistry/CADD; Novartis Institute for BioMedical Research; Basel 4002 Switzerland
| | - Jörg Berghausen
- Metabolism and Pharmacokinetics; Novartis Institute for BioMedical Research; Basel 4002 Switzerland
| | - Sandrine Desrayaud
- Metabolism and Pharmacokinetics; Novartis Institute for BioMedical Research; Basel 4002 Switzerland
| | - Markus Blatter
- Global Discovery Chemistry/Analytics (NMR); Novartis Institute for BioMedical Research; Basel 4002 Switzerland
| | - Philippe Piéchon
- Global Discovery Chemistry/Analytics (Crystallography); Novartis Institute for BioMedical Research; Basel 4002 Switzerland
| | - Ina Dix
- Global Discovery Chemistry/Analytics (Crystallography); Novartis Institute for BioMedical Research; Basel 4002 Switzerland
| | - Aimar Martin Garcia
- The University of the Basque Country-Euskal Herriko Unibertsitatea; Campus de Leioa 48949 Leioa Spain
| | - Hans-Jörg Roth
- Global Discovery Chemistry/Macrocycles; Novartis Institute for BioMedical Research; Basel 4002 Switzerland
| |
Collapse
|
11
|
Fouché M, Schäfer M, Blatter M, Berghausen J, Desrayaud S, Roth HJ. Pharmacokinetic Studies around the Mono- and Difunctionalization of a Bioavailable Cyclic Decapeptide Scaffold. ChemMedChem 2016; 11:1060-8. [DOI: 10.1002/cmdc.201600083] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Marianne Fouché
- Global Discovery Chemistry/Macrocycles; Novartis Institute for BioMedical Research; Basel 4002 Switzerland
| | - Michael Schäfer
- Global Discovery Chemistry/CADD; Novartis Institute for BioMedical Research; Basel 4002 Switzerland
| | - Markus Blatter
- Global Discovery Chemistry/Analytics (NMR); Novartis Institute for BioMedical Research; Basel 4002 Switzerland
| | - Jörg Berghausen
- Metabolism and Pharmacokinetics; Novartis Institute for BioMedical Research; Basel 4002 Switzerland
| | - Sandrine Desrayaud
- Metabolism and Pharmacokinetics; Novartis Institute for BioMedical Research; Basel 4002 Switzerland
| | - Hans-Jörg Roth
- Global Discovery Chemistry/Macrocycles; Novartis Institute for BioMedical Research; Basel 4002 Switzerland
| |
Collapse
|