1
|
Abd-Rabo ZS, Serry AM, George RF. An overview of pyridazin-3(2 H)-one: a core for developing bioactive agents targeting cardiovascular diseases and cancer. Future Med Chem 2024; 16:1685-1703. [PMID: 39105606 PMCID: PMC11370926 DOI: 10.1080/17568919.2024.2379234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
Cardiovascular diseases (CVDs) and cancer are the top two leading causes of death globally. Vasodilators are commonly used to treat various CVDs. In cancer treatment, targeted anticancer agents have been developed to minimize side effects compared with traditional chemotherapy. Many hypertension patients are more prone to cancer, a case known as reverse cardio-oncology. This leads to the search for drugs with dual activity or repurposing strategy to discover new therapeutic uses for known drugs. Recently, medicinal chemists have shown great interest in synthesizing pyridazinone derivatives due to their significant biological activities in tackling these critical health challenges. This review will concentrate on pyridazin-3(2H)-one-containing compounds as vasodilators and anticancer agents, along with a brief overview of various methods for their synthesis.
Collapse
Affiliation(s)
- Zeinab S Abd-Rabo
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology & Information MTI, Cairo, 11571, Egypt
| | - Aya M Serry
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology & Information MTI, Cairo, 11571, Egypt
| | - Riham F George
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
2
|
Osman EO, Khalil NA, Magdy A, El-Dash Y. New pyrazole-pyridazine hybrids as selective COX-2 inhibitors: design, synthesis, molecular docking, in silico studies and investigation of their anti-inflammatory potential by evaluation of TNF-α, IL-6, PGE-2 and NO in LPS-induced RAW264.7 macrophages. RSC Med Chem 2024; 15:2692-2708. [PMID: 39149111 PMCID: PMC11324043 DOI: 10.1039/d4md00135d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/14/2024] [Indexed: 08/17/2024] Open
Abstract
Hybrid-based design has gained significant interest in the development of novel active substances with anti-inflammatory properties. In this study, two series of new pyrazole-pyridazine-based hybrids, 5a-f and 6a-f, were designed and synthesized. Molecules containing pyrazole and pyridazine pharmacophores in a single molecule, each with a unique mechanism of action and different pharmacological characteristics, are believed to exert higher biological activity. The cell viability of all compounds was evaluated using MTT assay in LPS-induced RAW264.7 macrophages. In vitro COX-1 and COX-2 inhibition assays were performed for the investigation of the anti-inflammatory activity of target compounds. Trimethoxy derivatives 5f and 6f were the most active candidates, demonstrating higher COX-2 inhibitory action than celecoxib, with IC50 values of 1.50 and 1.15 μM, respectively. Bromo derivative 6e demonstrated a COX-2 inhibitory activity comparable to celecoxib. Further, the ability of compounds 5f, 6e, and 6f to inhibit the generation of specific pro-inflammatory cytokines and mediators, including nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and prostaglandin-E2 (PGE-2), in RAW264.7 macrophages stimulated by LPS was also estimated. Compounds 5f and 6f demonstrated the most potent activity. Morover, according to the investigation using molecular modeling studies, derivatives 5f and 6f showed respectable binding affinity towards the COX-2 active site compared to the reference ligand. Moreover, the ADME parameters, physicochemical characteristics, pharmacokinetic characteristics, and l of the most potent compounds were also computed.
Collapse
Affiliation(s)
- Eman O Osman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University 33 Kasr El-Aini Street Cairo 11562 Egypt +20 2023635140 +20 2023639307
| | - Nadia A Khalil
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University 33 Kasr El-Aini Street Cairo 11562 Egypt +20 2023635140 +20 2023639307
| | - Alaa Magdy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University 33 Kasr El-Aini Street Cairo 11562 Egypt +20 2023635140 +20 2023639307
| | - Yara El-Dash
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University 33 Kasr El-Aini Street Cairo 11562 Egypt +20 2023635140 +20 2023639307
| |
Collapse
|
3
|
Osman EO, Khalil NA, Magdy A, El-Dash Y. Pyridazine and pyridazinone derivatives: Synthesis and in vitro investigation of their anti-inflammatory potential in LPS-induced RAW264.7 macrophages. Drug Dev Res 2024; 85:e22173. [PMID: 38515272 DOI: 10.1002/ddr.22173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 12/18/2023] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
New pyridazine and pyridazinone derivatives 3a-g, 4a-f, 6a, and 6b were designed and synthesized. Cell viability of all compounds was established based on the viability of lipopolysaccharide-induced RAW264.7 macrophage cells determined via the MTT assay. In vitro inhibition assays on human COX-1 and COX-2 enzymes were conducted to probe the newly synthesized compounds' anti-inflammatory activity. The half maximal inhibitory concentration values for the most active compounds, 3d, 3e, and 4e towards COX-2 were 0.425, 0.519, and 0.356 µM, respectively, in comparison with celecoxib. The newly synthesized compounds' ability to inhibit the production of certain proinflammatory cytokines, such as inducible nitric oxide synthase, tumor necrosis factor-α, interleukin-6, and prostaglandin-E2, was also estimated in lipopolysaccharide-induced macrophages (RAW264.7 cells). Compounds 3d and 3e were identified as the most potent cytokine production inhibitors. The results of molecular modeling studies suggested that these compounds were characterized by a reasonable binding affinity toward the active site of COX-2, when compared to a reference ligand. These results might be taken into consideration in further investigations into new anti-inflammatory agents.
Collapse
Affiliation(s)
- Eman O Osman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nadia A Khalil
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Alaa Magdy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Yara El-Dash
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
El Kalai F, Çınar EB, Sert Y, Alhaji Isa M, Lai CH, Buba F, Dege N, Benchat N, Karrouchi K. Synthesis, crystal structure, DFT, Hirshfeld surface analysis, energy framework, docking and molecular dynamic simulations of ( E)-4-(4-methylbenzyl)-6-styrylpyridazin-3( 2H)-one as anticancer agent. J Biomol Struct Dyn 2023; 41:11578-11597. [PMID: 36617972 DOI: 10.1080/07391102.2022.2164796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/29/2022] [Indexed: 01/10/2023]
Abstract
In this work, a novel crystal, (E)-4-(4-methylbenzyl)-6-styrylpyridazin-3(2H)-one (E-BSP) was synthesized via Knoevenagel condensation of benzaldehyde and (E)-6-(4-methoxystyryl)-4,5-dihydropyridazin-3(2H)-one. The molecular structure of E-BSP was confirmed by using FT-IR, 1H-NMR, 13C-NMR, UV-vis, ESI-MS, TGA/DTA thermal analyses and single crystal X-ray diffraction. The DFT/B3LYP methods with the 6-311++G(d,p) basis set were used to determine the vibrational modes over the optimized structure. Potential energy distribution (PED) and the VEDA 4 software were used to establish the theoretical mode assignments. The same approach was used to compute the energies of frontier molecular orbitals (HOMO-LUMO), global reactivity descriptors, and molecular electrostatic potential (MEP). Additionally, experimental and computed UV spectral parameters were determined in methanol and the obtained outputs were supported by FMO analysis. Molecular docking and molecular dynamics (MD) simulation analyses of the E-BSP against six proteins obtained from different cancer pathways were carried out. The proteins include; epidermal growth factor receptor (EGFR), Estrogen receptor (ERα), Mammalian target of rapamycin (mTOR), Progesterone receptor (PR) (Breast cancer), Human cyclin-dependent kinase 2 (CDK2) (Colorectal cancer), and Survivin (Squamous cell carcinoma/Non-small cell lung cancer). The results of the analyses showed that the compound had less binding energies ranging between -6.30 to -9.09 kcal/mol and formed stable complexes at the substrate-binding site of the proteins after the 50 ns MD simulation. Therefore, E-BSP was considered a potential inhibitor of different cancer pathways and should be used for the treatment of cancer after experimental validation and clinical trial.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fouad El Kalai
- Laboratory of Applied Chemistry and Environment (LCAE), Department of Chemistry, Faculty of Sciences, Mohammed I University, Oujda, Morocco
| | - Emine Berrin Çınar
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Turkey
| | - Yusuf Sert
- Sorgun Vocational School, Science and Art Faculty-Department of Physics, Yozgat Bozok University, Yozgat, Turkey
| | - Mustafa Alhaji Isa
- Department of Microbiology, Faculty of Sciences, University of Maiduguri, Maiduguri, Nigeria
| | - Chin-Hung Lai
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Fatimah Buba
- Department of Biochemistry, Faculty of Sciences, University of Maiduguri, Maiduguri, Nigeria
| | - Necmi Dege
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Turkey
| | - Noureddine Benchat
- Laboratory of Applied Chemistry and Environment (LCAE), Department of Chemistry, Faculty of Sciences, Mohammed I University, Oujda, Morocco
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
5
|
Costas-Lago MC, Vila N, Rahman A, Besada P, Rozas I, Brea J, Loza MI, González-Romero E, Terán C. Novel Pyridazin-3(2 H)-one-Based Guanidine Derivatives as Potential DNA Minor Groove Binders with Anticancer Activity. ACS Med Chem Lett 2022; 13:463-469. [PMID: 35300077 PMCID: PMC8919506 DOI: 10.1021/acsmedchemlett.1c00633] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/04/2022] [Indexed: 02/08/2023] Open
Abstract
Novel aryl guanidinium analogues containing the pyridazin-3(2H)-one core were proposed as minor groove binders (MGBs) with the support of molecular docking studies. The target dicationic or monocationic compounds, which show the guanidium group at different positions of the pyridazinone moiety, were synthesized using the corresponding silyl-protected pyridazinones as key intermediates. Pyridazinone scaffolds were converted into the adequate bromoalkyl derivatives, which by reaction with N,N'-di-Boc-protected guanidine followed by acid hydrolysis provided the hydrochloride salts 1-14 in good yields. The ability of new pyridazin-3(2H)-one-based guanidines as DNA binders was studied by means of DNA UV-thermal denaturation experiments. Their antiproliferative activity was also explored in three cancer cell lines (NCI-H460, A2780, and MCF-7). Compounds 1-4 with a bis-guanidinium structure display a weak DNA binding affinity and exhibit a reasonable cellular viability inhibition percentage in the three cancer cell lines studied.
Collapse
Affiliation(s)
- María Carmen Costas-Lago
- Departamento de Química Orgánica, Universidade de Vigo, 36310 Vigo, España
- Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, España
| | - Noemí Vila
- Departamento de Química Orgánica, Universidade de Vigo, 36310 Vigo, España
- Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, España
| | - Adeyemi Rahman
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Pedro Besada
- Departamento de Química Orgánica, Universidade de Vigo, 36310 Vigo, España
- Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, España
| | - Isabel Rozas
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - José Brea
- Drug Screening Platform/Biofarma Research Group, CIMUS Research Center. Departamento de Farmacoloxía, Farmacia e Tecnoloxía Farmacéutica. Universidade de Santiago de Compostela, 15782 Santiago de Compostela, España
| | - María Isabel Loza
- Drug Screening Platform/Biofarma Research Group, CIMUS Research Center. Departamento de Farmacoloxía, Farmacia e Tecnoloxía Farmacéutica. Universidade de Santiago de Compostela, 15782 Santiago de Compostela, España
| | - Elisa González-Romero
- Departamento de Química Analítica y Alimentaria, Universidade de Vigo, 36310 Vigo, España
| | - Carmen Terán
- Departamento de Química Orgánica, Universidade de Vigo, 36310 Vigo, España
- Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, España
| |
Collapse
|
6
|
Besada P, Viña D, Costas T, Costas-Lago MC, Vila N, Torres-Terán I, Sturlese M, Moro S, Terán C. Pyridazinones containing dithiocarbamoyl moieties as a new class of selective MAO-B inhibitors. Bioorg Chem 2021; 115:105203. [PMID: 34371375 DOI: 10.1016/j.bioorg.2021.105203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/24/2021] [Accepted: 07/19/2021] [Indexed: 12/31/2022]
Abstract
A novel class of potential MAO-B inhibitors was designed and synthesized in good yield by combining the pyridazinone moiety with the dithiocarbamate framework, two relevant pharmacophores for drug discovery. The biological results obtained for the different pyridazinone/dithiocarbamate hybrids (compounds 8-14) indicated that most of them reversibly and selectively inhibit the hMAO-B in vitro with IC50 values in the µM range and exhibit not significant cellular toxicity. The analogues 9a1, 11a1, 12a2, 12b1 and 12b2, which present the dithiocarbamate fragment derivatized with a piperidin-1-yl or pyrrolidin-1-yl group and placed at C3 or C4 of the diazine ring, were the most attractive compounds of these series. Molecular modeling studies were performed to analyze the binding mode to the enzyme and the structure activity relationships of the titled compounds, as well as to predict their drug-like properties.
Collapse
Affiliation(s)
- Pedro Besada
- Universidade de Vigo, Departamento de Química Orgánica, 36310 Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, Spain
| | - Dolores Viña
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS) Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Tamara Costas
- Universidade de Vigo, Departamento de Química Orgánica, 36310 Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, Spain
| | - María Carmen Costas-Lago
- Universidade de Vigo, Departamento de Química Orgánica, 36310 Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, Spain
| | - Noemí Vila
- Universidade de Vigo, Departamento de Química Orgánica, 36310 Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, Spain
| | - Iria Torres-Terán
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS) Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, 35131 Padova, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, 35131 Padova, Italy
| | - Carmen Terán
- Universidade de Vigo, Departamento de Química Orgánica, 36310 Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, Spain.
| |
Collapse
|
7
|
Kalai FE, Çınar EB, Lai CH, Daoui S, Chelfi T, Allali M, Dege N, Karrouchi K, Benchat N. Synthesis, spectroscopy, crystal structure, TGA/DTA study, DFT and molecular docking investigations of ( E)-4-(4-methylbenzyl)-6-styrylpyridazin-3( 2H)-one. J Mol Struct 2021; 1228:129435. [PMID: 33071353 PMCID: PMC7546970 DOI: 10.1016/j.molstruc.2020.129435] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 11/01/2022]
Abstract
In this study, we present the synthesis of novel pyridazin-3(2H)-one derivative namely (E)-4-(4-methylbenzyl)-6-styrylpyridazin-3(2H)-one (MBSP). The chemical structure of MBSP was characterized using spectroscopic techniques such as FT-IR, 1H NMR, 13C NMR, UV-Vis, ESI-MS, and finally, the structure was confirmed by single X-ray diffraction studies. The DFT calculation was performed to compare the gas-phase geometry of the title compound to the solid-phase structure of the title compound. Furthermore, a comparative study between theoretical UV-Vis, IR, 1H- and 13C NMR spectra of the studied compound and experimental ones have been carried out. The thermal behavior and stability of the compound were analyzed by using TGA and DTA techniques which revealed that the compound is thermostable up to its melting point. Finally, the in silico docking and ADME studies are performed to investigate whether MBSP is a potential therapeutic for COVID-19.
Collapse
Affiliation(s)
- Fouad El Kalai
- Laboratory of Applied Chemistry and Environment (LCAE), Department of Chemistry, Faculty of Sciences, Mohammed I University, Oujda 60000, Morocco
| | - Emine Berrin Çınar
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139, Samsun, Turkey
| | - Chin-Hung Lai
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung 40241, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, 402 Taichung, Taiwan
| | - Said Daoui
- Laboratory of Applied Chemistry and Environment (LCAE), Department of Chemistry, Faculty of Sciences, Mohammed I University, Oujda 60000, Morocco
| | - Tarik Chelfi
- Laboratory of Applied Chemistry and Environment (LCAE), Department of Chemistry, Faculty of Sciences, Mohammed I University, Oujda 60000, Morocco
| | - Mustapha Allali
- Institute of Nursing Professions and Health Techniques Fez, EL Ghassani Hospital, Fez 30000, Morocco
| | - Necmi Dege
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139, Samsun, Turkey
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Noureddine Benchat
- Laboratory of Applied Chemistry and Environment (LCAE), Department of Chemistry, Faculty of Sciences, Mohammed I University, Oujda 60000, Morocco
| |
Collapse
|
8
|
Synthesis, crystal structure, spectroscopic studies, NBO, AIM and SQMFF calculations of new pyridazinone derivative. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129213] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
Design, synthesis, biological evaluation and in silico studies of novel pyrrolo[3,4-d]pyridazinone derivatives with promising anti-inflammatory and antioxidant activity. Bioorg Chem 2020; 102:104035. [DOI: 10.1016/j.bioorg.2020.104035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 01/08/2023]
|
10
|
Sergeev PG, Nenajdenko VG. Recent advances in the chemistry of pyridazine — an important representative of six-membered nitrogen heterocycles. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4922] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Daoui S, Baydere C, Chelfi T, El Kalai F, Dege N, Karrouchi K, Benchat N. Polymorphism of 2-(5-benzyl-6-oxo-3-phenyl-1,6-di-hydro-pyridazin-1-yl)acetic acid with two monoclinic modifications: crystal structures and Hirshfeld surface analyses. Acta Crystallogr E Crystallogr Commun 2020; 76:432-437. [PMID: 32148889 PMCID: PMC7057381 DOI: 10.1107/s2056989020002406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/19/2020] [Indexed: 12/04/2022]
Abstract
Two polymorphs of the title compound, C19H16N2O3, were obtained from ethano-lic (polymorph I) and methano-lic solutions (polymorph II), respectively. Both polymorphs crystallize in the monoclinic system with four formula units per cell and a complete mol-ecule in the asymmetric unit. The main difference between the mol-ecules of (I) and (II) is the reversed position of the hy-droxy group of the carb-oxy-lic function. All other conformational features are found to be similar in the two mol-ecules. The different orientation of the OH group results in different hydrogen-bonding schemes in the crystal structures of (I) and (II). Whereas in (I) inter-molecular O-H⋯O hydrogen bonds with the pyridazinone carbonyl O atom as acceptor generate chains with a C(7) motif extending parallel to the b-axis direction, in the crystal of (II) pairs of inversion-related O-H⋯O hydrogen bonds with an R 2 2(8) ring motif between two carb-oxy-lic functions are found. The inter-molecular inter-actions in both crystal structures were analysed using Hirshfeld surface analysis and two-dimensional fingerprint plots.
Collapse
Affiliation(s)
- Said Daoui
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, Mohamed I University, 60000 Oujda, Morocco
| | - Cemile Baydere
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139-Samsun, Turkey
| | - Tarik Chelfi
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, Mohamed I University, 60000 Oujda, Morocco
| | - Fouad El Kalai
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, Mohamed I University, 60000 Oujda, Morocco
| | - Necmi Dege
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139-Samsun, Turkey
| | - Khalid Karrouchi
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, University, Mohammed V, Rabat, Morocco
| | - Noureddine Benchat
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, Mohamed I University, 60000 Oujda, Morocco
| |
Collapse
|
12
|
El Kalai F, Chelfi T, Benchat N, Hacht B, Bouklah M, Elaatiaoui A, Daoui S, Allali M, Ben Hadda T, Almalki F. New organic extractant based on pyridazinone scaffold compounds: Liquid-liquid extraction study and DFT calculations. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Novel compounds of hybrid structure pyridazinone–coumarin as potent inhibitors of platelet aggregation. Future Med Chem 2019; 11:2051-2062. [DOI: 10.4155/fmc-2018-0373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: The current limitations of antiplatelet therapy promote the search for new antithrombotic agents. Here we describe novel platelet aggregation inhibitors that combine pyridazinone and coumarin scaffolds in their structure. Results: The target compounds were synthesized in good yield from maleic anhydride, following a multistep strategy. The in vitro studies demonstrated significant antiplatelet activity in many of these compounds, with IC50 values in the low micromolar range, revealing that the activity was affected by the substitution pattern of the two selected cores. Additional studies point out their effect as inhibitors of glycoprotein (Gp) IIb/IIIa activation. Conclusion: This novel hybrid structure can be considered a good prototype for the development of potent platelet aggregation inhibitors.
Collapse
|
14
|
Qiu J, Lingna W, Jinghong H, Yongqing Z. Oral administration of leeches (Shuizhi): A review of the mechanisms of action on antiplatelet aggregation. JOURNAL OF ETHNOPHARMACOLOGY 2019; 232:103-109. [PMID: 30543914 DOI: 10.1016/j.jep.2018.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/08/2018] [Accepted: 12/08/2018] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The leeches (Shuizhi) comprise approximately 680 species distributed throughout the world. As recorded, they have been used as traditional Chinese medicines since the Eastern Han Dynasty, where they were claimed for promote blood circulation and eliminate blood stasis. And have been used to prevent CVDs by exerting multiple effects when orally administered, one of which is the significant inhibition of platelet aggregation. Its ability to exert this effect has been extensively investigated in vivo and in clinical practice. AIM OF STUDY The aim of this review is to summarize and analyse the antiplatelet aggregation mechanisms of leeches by oral administration, support their therapeutic potential and uncover opportunities for future research. MATERIALS AND METHODS Relevant studies from 1980 to 2018 on leeches and platelet aggregation were collected from ancient books, pharmacopoeia, reports and theses via library and internet databases (PubMed, CNKI, Google Scholar, Web of science, SciFinder, Springer and Elsevier). RESULTS Leeches is a unique animal medicine, they can prevent platelet aggregation by inhibiting ADP-induced platelet aggregation, increasing PGI2, decreasing TXA2 and Ca2+, and possibly recovering endothelial cell dysfunction. Leeches also exhibit a strong ability to activate eNOS, leading to an increase in platelet-derived NO. Additionally, the pteridine compounds obtained and identified from leeches have sulfur structure similar to those of other antiplatelet aggregation agents, such as ticlopidine, clopidogrel and ticagrelor. CONCLUSION The present review has focused on the related antiplatelet aggregation mechanisms, dipyridine compounds and toxicological information of leeches. According to the reported data, leeches have emerged as a good source of natural medicine for the treatment of antiplatelet aggregation agents and also make educated guesses for material basis of effects on antiplatelet aggregation. This review can help provide new insights for further studies in association with the development of effective antiplatelet aggregation drugs from natural medicines, especially leeches.
Collapse
Affiliation(s)
- Jiang Qiu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Wang Lingna
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Hu Jinghong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Zhang Yongqing
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
15
|
A new pyridazinone exhibits potent cytotoxicity on human cancer cells via apoptosis and poly-ubiquitinated protein accumulation. Cell Biol Toxicol 2019; 35:503-519. [PMID: 30825052 DOI: 10.1007/s10565-019-09466-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/13/2019] [Indexed: 01/12/2023]
Abstract
In the last 15 years, pyridazinone derivatives have acquired extensive attention due to their widespread biological activities and pharmacological applications. Pyridazinones are well known for their anti-microbial, anti-viral, anti-inflammatory, anti-cancer, and cardiovascular activities, among others. In this study, we evaluated the anti-cancer activity of a new pyridazinone derivative and propose it as a potential anti-neoplastic agent in acute promyelocytic leukemia cells. Pyr-1 cytotoxicity was assessed on several human cancer and two non-cancerous cell lines by the DNS assay. Pyr-1 demonstrated potent cytotoxicity against 22 human cancer cell lines, exhibiting the most favorable selective cytotoxicity on leukemia (CEM and HL-60), breast (MDA-MB-231 and MDA-MB-468), and lung (A-549) cancer cell lines, when compared with non-cancerous breast epithelial MCF-10A cells. Analyses of apoptosis/necrosis pathways, reactive oxygen species (ROS) production, mitochondria health, caspase-3 activation, and cell cycle profile were performed via flow cytometry. Both hmox-1 RNA and protein expression levels were evaluated by quantitative real-time PCR and Western blotting assays, respectively. Pyr-1 induced apoptosis in acute promyelocytic leukemia cells as confirmed by phosphatidylserine externalization, mitochondrial depolarization, caspase-3 activation, DNA fragmentation, and disrupted cell cycle progression. Additionally, it was determined that Pyr-1 generates oxidative and proteotoxic stress by provoking the accumulation of ROS, resulting in the overexpression of the stress-related hmox-1 mRNA transcripts and protein and a marked increase in poly-ubiquitinated proteins. Our data demonstrate that Pyr-1 induces cell death via the intrinsic apoptosis pathway by accumulating ROS and by impairing proteasome activity.
Collapse
|
16
|
Fedoseev SV, Belikov MY. Synthesis of 5-hydroxyfuran-2(5H)-one derivatives (microreview). Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2345-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Akhtar W, Shaquiquzzaman M, Akhter M, Verma G, Khan MF, Alam MM. The therapeutic journey of pyridazinone. Eur J Med Chem 2016; 123:256-281. [DOI: 10.1016/j.ejmech.2016.07.061] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/20/2016] [Accepted: 07/24/2016] [Indexed: 11/17/2022]
|
18
|
Shamala D, Shivashankar K. Synthesis of pyridazinones via molecular-iodine-mediated cleavage of 4-bromomethylcoumarin precursors. SYNTHETIC COMMUN 2016. [DOI: 10.1080/00397911.2016.1223310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Devadas Shamala
- P. G. Department of Chemistry, Central College Campus, Bangalore University, Bangalore, Karnataka, India
| | - Kalegowda Shivashankar
- P. G. Department of Chemistry, Central College Campus, Bangalore University, Bangalore, Karnataka, India
| |
Collapse
|
19
|
|
20
|
Vila N, Besada P, Viña D, Sturlese M, Moro S, Terán C. Synthesis, biological evaluation and molecular modeling studies of phthalazin-1(2H)-one derivatives as novel cholinesterase inhibitors. RSC Adv 2016. [DOI: 10.1039/c6ra03841g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of donepezil analogues based on phthalazin-1(2H)-one scaffold was studied as hChEIs. The biological results revealed that the structural modifications proposed significantly affected ChE inhibitory potency as well as selectivity AChE/BuChE.
Collapse
Affiliation(s)
- Noemí Vila
- Departamento de Química Orgánica
- Universidade de Vigo
- Vigo
- Spain
- Instituto de Investigación biomédica (IBI)
| | - Pedro Besada
- Departamento de Química Orgánica
- Universidade de Vigo
- Vigo
- Spain
- Instituto de Investigación biomédica (IBI)
| | - Dolores Viña
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS)
- Universidade de Santiago de Compostela
- Santiago de Compostela
- Spain
| | - Mattia Sturlese
- Molecular Modeling Section (MMS)
- Dipartimento di Scienze del Farmaco
- Università degli Studi di Padova
- Padova
- Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS)
- Dipartimento di Scienze del Farmaco
- Università degli Studi di Padova
- Padova
- Italy
| | - Carmen Terán
- Departamento de Química Orgánica
- Universidade de Vigo
- Vigo
- Spain
- Instituto de Investigación biomédica (IBI)
| |
Collapse
|