1
|
Joaquim AR, Lopes MS, Fortes IS, de Bem Gentz C, de Matos Czeczot A, Perelló MA, Roth CD, Vainstein MH, Basso LA, Bizarro CV, Machado P, de Andrade SF. Identification of antimycobacterial 8-hydroxyquinoline derivatives as in vitro enzymatic inhibitors of Mycobacterium tuberculosis enoyl-acyl carrier protein reductase. Bioorg Chem 2024; 151:107705. [PMID: 39137600 DOI: 10.1016/j.bioorg.2024.107705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
The increasing prevalence of drug-resistant Mycobacterium tuberculosis strains stimulates the discovery of new drug candidates. Among them are 8-hydroxyquinoline (8HQ) derivatives that exhibited antimicrobial properties. Unfortunately, there is a lack of data assessing possible targets for this class mainly against Mycobacterium tuberculosis enoyl-acyl carrier protein reductase (MtInhA), a validated target in this field. Thus, the main purpose of this study was to identify 8HQ derivatives that are active against M. tuberculosis and MtInhA. Initially, the screening against the microorganism of a small antimicrobial library and its new derivatives that possess some structural similarity with MtInhA inhibitors identified four 7-substituted-8HQ (series 5 - 5a, 5c, 5d and 5i) and four 5-substituted-8HQ active derivatives (series 7 - 7a, 7c, 7d and 7j). In general, the 7-substituted 8-HQs were more potent and, in the enzymatic assay, were able to inhibit MtInhA at low micromolar range. However, the 5-substituted-8-HQs that presented antimycobacterial activity were not able to inhibit MtInhA. These findings indicate the non-promiscuous nature of 8-HQ derivatives and emphasize the significance of selecting appropriate substituents to achieve in vitro enzyme inhibition. Finally, 7-substituted-8HQ series are promising new derivatives for structure-based drug design and further development.
Collapse
Affiliation(s)
- Angélica Rocha Joaquim
- Pharmaceutical Synthesis Group (PHARSG), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil; Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil.
| | - Marcela Silva Lopes
- Pharmaceutical Synthesis Group (PHARSG), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Isadora Serraglio Fortes
- Pharmaceutical Synthesis Group (PHARSG), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Caroline de Bem Gentz
- Pharmaceutical Synthesis Group (PHARSG), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil; Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - Alexia de Matos Czeczot
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil
| | - Marcia Alberton Perelló
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil
| | - Candida Deves Roth
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil
| | | | - Luiz Augusto Basso
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil
| | - Cristiano Valim Bizarro
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil
| | - Pablo Machado
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil.
| | - Saulo Fernandes de Andrade
- Pharmaceutical Synthesis Group (PHARSG), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil; Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil.
| |
Collapse
|
2
|
Yi J, Shi S, Fu L, Yang Z, Nie P, Lu A, Wu C, Deng Y, Hsieh C, Zeng X, Hou T, Cao D. OptADMET: a web-based tool for substructure modifications to improve ADMET properties of lead compounds. Nat Protoc 2024; 19:1105-1121. [PMID: 38263521 DOI: 10.1038/s41596-023-00942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 10/27/2023] [Indexed: 01/25/2024]
Abstract
Lead optimization is a crucial step in the drug discovery process, which aims to design potential drug candidates from biologically active hits. During lead optimization, active hits undergo modifications to improve their absorption, distribution, metabolism, excretion and toxicity (ADMET) profiles. Medicinal chemists face key questions regarding which compound(s) should be synthesized next and how to balance multiple ADMET properties. Reliable transformation rules from multiple experimental analyses are critical to improve this decision-making process. We developed OptADMET ( https://cadd.nscc-tj.cn/deploy/optadmet/ ), an integrated web-based platform that provides chemical transformation rules for 32 ADMET properties and leverages prior experimental data for lead optimization. The multiproperty transformation rule database contains a total of 41,779 validated transformation rules generated from the analysis of 177,191 reliable experimental datasets. Additionally, 146,450 rules were generated by analyzing 239,194 molecular data predictions. OptADMET provides the ADMET profiles of all optimized molecules from the queried molecule and enables the prediction of desirable substructure transformations and subsequent validation of drug candidates. OptADMET is based on matched molecular pairs analysis derived from synthetic chemistry, thus providing improved practicality over other methods. OptADMET is designed for use by both experimental and computational scientists.
Collapse
Affiliation(s)
- Jiacai Yi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- School of Computer Science, National University of Defense Technology, Changsha, China
| | - Shaohua Shi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Li Fu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- CarbonSilicon AI Technology Co., Ltd, Hangzhou, China
| | - Ziyi Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Pengfei Nie
- National Supercomputer Center in Tianjin, Tianjin, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Chengkun Wu
- School of Computer Science, National University of Defense Technology, Changsha, China
| | - Yafeng Deng
- CarbonSilicon AI Technology Co., Ltd, Hangzhou, China
| | - Changyu Hsieh
- CarbonSilicon AI Technology Co., Ltd, Hangzhou, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiangxiang Zeng
- Deparment of Computer Science, Hunan University, Changsha, China
| | - Tingjun Hou
- CarbonSilicon AI Technology Co., Ltd, Hangzhou, China.
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
3
|
Kozyra P, Pitucha M. Terminal Phenoxy Group as a Privileged Moiety of the Drug Scaffold-A Short Review of Most Recent Studies 2013-2022. Int J Mol Sci 2022; 23:8874. [PMID: 36012142 PMCID: PMC9408176 DOI: 10.3390/ijms23168874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
The terminal phenoxy group is a moiety of many drugs in use today. Numerous literature reports indicated its crucial importance for biological activity; thus, it is a privileged scaffold in medicinal chemistry. This review focuses on the latest achievements in the field of novel potential agents bearing a terminal phenoxy group in 2013-2022. The article provided information on neurological, anticancer, potential lymphoma agent, anti-HIV, antimicrobial, antiparasitic, analgesic, anti-diabetic as well as larvicidal, cholesterol esterase inhibitors, and antithrombotic or agonistic activities towards the adrenergic receptor. Additionally, for selected agents, the Structure-Activity-Relationship (SAR) is also discussed. Thus, this study may help the readers to better understand the nature of the phenoxy group, which will translate into rational drug design and the development of a more efficient drug. To the best of our knowledge, this is the first review devoted to an in-depth analysis of the various activities of compounds bearing terminal phenoxy moiety.
Collapse
Affiliation(s)
- Paweł Kozyra
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| | - Monika Pitucha
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
4
|
Identification of novel inhibitors for mycobacterial polyketide synthase 13 via in silico drug screening assisted by the parallel compound screening with genetic algorithm-based programs. J Antibiot (Tokyo) 2022; 75:552-558. [PMID: 35941150 DOI: 10.1038/s41429-022-00549-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 11/08/2022]
Abstract
Identifying small compounds capable of inhibiting Mycobacterium tuberculosis polyketide synthase 13 (Pks13), in charge of final step of mycolic acid biosynthesis, could lead to the development of a novel antituberculosis drug. This study screened for lead compounds capable of targeting M. tuberculosis Pks13 from a chemical library comprising 154,118 compounds through multiple in silico docking simulations. The parallel compound screening (PCS), conducted via two genetic algorithm-based programs was applied in the screening strategy. Out of seven experimentally validated compounds, four compounds showed inhibitory effects on the growth of the model mycobacteria (Mycobacterium smegmatis). Subsequent docking simulation of analogs of the promising leads with the assistance of PCS resulted in the identification of three additional compounds with potent antimycobacterial effects (compounds A1, A2, and A5). Further, molecular dynamics simulation predicted stable interaction between M. tuberculosis Pks13 active site and compound A2, which showed potent antimycobacterial activity comparable to that of isoniazid. The present study demonstrated the efficacy of in silico structure-based drug screening through PCS in antituberculosis drug discovery.
Collapse
|
5
|
Yang ZY, Fu L, Lu AP, Liu S, Hou TJ, Cao DS. Semi-automated workflow for molecular pair analysis and QSAR-assisted transformation space expansion. J Cheminform 2021; 13:86. [PMID: 34774096 PMCID: PMC8590336 DOI: 10.1186/s13321-021-00564-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/30/2021] [Indexed: 12/01/2022] Open
Abstract
In the process of drug discovery, the optimization of lead compounds has always been a challenge faced by pharmaceutical chemists. Matched molecular pair analysis (MMPA), a promising tool to efficiently extract and summarize the relationship between structural transformation and property change, is suitable for local structural optimization tasks. Especially, the integration of MMPA with QSAR modeling can further strengthen the utility of MMPA in molecular optimization navigation. In this study, a new semi-automated procedure based on KNIME was developed to support MMPA on both large- and small-scale datasets, including molecular preparation, QSAR model construction, applicability domain evaluation, and MMP calculation and application. Two examples covering regression and classification tasks were provided to gain a better understanding of the importance of MMPA, which has also shown the reliability and utility of this MMPA-by-QSAR pipeline. ![]()
Collapse
Affiliation(s)
- Zi-Yi Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, People's Republic of China.,Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China
| | - Li Fu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, People's Republic of China.,Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China
| | - Ai-Ping Lu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, 999077, SAR, People's Republic of China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Ting-Jun Hou
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.
| | - Dong-Sheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, People's Republic of China. .,Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China. .,Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, 999077, SAR, People's Republic of China.
| |
Collapse
|
6
|
Naveja JJ, Vogt M. Automatic Identification of Analogue Series from Large Compound Data Sets: Methods and Applications. Molecules 2021; 26:5291. [PMID: 34500724 PMCID: PMC8433811 DOI: 10.3390/molecules26175291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/21/2023] Open
Abstract
Analogue series play a key role in drug discovery. They arise naturally in lead optimization efforts where analogues are explored based on one or a few core structures. However, it is much harder to accurately identify and extract pairs or series of analogue molecules in large compound databases with no predefined core structures. This methodological review outlines the most common and recent methodological developments to automatically identify analogue series in large libraries. Initial approaches focused on using predefined rules to extract scaffold structures, such as the popular Bemis-Murcko scaffold. Later on, the matched molecular pair concept led to efficient algorithms to identify similar compounds sharing a common core structure by exploring many putative scaffolds for each compound. Further developments of these ideas yielded, on the one hand, approaches for hierarchical scaffold decomposition and, on the other hand, algorithms for the extraction of analogue series based on single-site modifications (so-called matched molecular series) by exploring potential scaffold structures based on systematic molecule fragmentation. Eventually, further development of these approaches resulted in methods for extracting analogue series defined by a single core structure with several substitution sites that allow convenient representations, such as R-group tables. These methods enable the efficient analysis of large data sets with hundreds of thousands or even millions of compounds and have spawned many related methodological developments.
Collapse
Affiliation(s)
- José J. Naveja
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Martin Vogt
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich Wilhelms-Universität, Friedrich-Hirzebruch-Allee 5-6, 53115 Bonn, Germany
| |
Collapse
|
7
|
Girase PS, Dhawan S, Kumar V, Shinde SR, Palkar MB, Karpoormath R. An appraisal of anti-mycobacterial activity with structure-activity relationship of piperazine and its analogues: A review. Eur J Med Chem 2020; 210:112967. [PMID: 33190957 DOI: 10.1016/j.ejmech.2020.112967] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 01/18/2023]
Abstract
Piperazine, is privileged six membered nitrogen containing heterocyclic ring also known as 1,4-Diazacyclohexane. Consequently, piperazine is a versatile medicinally important scaffold and is an essential core in numerous marketed drugs with diverse pharmacological activities. In recent years several potent molecules containing piperazine as an essential subunit of the structural frame have been reported, especially against Mycobacterium tuberculosis (MTB). Remarkably, a good number of these reported molecules also displayed potential activity against multidrug-resistant (MDR), and extremely drug-resistant (XDR) strains of MTB. In this review, we have made a concerted effort to retrace anti-mycobacterial compounds for the past five decades (1971-2019) specifically where piperazine has been used as a vital building block. This review will benefit medicinal chemists as it elaborates on the design, rationale and structure-activity relationship (SAR) of the reported potent piperazine based anti-TB molecules, which in turn will assist them in addressing the gaps, exploiting the reported strategies and developing safer, selective, and cost-effective anti-mycobacterial agents.
Collapse
Affiliation(s)
- Pankaj S Girase
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Sanjeev Dhawan
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Vishal Kumar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Suraj R Shinde
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Mahesh B Palkar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa; Department of Pharmaceutical Chemistry, K.L.E. College of Pharmacy (Constituent Unit of KAHER), Vidyanagar, Hubballi, 580031, Karnataka, India
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa.
| |
Collapse
|
8
|
Taira J, Umei T, Inoue K, Kitamura M, Berenger F, Sacchettini JC, Sakamoto H, Aoki S. Improvement of the novel inhibitor for Mycobacterium enoyl-acyl carrier protein reductase (InhA): a structure-activity relationship study of KES4 assisted by in silico structure-based drug screening. J Antibiot (Tokyo) 2020; 73:372-381. [PMID: 32152525 DOI: 10.1038/s41429-020-0293-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/09/2020] [Accepted: 02/10/2020] [Indexed: 11/09/2022]
Abstract
InhA or enoyl-acyl carrier protein reductase of Mycobacterium tuberculosis (mtInhA), which controls mycobacterial cell wall construction, has been targeted in the development of antituberculosis drugs. Previously, our in silico structure-based drug screening study identified a novel class of compounds (designated KES4), which is capable of inhibiting the enzymatic activity of mtInhA, as well as mycobacterial growth. The compounds are composed of four ring structures (A-D), and the MD simulation predicted specific interactions with mtInhA of the D-ring and methylene group between the B-ring and C-ring; however, there is still room for improvement in the A-ring structure. In this study, a structure-activity relationship study of the A-ring was attempted with the assistance of in silico docking simulations. In brief, the virtual chemical library of A-ring-modified KES4 was constructed and subjected to in silico docking simulation against mtInhA using the GOLD program. Among the selected candidates, we achieved synthesis of seven compounds, and the bioactivities (effects on InhA activity and mycobacterial growth and cytotoxicity) of the synthesized molecules were evaluated. Among the compounds tested, two candidates (compounds 3d and 3f) exhibited superior properties as mtInhA-targeted anti-infectives for mycobacteria than the lead compound KES4.
Collapse
Affiliation(s)
- Junichi Taira
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, 820-8502, Japan
| | - Tomohiro Umei
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, 820-8502, Japan
| | - Keitaro Inoue
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, 820-8502, Japan
| | - Mitsuru Kitamura
- Department of Applied Chemistry, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu, 804-8550, Japan
| | - Francois Berenger
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, 820-8502, Japan
| | - James C Sacchettini
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
| | - Hiroshi Sakamoto
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, 820-8502, Japan
| | - Shunsuke Aoki
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, 820-8502, Japan.
| |
Collapse
|
9
|
Discovery and development of novel rhodanine derivatives targeting enoyl-acyl carrier protein reductase. Bioorg Med Chem 2019; 27:1509-1516. [DOI: 10.1016/j.bmc.2019.02.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022]
|
10
|
AlMatar M, Makky EA, Var I, Kayar B, Köksal F. Novel compounds targeting InhA for TB therapy. Pharmacol Rep 2018; 70:217-226. [DOI: 10.1016/j.pharep.2017.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/26/2017] [Accepted: 09/12/2017] [Indexed: 02/07/2023]
|
11
|
Chávez-Villarreal KG, García A, Romo-Mancillas A, Garza-González E, de Torres NW, Miranda LD, Moo-Puc RE, Chale-Dzul J, del Rayo Camacho-Corona M. Synthesis, antimycobacterial evaluation, and QSAR analysis of meso-dihydroguaiaretic acid derivatives. Med Chem Res 2018. [DOI: 10.1007/s00044-017-2125-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
12
|
Vosátka R, Krátký M, Vinšová J. Triclosan and its derivatives as antimycobacterial active agents. Eur J Pharm Sci 2018; 114:318-331. [DOI: 10.1016/j.ejps.2017.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/06/2017] [Accepted: 12/17/2017] [Indexed: 12/16/2022]
|
13
|
Fekri R, Salehi M, Asadi A, Kubicki M. Spectroscopic studies, structural characterization and electrochemical studies of two cobalt (III) complexes with tridentate hydrazone Schiff base ligands: Evaluation of antibacterial activities, DNA‐binding, BSA interaction and molecular docking. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.4019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Roghayeh Fekri
- Department of Chemistry, College of ScienceSemnan University Semnan Iran
| | - Mehdi Salehi
- Department of Chemistry, College of ScienceSemnan University Semnan Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of ScienceUniversity of Mohaghegh Ardabili Ardabil Iran
| | - Maciej Kubicki
- Faculty of ChemistryAdam Mickiewicz University Umultowska 89b 61‐614 Poznan Poland
| |
Collapse
|
14
|
Lukac I, Zarnecka J, Griffen EJ, Dossetter AG, St-Gallay SA, Enoch SJ, Madden JC, Leach AG. Turbocharging Matched Molecular Pair Analysis: Optimizing the Identification and Analysis of Pairs. J Chem Inf Model 2017; 57:2424-2436. [DOI: 10.1021/acs.jcim.7b00335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Iva Lukac
- School
of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, U.K
| | - Joanna Zarnecka
- School
of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, U.K
| | | | | | | | - Steven J. Enoch
- School
of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, U.K
| | - Judith C. Madden
- School
of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, U.K
| | - Andrew G. Leach
- School
of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, U.K
- MedChemica Ltd., BioHub, Alderley
Park, Macclesfield SK10
4TG, U.K
| |
Collapse
|
15
|
Taira J, Morita K, Kawashima S, Umei T, Baba H, Maruoka T, Komatsu H, Sakamoto H, Sacchettini JC, Aoki S. Identification of a novel class of small compounds with anti-tuberculosis activity by in silico structure-based drug screening. J Antibiot (Tokyo) 2017; 70:1057-1064. [PMID: 28951604 DOI: 10.1038/ja.2017.106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 06/29/2017] [Accepted: 08/07/2017] [Indexed: 01/24/2023]
Abstract
The enzymes responsible for biotin biosynthesis in mycobacteria have been considered as potential drug targets owing to the important role in infection and cell survival that the biotin synthetic pathway plays in Mycobacterium tuberculosis. Among the enzymes that comprise mycobacterium biotin biosynthesis systems, 7,8-diaminopelargonic acid synthase (DAPAS) plays an essential role during the stationary phase in bacterial growth. In this study, compounds that inhibit mycobacterial DAPAS were screened in the virtual chemical library using an in silico structure-based drug screening (SBDS) technique, and the antimycobacterial activity of the selected compounds was validated experimentally. The DOCK-GOLD programs utilized by in silico SBDS facilitated the identification of a compound, referred to as KMD6, with potent inhibitory effects on the growth of model mycobacteria (M. smegmatis). The subsequent compound search, which was based on the structural features of KMD6, resulted in identification of three additional active compounds, designated as KMDs3, KMDs9 and KMDs10. The inhibitory effect of these compounds was comparable to that of isoniazid, which is a first-line antituberculosis drug. The high antimycobacterial activity of KMD6, KMDs9 and KMDs10 was maintained on the experiment with M. tuberculosis. Of the active compounds identified, KMDs9 would be a promising pharmacophore, owing to its long-term antimycobacterial effect and lack of cytotoxicity.
Collapse
Affiliation(s)
- Junichi Taira
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Japan
| | - Koji Morita
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Japan
| | - Shotaro Kawashima
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Japan
| | - Tomohiro Umei
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Japan
| | - Hiroki Baba
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Japan
| | - Taira Maruoka
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Japan
| | - Hideyuki Komatsu
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Japan
| | - Hiroshi Sakamoto
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Japan
| | - James C Sacchettini
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, USA
| | - Shunsuke Aoki
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Japan
| |
Collapse
|
16
|
Štular T, Lešnik S, Rožman K, Schink J, Zdouc M, Ghysels A, Liu F, Aldrich CC, Haupt VJ, Salentin S, Daminelli S, Schroeder M, Langer T, Gobec S, Janežič D, Konc J. Discovery of Mycobacterium tuberculosis InhA Inhibitors by Binding Sites Comparison and Ligands Prediction. J Med Chem 2016; 59:11069-11078. [PMID: 27936766 DOI: 10.1021/acs.jmedchem.6b01277] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Drug discovery is usually focused on a single protein target; in this process, existing compounds that bind to related proteins are often ignored. We describe ProBiS plugin, extension of our earlier ProBiS-ligands approach, which for a given protein structure allows prediction of its binding sites and, for each binding site, the ligands from similar binding sites in the Protein Data Bank. We developed a new database of precalculated binding site comparisons of about 290000 proteins to allow fast prediction of binding sites in existing proteins. The plugin enables advanced viewing of predicted binding sites, ligands' poses, and their interactions in three-dimensional graphics. Using the InhA query protein, an enoyl reductase enzyme in the Mycobacterium tuberculosis fatty acid biosynthesis pathway, we predicted its possible ligands and assessed their inhibitory activity experimentally. This resulted in three previously unrecognized inhibitors with novel scaffolds, demonstrating the plugin's utility in the early drug discovery process.
Collapse
Affiliation(s)
- Tanja Štular
- National Institute of Chemistry , Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Samo Lešnik
- National Institute of Chemistry , Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Kaja Rožman
- Faculty of Pharmacy, University of Ljubljana , Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Julia Schink
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska , Glagoljaška 8, SI-6000 Koper, Slovenia
| | - Mitja Zdouc
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska , Glagoljaška 8, SI-6000 Koper, Slovenia
| | - An Ghysels
- Center for Molecular Modeling, Ghent University , Technologiepark 903, 9052 Zwijnaarde, Belgium
| | - Feng Liu
- AAT Bioquest, Inc. , 520 Mercury Drive, Sunnyvale, California 94085, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota , 308 Harvard Street Southeast, Minneapolis, Minnesota 55455, United States
| | - V Joachim Haupt
- Biotechnology Center (BIOTEC), Technische Universität Dresden , 01307 Dresden, Germany
| | - Sebastian Salentin
- Biotechnology Center (BIOTEC), Technische Universität Dresden , 01307 Dresden, Germany
| | - Simone Daminelli
- Biotechnology Center (BIOTEC), Technische Universität Dresden , 01307 Dresden, Germany
| | - Michael Schroeder
- Biotechnology Center (BIOTEC), Technische Universität Dresden , 01307 Dresden, Germany
| | - Thierry Langer
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna , Althanstrasse 14, A-1090 Vienna, Austria
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana , Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Dušanka Janežič
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska , Glagoljaška 8, SI-6000 Koper, Slovenia
| | - Janez Konc
- National Institute of Chemistry , Hajdrihova 19, SI-1000 Ljubljana, Slovenia.,Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska , Glagoljaška 8, SI-6000 Koper, Slovenia
| |
Collapse
|
17
|
Inturi B, Pujar GV, Purohit MN. Recent Advances and Structural Features of Enoyl-ACP Reductase Inhibitors of Mycobacterium tuberculosis. Arch Pharm (Weinheim) 2016; 349:817-826. [PMID: 27775177 DOI: 10.1002/ardp.201600186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 12/31/2022]
Abstract
Mycobacterium tuberculosis enoyl-ACP reductase (InhA) has been validated as a promising target for antitubercular agents. Isoniazid (INH), the most prescribed drug to treat tuberculosis (TB), inhibits a NADH-dependent InhA that provides precursors of mycolic acids, which are components of the mycobacterial cell wall. It is a pro-drug that needs activation to form the inhibitory INH-NAD adduct by KatG coding for catalase-peroxidase. The INH resistance of M. tuberculosis is caused by mutations in KatG, which may lead to multidrug-resistant TB (MDR-TB). Hence, there is a need for new drugs that can combat MDR-TB. The rationale for the development of new drugs to combat MDR-TB strains is the design of InhA inhibitors that can bypass bioactivation by KatG. In the present review, special attention was paid to discuss the chemical nature and recent developments of direct InhA inhibitors. The InhA inhibitors reported here have significant inhibitory effects against Mtb InhA. The diphenyl ether derivatives have shown slow onset, a tight-binding mechanism, and high affinity at the InhA active site. However, some of the diphenyl ethers have significant in vitro efficacy, which fails to transform into in vivo efficacy. Among the InhA inhibitors, 4-hydroxy-2-pyridones have emerged as a new chemical class with significant InhA inhibitory activity and better pharmacokinetic parameters when compared to diphenyl ethers.
Collapse
Affiliation(s)
- Bharathkumar Inturi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Jagadguru Sri Shivarathreeshwara University, Mysore, Karnataka, India
| | - Gurubasavaraj V Pujar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Jagadguru Sri Shivarathreeshwara University, Mysore, Karnataka, India.
| | - Madhusudhan N Purohit
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Jagadguru Sri Shivarathreeshwara University, Mysore, Karnataka, India
| |
Collapse
|