1
|
Brown LD, Girgis AS, Patel S, Samir N, Said MF, Baidya ATK, Kumar R, Moore J, Khadanga A, Sakhuja R, Panda SS. Novel isatin conjugates endowed with analgesic and anti-inflammatory properties: design, synthesis and biological evaluation. Future Med Chem 2025; 17:59-73. [PMID: 39676545 DOI: 10.1080/17568919.2024.2437981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
AIMS This study aimed to develop novel molecular hybrid conjugates integrating isatin, rhodanine, and phthalimide pharmacophores to create effective analgesic and anti-inflammatory agents with improved safety profiles over existing treatments. MATERIALS & METHODS A series of hybrid conjugates (4a - l) were synthesized and evaluated through in vitro and in vivo biological assays. The most promising compound, 4c, underwent extensive pharmacological and toxicological evaluations. Molecular docking, molecular dynamics simulations, and 2D-QSAR studies were performed to elucidate the mechanism of action and validate the experimental findings. RESULTS Compound 4c exhibited potent analgesic and anti-inflammatory activity, effectively inhibiting COX-2 and pro-inflammatory cytokines (IL-6 and TNF-α). Its superior selectivity index (SI) was 1.11 compared to 0.67 for indomethacin. It demonstrated an ulcer index of 2.9 versus 10.23 for indomethacin, indicating reduced gastrointestinal toxicity. Molecular docking simulations revealed a strong binding affinity with COX-2 (-9.832 kcal/mol), and molecular dynamics confirmed the stability of the COX-2 complex. CONCLUSIONS Compound 4c emerged as a promising lead candidate for developing safer and more effective anti-inflammatory and analgesic agents. Its robust efficacy, safety profile, and computational validation highlight its potential for further optimization in therapeutic applications.
Collapse
Affiliation(s)
- LaVauria D Brown
- Department of Chemistry and Biochemistry, Augusta University, Augusta, GA, USA
| | - Adel S Girgis
- Department of Pesticide Chemistry, National Research Centre, Giza, Egypt
| | - Shruti Patel
- Department of Chemistry and Biochemistry, Augusta University, Augusta, GA, USA
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nermin Samir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mona F Said
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Anurag T K Baidya
- Department of Pharmaceutical Engineering & Technology Indian Institute of Technology, Banaras Hindu University, Varanasi, UP, India
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering & Technology Indian Institute of Technology, Banaras Hindu University, Varanasi, UP, India
| | - Jade Moore
- Department of Chemistry and Biochemistry, Augusta University, Augusta, GA, USA
| | | | - Rajeev Sakhuja
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, India
| | - Siva S Panda
- Department of Chemistry and Biochemistry, Augusta University, Augusta, GA, USA
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| |
Collapse
|
2
|
Pinto AF, Nunes JS, Severino Martins JE, Leal AC, Silva CCVC, da Silva AJFS, da Cruz Olímpio DS, da Silva ETN, Campos TA, Lima Leite AC. Thiazole, Isatin and Phthalimide Derivatives Tested in vivo against Cancer Models: A Literature Review of the Last Six Years. Curr Med Chem 2024; 31:2991-3032. [PMID: 37170994 DOI: 10.2174/0929867330666230426154055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Cancer is a disease characterized by the abnormal multiplication of cells and is the second leading cause of death in the world. The search for new effective and safe anticancer compounds is ongoing due to factors such as low selectivity, high toxicity, and multidrug resistance. Thus, heterocyclic compounds derived from isatin, thiazole and phthalimide that have achieved promising in vitro anticancer activity have been tested in vivo and in clinical trials. OBJECTIVE This review focused on the compilation of promising data from thiazole, isatin, and phthalimide derivatives, reported in the literature between 2015 and 2022, with in vivo anticancer activity and clinical trials. METHODS A bibliographic search was carried out in the PUBMED, MEDLINE, ELSEVIER, and CAPES PERIODIC databases, selecting relevant works for each pharmacophoric group with in vivo antitumor activity in the last 6 years. RESULTS In our study, 68 articles that fit the scope were selected and critically analyzed. These articles were organized considering the type of antitumor activity and their year of publication. Some compounds reported here demonstrated potent antitumor activity against several tumor types. CONCLUSION This review allowed us to highlight works that reported promising structures for the treatment of various cancer types and also demonstrated that the privileged structures thiazole, isatin and phthalimide are important in the design of new syntheses and molecular optimization of compounds with antitumor activity.
Collapse
Affiliation(s)
- Aline Ferreira Pinto
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Janine Siqueira Nunes
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - José Eduardo Severino Martins
- Regulatory Affairs Advisory, Empresa Brasileira de Hemoderivados e Biotecnologia (HEMOBRAS), CEP 51021-410, Recife, PE, Brazil
| | - Amanda Calazans Leal
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Carla Cauanny Vieira Costa Silva
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Anderson José Firmino Santos da Silva
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Daiane Santiago da Cruz Olímpio
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Elineide Tayse Noberto da Silva
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Thiers Araújo Campos
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Ana Cristina Lima Leite
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| |
Collapse
|
3
|
Napiórkowska M, Kurpios-Piec D, Kiernozek-Kalińska E, Leśniak A, Klawikowska M, Bujalska-Zadrożny M. New aryl-/heteroarylpiperazine derivatives of 1,7-dimethyl-8,9-diphenyl-4-azatricyclo[5.2.1.0 2,6]dec-8-ene-3,5,10-trione: Synthesis and preliminary studies of biological activities. Bioorg Med Chem 2023; 96:117518. [PMID: 37951135 DOI: 10.1016/j.bmc.2023.117518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
Compounds containing dicarboximide skeleton such as succinimides, maleimides, glutarimides, and phthalimides possess broad biological properties including anti-fungal, antibacterial, antidepressant, or analgesic activities. The piperazine ring is found in a wide range of molecules that have demonstrated a variety of biological functions such as anticancer action and 5-HT receptors agonist/antagonist activity. In the present study, we combined both structures to develop new antitumor agents, a series of piperazine derivatives of 1,7-dimethyl-8,9-diphenyl-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5,10-trione and evaluated their biological activity. The structures of all tested compounds were confirmed by 1H and 13C NMR and by ESI MS spectral analysis. Their cytotoxicity was assessed in vitro against eight human cancer cell lines, namely prostate (PC3), colon (HCT116, SW480, SW620), leukemia (K562), liver (HepG2), lung (A549) and breast (MDA-Mb-231) in contrast to normal HMEC-1 cell line, by using MTT and Trypan blue method. The tested compounds showed significant activity toward cancer cells. The most pronounced cytotoxic effect was observed in K562 and HCT116 with IC50 values below 10 μM for all studied compounds. Importantly, the most promising derivatives for each cancer cell line (IC50 < 10 μM) exerted a weaker cytotoxic effect toward normal HMEC-1 cells than cancer cells. The evaluation of proapoptotic and inhibitory effects on IL-6 release showed that K562 and HCT116 cells were more sensitive to studied compounds than other cancer cell lines. Furthermore, for all piperazine derivatives, the functional activities at the 5-HT1A, D2 receptors as well as their binding affinities at the 5-HT2A, H1 and M receptors, were determined. The current investigation was able to successfully design compounds with both serotoninergic and anticancer properties. It serves as a good starting point for a multimodal approach for the management of cancer and cancer-related symptoms.
Collapse
Affiliation(s)
- Mariola Napiórkowska
- Chair and Department of Biochemistry, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland.
| | - Dagmara Kurpios-Piec
- Chair and Department of Biochemistry, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Ewelina Kiernozek-Kalińska
- Department of Immunology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str., 02-096 Warsaw, Poland
| | - Anna Leśniak
- Department of Pharmacodynamics, Faculty of Pharmacy, Centre for Preclinical Research and Technology, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Małgorzata Klawikowska
- Department of Pharmacodynamics, Faculty of Pharmacy, Centre for Preclinical Research and Technology, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Magdalena Bujalska-Zadrożny
- Department of Pharmacodynamics, Faculty of Pharmacy, Centre for Preclinical Research and Technology, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| |
Collapse
|
4
|
Matore BW, Banjare P, Sarthi AS, Roy PP, Singh J. Phthalimides Represent a Promising Scaffold for Multi‐Targeted Anticancer Agents. ChemistrySelect 2023. [DOI: 10.1002/slct.202204851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Balaji Wamanrao Matore
- Department of Pharmacy Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur Chhattisgarh 495009 India
| | - Purusottam Banjare
- Department of Pharmacy Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur Chhattisgarh 495009 India
| | - Ajay Singh Sarthi
- Rungta College of Pharmaceutical Sciences and Research Raipur Chhattisgarh 492009 India
| | - Partha Pratim Roy
- Department of Pharmacy Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur Chhattisgarh 495009 India
| | - Jagadish Singh
- Department of Pharmacy Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur Chhattisgarh 495009 India
| |
Collapse
|
5
|
Matore BW, Roy PP, Singh J. Discovery of novel VEGFR2-TK inhibitors by phthalimide pharmacophore based virtual screening, molecular docking, MD simulation and DFT. J Biomol Struct Dyn 2023; 41:13056-13077. [PMID: 36775656 DOI: 10.1080/07391102.2023.2178510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/12/2023] [Indexed: 02/14/2023]
Abstract
Currently, numerous potent chemotherapeutic agents are available in the market but most of them show poor pharmacokinetics, lethal effects and drug resistance during their enduring use. The increased cancer cases, deaths and need of better treatment stimulates us to give newer lifesaving anticancer drugs. The phthalimide derivatives are structurally diverse and exert potential anticancer activity. In this regard, the 3D QSAR Pharmacophore model was developed and validated using fifty-eight phthalimide derivatives. The validation parameters corroborated the reliability and statistical robustness of CEASER Hypo 1. Three databases-NCI Open, Drug Bank, and Asinex were submitted to ADMET and drug-like filtering; 117893 drug-like compounds were mapped on CEASER Hypo 1; and 362 hits with IC50 <1 µM were discovered. These hits were docked on VEGFR2-TK, and in the form of results fifteen hits exhibited greater affinity than sorafenib. The top lead ASN 03206926 was subjected for MD simulation (100 ns) and RMSD, Rg, RMSF, number of hydrogen bonds, and SASA verified that the complex was stable, rigid and highly compact. Results demonstrated GLU885, PHE918, CYS919, LYS920, HIS1026, CYS1045, ASP1046 are the essential residues for favourable interactions. The binding free energy calculations support the affinity and stability revealed by docking and MD simulation. The DFT calculations, negative binding energy and lower HOMO-LUMO band gap revealed that the process is spontaneous and ASN 03206926 is very reactive. Following extensive analysis we suggest that the ASN 03206926 might be employed as a new VEGFR2-TK inhibitor for the treatment of breast and VEGFR2-TK associated cancers.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Balaji Wamanrao Matore
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Partha Pratim Roy
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Jagadish Singh
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| |
Collapse
|
6
|
Tabatabaei Rafiei LS, Asadi M, Hosseini FS, Amanlou A, Biglar M, Amanlou M. Synthesis and Evaluation of Anti-Epileptic Properties of New Phthalimide-4,5-Dihydrothiazole-Amide Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2020.1776345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Leila Sadat Tabatabaei Rafiei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Asadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Sadat Hosseini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Amanlou
- Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahmood Biglar
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Synthesis and biological activities of new phthalimide and thiazolidine derivatives. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02821-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Oliveira AR, Dos Santos FA, Ferreira LPDL, Pitta MGDR, Silva MVDO, Cardoso MVDO, Pinto AF, Marchand P, de Melo Rêgo MJB, Leite ACL. Synthesis, anticancer activity and mechanism of action of new phthalimido-1,3-thiazole derivatives. Chem Biol Interact 2021; 347:109597. [PMID: 34303695 DOI: 10.1016/j.cbi.2021.109597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/30/2021] [Accepted: 07/21/2021] [Indexed: 11/30/2022]
Abstract
In this work, 22 new compounds were obtained and evaluated for their cytotoxic activity on peripheral blood mononuclear cells (PBMC) and eight different tumor cell lines. All compounds displayed IC50 values above 100 μM when assayed against PBMCs. The cytotoxic assays in tumor cell lines revealed that sub-series of phthalimido-bis-1,3-thiazoles (5a-f) exhibited the best anti-tumor activity profile, presenting viability values below 59 %. As a result, the IC50 value was calculated for compounds 5a-f and 4c, and compounds 5b and 5e were selected for further assays due to their best IC50s. Considering the results presented by the sub-series 5a-f, the importance of the 1,3-thiazole ring in improving the anti-tumor activity was pointed out. Together, the results highlighted the anti-tumor activity of phthalimido-bis-1,3-thiazole derivatives.
Collapse
Affiliation(s)
- Arsênio Rodrigues Oliveira
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil; Université de Nantes, Cibles et Médicaments des Infections et Du Cancer, IICiMed, EA 1155, F-44000, Nantes, France
| | - Flaviana Alves Dos Santos
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Universidade Federal de Pernambuco (LINAT-UFPE), 50670-901, Recife, PE, Brazil
| | - Larissa Pelágia de Lima Ferreira
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil; Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Universidade Federal de Pernambuco (LINAT-UFPE), 50670-901, Recife, PE, Brazil
| | - Maira Galdino da Rocha Pitta
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Universidade Federal de Pernambuco (LINAT-UFPE), 50670-901, Recife, PE, Brazil
| | | | | | - Aline Ferreira Pinto
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | - Pascal Marchand
- Université de Nantes, Cibles et Médicaments des Infections et Du Cancer, IICiMed, EA 1155, F-44000, Nantes, France
| | - Moacyr Jesus Barreto de Melo Rêgo
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Universidade Federal de Pernambuco (LINAT-UFPE), 50670-901, Recife, PE, Brazil.
| | - Ana Cristina Lima Leite
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil.
| |
Collapse
|
9
|
Zhao X, Li B, Xu J, Tang Q, Cai Z, Jiang X. Visible-Light-Driven Redox Neutral Direct C-H Amination of Glycine Derivatives and Peptides with N-Acyloxyphthalimides. Chemistry 2021; 27:12540-12544. [PMID: 34164860 DOI: 10.1002/chem.202101982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Indexed: 12/12/2022]
Abstract
A room temperature, visible-light-promoted and redox neutral direct C-H amination of glycine and peptides has been firstly accomplished by using N-acyloxyphthalimide or -succinimide as nitrogen-radical precursor. The present strategy provides ways to introduce functionalities such as N-acyloxyphthalimide or -succinimide specifically to terminal glycine segment of peptides. Herein, mild conditions and high functional-group tolerance allow the preparation of non-natural α-amino acids and modification of corresponding peptides in this way.
Collapse
Affiliation(s)
- Xiaoyun Zhao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Bai Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jingyao Xu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Qinglin Tang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Zhengjun Cai
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Xianxing Jiang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
10
|
Barbarossa A, Iacopetta D, Sinicropi MS, Franchini C, Carocci A. Recent Advances in the Development of Thalidomide-Related Compounds as Anticancer Drugs. Curr Med Chem 2021; 29:19-40. [PMID: 34165402 DOI: 10.2174/0929867328666210623143526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Thalidomide is an old well-known drug that was first used as morning sickness relief in pregnant women before being withdrawn from the market due to its severe side effects on normal fetal development, However, over the last few decades, the interest in this old drug has been renewed because of its efficacy in several important disorders for instance, multiple myeloma, breast cancer, and HIV-related diseases due to its antiangiogenic and immunomodulatory properties. Unfortunately, even in these cases, many aftereffects as deep vein thrombosis, peripheral neuropathy, constipation, somnolence, pyrexia, pain, and teratogenicity have been reported, showing the requirement of careful and monitored use. For this reason, research efforts are geared toward the synthesis and optimization of new thalidomide analogues lacking in toxic effects to erase these limits and improve the pharmacological profile. AIMS This review aims to examine the state-of-the-art concerning the current studies on thalidomide and its analogues towards cancer diseases (with few hints regarding the antimicrobial activity), focusing the attention on the possible mechanisms of action involved and the lack of toxicity. CONCLUSION In the light of the collected data, thalidomide analogues and their ongoing optimization could lead, in the future, to the realization of a promising therapeutic alternative for cancer-fighting.
Collapse
Affiliation(s)
- Alexia Barbarossa
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Carlo Franchini
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Alessia Carocci
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|
11
|
New Succinimides with Potent Anticancer Activity: Synthesis, Activation of Stress Signaling Pathways and Characterization of Apoptosis in Leukemia and Cervical Cancer Cells. Int J Mol Sci 2021; 22:ijms22094318. [PMID: 33919224 PMCID: PMC8122671 DOI: 10.3390/ijms22094318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/09/2022] Open
Abstract
Based on previously identified dicarboximides with significant anticancer and immunomodulatory activities, a series of 26 new derivatives were designed and synthesized by the Diels-Alder reaction between appropriate diene and maleimide or hydroxymaleimide moieties. The resulting imides were functionalized with alkanolamine or alkylamine side chains and subsequently converted to their hydrochlorides. The structures of the obtained compounds were confirmed by 1H and 13C NMR and by ESI MS spectral analysis. Their cytotoxicity was evaluated in human leukemia (K562, MOLT4), cervical cancer (HeLa), and normal endothelial cells (HUVEC). The majority of derivatives exhibited high to moderate cytotoxicity and induced apoptosis in K562 cells. Microarray gene profiling demonstrated upregulation of proapoptotic genes involved in receptor-mediated and mitochondrial cell death pathways as well as antiapoptotic genes involved in NF-kB signaling. Selected dicarboximides activated JNK and p38 kinases in leukemia cells, suggesting that MAPKs may be involved in the regulation of apoptosis. The tested dicarboximides bind to DNA as assessed by a plasmid DNA cleavage protection assay. The selected dicarboximides offer new scaffolds for further development as anticancer drugs.
Collapse
|
12
|
Alimi Z, Hatamjafari F, Shiroudi A, Pourshamsian K, Oliaey AR. Synthesis and Spectral Characterization of New 2-(5-Aryl-4H-1,2,4-triazol-3-yl)-1H-isoindole-1,3(2H)-dione Derivatives. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021040199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Donarska B, Świtalska M, Płaziński W, Wietrzyk J, Łączkowski KZ. Effect of the dichloro-substitution on antiproliferative activity of phthalimide-thiazole derivatives. Rational design, synthesis, elastase, caspase 3/7, and EGFR tyrosine kinase activity and molecular modeling study. Bioorg Chem 2021; 110:104819. [PMID: 33752144 DOI: 10.1016/j.bioorg.2021.104819] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 02/20/2021] [Accepted: 03/06/2021] [Indexed: 02/06/2023]
Abstract
Phthalimide derivatives are a promising group of anticancer drugs, while aminothiazoles have great potential as elastase inhibitors. In these context fourteen phthalimido-thiazoles containing a dichloro-substituted phenyl ring with high antiproliferative activity against various cancer cell lines were designed and synthesized. Among the screened derivatives, compounds 5a-5e and 6a-6f showed high activity against human leukemia (MV4-11) cells with IC50 values in the range of 5.56-16.10 µM. The phthalimide-thiazoles 5a, 5b and 5d showed the highest selectivity index (SI) relative to MV4-11 with 11.92, 10.80 and 8.21 values, respectively. The antiproliferative activity of compounds 5e, 5f and 6e, 6f against human lung carcinoma (A549) cells is also very high, with IC50 values in the range of 6.69-10.41 µM. Lead compounds 6e and 6f showed elastase inhibition effect, with IC50 values about 32 μM with mixed mechanism of action. The molecular modeling studies showed that the binding energies calculated for all set of compounds are strongly correlated with the experimentally determined values of IC50. The lead compound 6e also increases almost 16 times caspase 3/7 activity in A549 cells compared to control. We have also demonstrated that compound 6f reduced EGFR tyrosine kinase levels in A549 cells by approximately 31%. These results clearly suggest that 3,4-dichloro-derivative 6e and 3,5-dichloro-derivative 6f could constitute lead dual-targeted anticancer drug candidates.
Collapse
Affiliation(s)
- Beata Donarska
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Marta Świtalska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Wojciech Płaziński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Cracow, Poland
| | - Joanna Wietrzyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Krzysztof Z Łączkowski
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland.
| |
Collapse
|
14
|
Anti-inflammatory activity of novel thiosemicarbazone compounds indole-based as COX inhibitors. Pharmacol Rep 2021; 73:907-925. [PMID: 33590474 DOI: 10.1007/s43440-021-00221-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND In this article, a series of 20 new thiosemicarbazone derivatives containing indole were synthesized and evaluated for their anti-inflammatory potential. METHODS The compounds were obtained through a synthetic route of only two steps, with yields that varied between 33.6 and 90.4%, and characterized by spectroscopic and spectrometric techniques. RESULTS An initial screening through the lymphoproliferation assay revealed that compounds LT76, LT81, and LT87 were able to inhibit lymphocyte proliferation, with CC50 of 0.56 ± 0.036, 0.9 ± 0.01 and 0.5 ± 0.07 µM, respectively, better results than indomethacin (CC50 > 12 µM). In addition, these compounds were able to suppress the in-vitro production of TNF-α and NO, in addition to stimulating the production of IL-4. Reinforcing in-vitro assays, the compounds were able to inhibit COX-2 similar to Celecoxib showing greater selectivity for this isoform (LT81 SI: 23.06 versus Celecoxib SI: 11.88). Animal studies showed that compounds LT76 (64.8% inhibition after 6 h), LT81 (89% inhibition after 6 h) and LT87 (100% inhibition after 4 h) were able to suppress edema in mice after inoculation carrageenan with greater potency than indomethacin, and immunohistochemistry revealed that the groups treated with LT76, LT81 and LT87 reduced the expression of COX-2, similar or better results when compared to indomethacin. Complementarily, in-silico studies have shown that these compounds have a good pharmacokinetic profile, for respecting the parameters of Lipinski and Veber, showing their good bioavailability. CONCLUSIONS These results demonstrate the potency of thiosemicarbazone derivatives containing indole and confirm their importance as scaffolds of molecules with notorious anti-inflammatory activity.
Collapse
|
15
|
Teixeira de Moraes Gomes PA, Veríssimo de Oliveira Cardoso M, Dos Santos IR, Amaro de Sousa F, da Conceição JM, Gouveia de Melo Silva V, Duarte D, Pereira R, Oliveira R, Nogueira F, Alves LC, Brayner FA, da Silva Santos AC, Rêgo Alves Pereira V, Lima Leite AC. Dual Parasiticidal Activities of Phthalimides: Synthesis and Biological Profile against Trypanosoma cruzi and Plasmodium falciparum. ChemMedChem 2020; 15:2164-2175. [PMID: 32813331 DOI: 10.1002/cmdc.202000331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/10/2020] [Indexed: 12/31/2022]
Abstract
Chagas disease and malaria are two neglected tropical diseases (NTDs) that prevail in tropical and subtropical regions in 149 countries. Chagas is also present in Europe, the US and Australia due to immigration of asymptomatic infected individuals. In the absence of an effective vaccine, the control of both diseases relies on chemotherapy. However, the emergence of parasite drug resistance is rendering currently available drugs obsolete. Hence, it is crucial to develop new molecules. Phthalimides, thiosemicarbazones, and 1,3-thiazoles have been used as scaffolds to obtain antiplasmodial and anti-Trypanosoma cruzi agents. Herein we present the synthesis of 24 phthalimido-thiosemicarbazones (3 a-x) and 14 phthalimido-thiazoles (4 a-n) and the corresponding biological activity against T. cruzi, Plasmodium falciparum, and cytotoxicity against mammalian cell lines. Some of these compounds showed potent inhibition of T. cruzi at low cytotoxic concentrations in RAW 264.7 cells. The most active compounds, 3 t (IC50 =3.60 μM), 3 h (IC50 =3.75 μM), and 4 j (IC50 =4.48 μM), were more active than the control drug benznidazole (IC50 =14.6 μM). Overall, the phthalimido-thiosemicarbazone derivatives were more potent than phthalimido-thiazole derivatives against T. cruzi. Flow cytometry assay data showed that compound 4 j was able to induce necrosis and apoptosis in trypomastigotes. Analysis by scanning electron microscopy showed that T. cruzi trypomastigote cells treated with compounds 3 h, 3 t, and 4 j at IC50 concentrations promoted changes in the shape, flagella, and surface of the parasite body similar to those observed in benznidazole-treated cells. The compounds with the highest antimalarial activity were the phthalimido-thiazoles 4 l (IC50 =1.2 μM), 4 m (IC50 =1.7 μM), and 4 n (IC50 =2.4 μM). Together, these data revealed that phthalimido derivatives possess a dual antiparasitic profile with potential effects against T. cruzi and lead-like characteristics.
Collapse
Affiliation(s)
| | - Marcos Veríssimo de Oliveira Cardoso
- Laboratório de Prospecção de Moléculas Bioativas Programa de Pós-Graduação em Ciência e Tecnologia Ambiental para o Semiárido, Universidade de Pernambuco, 56328-903, Petrolina, PE, Brazil
| | - Ignes Regina Dos Santos
- Departamento de Ciências Farmacêuticas Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-535, Recife, PE, Brazil
| | - Fabiano Amaro de Sousa
- Departamento de Ciências Farmacêuticas Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-535, Recife, PE, Brazil
| | - Juliana Maria da Conceição
- Departamento de Ciências Farmacêuticas Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-535, Recife, PE, Brazil
| | - Vanessa Gouveia de Melo Silva
- Departamento de Ciências Farmacêuticas Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-535, Recife, PE, Brazil
| | - Denise Duarte
- Unidade de Ensino e Investigação de Parasitologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, UNL, Rua da Junqueira no 100, 1349-008, Lisboa, Portugal
| | - Raquel Pereira
- Unidade de Ensino e Investigação de Parasitologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, UNL, Rua da Junqueira no 100, 1349-008, Lisboa, Portugal
| | - Rafael Oliveira
- Unidade de Ensino e Investigação de Parasitologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, UNL, Rua da Junqueira no 100, 1349-008, Lisboa, Portugal
| | - Fátima Nogueira
- Unidade de Ensino e Investigação de Parasitologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, UNL, Rua da Junqueira no 100, 1349-008, Lisboa, Portugal
| | - Luiz Carlos Alves
- Laboratório de imunopatologia Keizo Asami (LIKA), Campus UFPE, 50670-901, Recife PE, Brazil.,Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, 50670-420, Recife, PE, Brazil
| | - Fabio André Brayner
- Laboratório de imunopatologia Keizo Asami (LIKA), Campus UFPE, 50670-901, Recife PE, Brazil.,Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, 50670-420, Recife, PE, Brazil
| | | | | | - Ana Cristina Lima Leite
- Departamento de Ciências Farmacêuticas Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-535, Recife, PE, Brazil
| |
Collapse
|
16
|
El-Zahabi MA, Sakr H, El-Adl K, Zayed M, Abdelraheem AS, Eissa SI, Elkady H, Eissa IH. Design, synthesis, and biological evaluation of new challenging thalidomide analogs as potential anticancer immunomodulatory agents. Bioorg Chem 2020; 104:104218. [DOI: 10.1016/j.bioorg.2020.104218] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/04/2020] [Accepted: 08/22/2020] [Indexed: 01/06/2023]
|
17
|
Single Crystal X-Ray Structure for the Disordered Two Independent Molecules of Novel Isoflavone: Synthesis, Hirshfeld Surface Analysis, Inhibition and Docking Studies on IKKβ of 3-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-6,7-dimethoxy-4H-chromen-4-one. CRYSTALS 2020. [DOI: 10.3390/cryst10100911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The structure of the isoflavone compound, 3-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-6,7-dimethoxy-4H-chromen-4-one (5), was elucidated by 2D-NMR spectra, mass spectrum and single crystal X-ray crystallography. Compound 5, C19H16O6, was crystallized in the monoclinic space group P21/c with the cell parameters; a = 12.0654(5) Å, b =11.0666(5) Å, c = 23.9550(11) Å, β = 101.3757(16)°, V = 3135.7(2) Å3, and Z = 8. The asymmetric unit of compound 5 consists of two independent molecules 5I and 5II. Both molecules exhibit the disorder of each methylene group present in their 1,4-dioxane rings with relative occupancies of 0.599(10) (5I) and 0.812(9) (5II) for the major component A, and 0.401(10) (5I) and 0.188(9) (5II) for the minor component B, respectively. Each independent molecule revealed remarkable discrepancies in bond lengths, bond angles and dihedral angles in the disordered regions of 1,4-dioxane rings. The common feature of the molecules 5I and 5II are a chromone ring and a benzodioxin ring, which are more tilted towards each other in 5I than in 5II. An additional difference between the molecules is seen in the relative disposition of two methoxy substituents. In the crystal, the molecule 5II forms inversion dimers which are linked into chains along an a-axis direction by intermolecular C–H⋯O interactions. Additional C–H⋯O hydrogen bonds connected the molecules 5I and 5II each other to form a three-dimensional network. Hirshfeld surface analysis evaluated the relative intermolecular interactions which contribute to each crystal structure 5I and 5II. Western blot analysis demonstrated that compound 5 inhibited the TNFα-induced phosphorylation of IKKα/β, resulting in attenuating further downstream NF-κB signaling. A molecular docking study predicted the possible binding of compound 5 to the active site of IKKβ. Compound 5 showed an inhibitory effect on the clonogenicity of HCT116 human colon cancer cells. These results suggest that compound 5 can be used as a platform for the development of an anti-cancer agent targeting IKKα/β.
Collapse
|
18
|
Almeida ML, Oliveira MC, Pitta IR, Pitta MG. Advances in Synthesis and Medicinal Applications of Compounds Derived from Phthalimide. Curr Org Synth 2020; 17:252-270. [DOI: 10.2174/1570179417666200325124712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/20/2022]
Abstract
Phthalimide derivatives have been presenting several promising biological activities in the literature,
such as anti-inflammatory, analgesic, antitumor, antimicrobial and anticonvulsant. The most well-known and
studied phthalimide derivative (isoindoline-1,3-dione) is thalidomide: this compound initially presented
important sedative effects, but it is now known that thalidomide has effectiveness against a wide variety of
diseases, including inflammation and cancer. This review approaches some of the recent and efficient chemical
synthesis pathways to obtain phthalimide analogues and also presents a summary of the main biological
activities of these derivatives found in the literature. Therefore, this review describes the chemical and
therapeutic aspects of phthalimide derivatives.
Collapse
Affiliation(s)
- Marcel L. Almeida
- Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Bioscience Center, Federal University of Pernambuco, Recife, Brazil
| | - Maria C.V.A. Oliveira
- Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Bioscience Center, Federal University of Pernambuco, Recife, Brazil
| | - Ivan R. Pitta
- Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Bioscience Center, Federal University of Pernambuco, Recife, Brazil
| | - Marina G.R. Pitta
- Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Bioscience Center, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
19
|
New phthalimide-benzamide-1,2,3-triazole hybrids; design, synthesis, α-glucosidase inhibition assay, and docking study. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02522-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Thiazole-containing compounds as therapeutic targets for cancer therapy. Eur J Med Chem 2019; 188:112016. [PMID: 31926469 DOI: 10.1016/j.ejmech.2019.112016] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022]
Abstract
In the last few decades, considerable progress has been made in anticancer agents development, and several new anticancer agents of natural and synthetic origin have been produced. Among heterocyclic compounds, thiazole, a 5-membered unique heterocyclic motif containing sulphur and nitrogen atoms, serves as an essential core scaffold in several medicinally important compounds. Thiazole nucleus is a fundamental part of some clinically applied anticancer drugs, such as dasatinib, dabrafenib, ixabepilone, patellamide A, and epothilone. Recently, thiazole-containing compounds have been successfully developed as possible inhibitors of several biological targets, including enzyme-linked receptor(s) located on the cell membrane, (i.e., polymerase inhibitors) and the cell cycle (i.e., microtubular inhibitors). Moreover, these compounds have been proven to exhibit high effectiveness, potent anticancer activity, and less toxicity. This review presents current research on thiazoles and elucidates their biological importance in anticancer drug discovery. The findings may aid researchers in the rational design of more potent and bio-target specific anticancer drug molecules.
Collapse
|
21
|
Valizadeh S, Ghasemi Z, Shahrisa A, Notash B, Pirouzmand M, Kabiri R. Magnetic chitosan nanocomposite: As a novel catalyst for the synthesis of new derivatives of N-sulfonylamidine and N-sulfonylimidate. Carbohydr Polym 2019; 226:115310. [PMID: 31582060 DOI: 10.1016/j.carbpol.2019.115310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/27/2019] [Accepted: 09/09/2019] [Indexed: 10/26/2022]
Abstract
This study reports the synthesis and characterization of a highly active catalyst based on chelated copper iodide on magnetic chitosan-salicylaldehyde Schiff base. This catalyst was successfully used for the three-component reaction of N-propargylphthalimide, tosylazide, and NH or OH containing nucleophiles to access new classes of N-sulfonylamidine or N-sulfonylimidate derivatives. The products, which were constructed via an in situ generated sulfonyl keteneimine intermediate, were obtained in good to excellent yields. Short reaction times, easy separation and reusability without significant loss of catalyst activity were found to be the notable features of this synthetic protocol.
Collapse
Affiliation(s)
- Sepideh Valizadeh
- Department of Organic and Bioorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166614766, Iran
| | - Zarrin Ghasemi
- Department of Organic and Bioorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166614766, Iran.
| | - Aziz Shahrisa
- Department of Organic and Bioorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166614766, Iran
| | - Behrouz Notash
- Department of Inorganic Chemistry and Catalysis, Shahid Beheshti University, General Campus, Evin, Tehran 1983963113, Iran
| | - Mahtab Pirouzmand
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 516661476, Iran
| | - Roya Kabiri
- Laboratory of NMR, Faculty of Chemistry, Tabriz University, Tabriz, Iran
| |
Collapse
|
22
|
Batista CRA, Godin AM, Melo ISF, Coura GME, Matsui TC, Dutra MMGB, Brito AMS, Canhestro WG, Alves RJ, Araújo DP, de Fátima Â, Machado RR, Coelho MM. The phthalimide analogues N-3-hydroxypropylphthalimide and N-carboxymethyl-3-nitrophthalimide exhibit activity in experimental models of inflammatory and neuropathic pain. Pharmacol Rep 2019; 71:1177-1183. [PMID: 31669881 DOI: 10.1016/j.pharep.2019.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/18/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Phthalimide analogues devoid of the glutarimide moiety exhibit multiple biological activities, thus making them candidates for the treatment of patients with different diseases, including those with inflammatory and painful disorders. In the present study, the activities of five phthalimide analogues devoid of the glutarimide moiety (N-hydroxyphthalimide, N-hydroxymethylphthalimide, N-3-hydroxypropylphthalimide, N-carboxy-3-methylphthalimide, N-carboxymethyl-3-nitrophthalimide) were evaluated in experimental models of acute and chronic inflammatory and neuropathic pain. METHODS The phthalimide analogues were administered per os (po) in Swiss mice or Wistar rats. Nociceptive response induced by formaldehyde and mechanical allodynia induced by chronic constriction injury (CCI) of the sciatic nerve or intraplantar (ipl) injection of complete Freund's adjuvant (CFA) were used as experimental models of pain. RESULTS N-carboxymethyl-3-nitrophthalimide (700 mg/kg, -1 h) inhibited the second phase of the nociceptive response induced by the intraplantar injection of formaldehyde in mice. N-3-hidroxypropylphthalimide (546 mg/kg, -1 h) inhibited both phases of the nociceptive response induced by formaldehyde. Treatment of rats with N-carboxymethyl-3-nitrophthalimide (700 mg/kg) or N-3-hydroxypropylphthalimide (546 mg/kg) inhibited the mechanical allodynia induced by CCI of the sciatic nerve or ipl injection of CFA in rats. Intraperitoneal administration of the opioid antagonist naltrexone (10 mg/kg, -1.5 h) attenuated the antinociceptive activity of N-carboxymethyl-3-nitrophthalimide (700 mg/kg) in the model of nociceptive response induced by formaldehyde. CONCLUSIONS N-3-hydroxypropylphthalimide and N-carboxymethyl-3-nitrophthalimide, two phthalimide analogues devoid of the glutarimide moiety, exhibited activities in different experimental models of pain, including models of chronic inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Carla R A Batista
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Adriana M Godin
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ivo S F Melo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Giovanna M E Coura
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tamires C Matsui
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcela M G B Dutra
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Mercy S Brito
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Wagner G Canhestro
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo J Alves
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Débora P Araújo
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ângelo de Fátima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Renes R Machado
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Márcio M Coelho
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
23
|
Leite ACL, Espíndola JWP, de Oliveira Cardoso MV, de Oliveira Filho GB. Privileged Structures in the Design of Potential Drug Candidates for Neglected Diseases. Curr Med Chem 2019; 26:4323-4354. [DOI: 10.2174/0929867324666171023163752] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 11/22/2022]
Abstract
Background:
Privileged motifs are recurring in a wide range of biologically
active compounds that reach different pharmaceutical targets and pathways and could represent
a suitable start point to access potential candidates in the neglected diseases field.
The current therapies to treat these diseases are based in drugs that lack of the desired effectiveness,
affordable methods of synthesis and allow a way to emergence of resistant
strains. Due the lack of financial return, only few pharmaceutical companies have been
investing in research for new therapeutics for neglected diseases (ND).
Methods:
Based on the literature search from 2002 to 2016, we discuss how six privileged
motifs, focusing phthalimide, isatin, indole, thiosemicarbazone, thiazole, and thiazolidinone
are particularly recurrent in compounds active against some of neglected diseases.
Results:
It was observed that attention was paid particularly for Chagas disease, malaria,
tuberculosis, schistosomiasis, leishmaniasis, dengue, African sleeping sickness (Human
African Trypanosomiasis - HAT) and toxoplasmosis. It was possible to verify that, among
the ND, antitrypanosomal and antiplasmodial activities were between the most searched.
Besides, thiosemicarbazone moiety seems to be the most versatile and frequently explored
scaffold. As well, phthalimide, isatin, thiazole, and thiazolidone nucleus have been also
explored in the ND field.
Conclusion:
Some described compounds, appear to be promising drug candidates, while
others could represent a valuable inspiration in the research for new lead compounds.
Collapse
Affiliation(s)
- Ana Cristina Lima Leite
- Departamento de Ciencias Farmaceuticas, Centro de Ciencias da Saude, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | - José Wanderlan Pontes Espíndola
- Departamento de Ciencias Farmaceuticas, Centro de Ciencias da Saude, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | | | - Gevanio Bezerra de Oliveira Filho
- Departamento de Ciencias Farmaceuticas, Centro de Ciencias da Saude, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| |
Collapse
|
24
|
Othman IMM, Gad-Elkareem MAM, El-Naggar M, Nossier ES, Amr AEGE. Novel phthalimide based analogues: design, synthesis, biological evaluation, and molecular docking studies. J Enzyme Inhib Med Chem 2019; 34:1259-1270. [PMID: 31287341 PMCID: PMC6691772 DOI: 10.1080/14756366.2019.1637861] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pyrazolylphthalimide derivative 4 was synthesized and reacted with different reagents to afford the target compounds imidazopyrazoles 5-7, pyrazolopyrimidines 9, 12, 14 and pyrazolotriazines 16, 17 containing phthalimide moiety. The prepared compounds were established by different spectral data and elemental analyses. Additionally, all synthesized derivatives were screened for their antibacterial activity against four types of Gram + ve and Gram-ve strains, and for antifungal activity against two fungi micro-organisms by well diffusion method. Moreover, the antiproliferative activity was tested for all compounds against human liver (HepG-2) cell line in comparison with the reference vinblastine. Moreover, drug-likeness and toxicity risk parameters of the newly synthesized compounds were calculated using in silico studies. The data from structure-actvity relationship (SAR) analysis suggested that phthalimide derivative bearing 3-aminopyrazolone moiety, 4 illustrated the best antimicrobial and antitumor activities and might be considered as a lead for further optimization. To investigate the mechanism of the antimicrobial and anticancer activities, enzymatic assay and molecular docking studies were carried out on E. coli topoisomerase II DNA gyrase B and VEGFR-2 enzymes.
Collapse
Affiliation(s)
- Ismail M M Othman
- a Department of Chemistry, Faculty of Science , Al-Azhar University , Assiut , Egypt
| | - Mohamed A M Gad-Elkareem
- a Department of Chemistry, Faculty of Science , Al-Azhar University , Assiut , Egypt.,b Department of Chemistry, Faculty of Science and Arts of Baljurashi , Albaha University , Saudi Arabia
| | - Mohamed El-Naggar
- c Chemistry Department, Faculty of Sciences , University of Sharjah , Sharjah , UAE
| | - Eman S Nossier
- d Pharmaceutical Medicinal Chemistry Department, Faculty of Pharmacy (Girls) , Al-Azhar University , Cairo , Egypt
| | - Abd El-Galil E Amr
- e Pharmaceutical Chemistry Department, Drug Exploration & Development Chair (DEDC) , College of Pharmacy, King Saud University , Riyadh , Saudi Arabia.,f Applied Organic Chemistry Department , National Research Centre , Giza , Egypt
| |
Collapse
|
25
|
Kryshchyshyn A, Kaminskyy D, Karpenko O, Gzella A, Grellier P, Lesyk R. Thiazolidinone/thiazole based hybrids - New class of antitrypanosomal agents. Eur J Med Chem 2019; 174:292-308. [PMID: 31051403 DOI: 10.1016/j.ejmech.2019.04.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 12/22/2022]
Abstract
Different compounds have been investigated as potent drugs for trypanosomiasis treatment, but no new drug has been marketed in the past 3 decades. 4-Thiazolidinone/thiazole as privileged structures and thiosemicarbazides cyclic analogs are well known scaffolds in novel antitrypanosomal agent design. We present here the design and synthesis of new hybrid molecules bearing thiazolidinone/thiazole cores linked by the hydrazone group with various molecular fragments. Structure optimization led to compounds with phenyl-indole or phenyl-imidazo[2,1-b][1,3,4]thiadiazole moieties showing excellent antitrypanosomal activity towards Trypanosoma brucei brucei and Trypanosoma brucei gambiense. Biological study allowed identifying compounds with the submicromolar levels of IC50, good selectivity indexes and relatively low cytotoxicity upon human primary fibroblasts as well as low acute toxicity.
Collapse
Affiliation(s)
- Anna Kryshchyshyn
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | - Danylo Kaminskyy
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | | | - Andrzej Gzella
- Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, Poznan, 60-780, Poland
| | - Philippe Grellier
- National Museum of Natural History, UMR 7245 CNRS-MNHN, Team BAMEE, CP 52, 57 Rue Cuvier, 75005, Paris, France
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine; Department of Public Health, Dietetics and Lifestyle Disorders, Faculty of Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| |
Collapse
|
26
|
Santin JR, da Silva GF, Pastor MVD, Broering MF, Nunes R, Braga RC, de Sousa ITS, Stiz DS, da Silva KABS, Stoeberl LC, Corrêa R, Filho VC, Dos Santos CEM, Quintão NLM. Biological and Toxicological Evaluation of N-(4methyl-phenyl)-4-methylphthalimide on Bone Cancer in Mice. Anticancer Agents Med Chem 2019; 19:667-676. [PMID: 30734686 DOI: 10.2174/1871520619666190207130732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/19/2019] [Accepted: 01/26/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND It was recently demonstrated that the phthalimide N-(4-methyl-phenyl)-4- methylphthalimide (MPMPH-1) has important effects against acute and chronic pain in mice, with a mechanism of action correlated to adenylyl cyclase inhibition. Furthermore, it was also demonstrated that phthalimide derivatives presented antiproliferative and anti-tumor effects. Considering the literature data, the present study evaluated the effects of MPMPH-1 on breast cancer bone metastasis and correlated painful symptom, and provided additional toxicological information about the compound and its possible metabolites. METHODS In silico toxicological analysis was supported by in vitro and in vivo experiments to demonstrate the anti-tumor and anti-hypersensitivity effects of the compound. RESULTS The data obtained with the in silico toxicological analysis demonstrated that MPMPH-1 has mutagenic potential, with a low to moderate level of confidence. The mutagenicity potential was in vivo confirmed by micronucleus assay. MPMPH-1 treatments in the breast cancer bone metastasis model were able to prevent the osteoclastic resorption of bone matrix. Regarding cartilage, degradation was considerably reduced within the zoledronic acid group, while in MPMPH-1, chondrocyte multiplication was observed in random areas, suggesting bone regeneration. Additionally, the repeated treatment of mice with MPMPH-1 (10 mg/kg, i.p.), once a day for up to 36 days, significantly reduces the hypersensitivity in animals with breast cancer bone metastasis. CONCLUSION Together, the data herein obtained show that MPMPH-1 is relatively safe, and significantly control the cancer growth, allied to the reduction in bone reabsorption and stimulation of bone and cartilage regeneration. MPMPH-1 effects may be linked, at least in part, to the ability of the compound to interfere with adenylylcyclase pathway activation.
Collapse
Affiliation(s)
- José R Santin
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Rua Uruguai, 458, Itajaí/SC, CEP 88302-901, Brazil
| | - Gislaine F da Silva
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Rua Uruguai, 458, Itajaí/SC, CEP 88302-901, Brazil
| | - Maria V D Pastor
- Biomedicine Course, Universidade do Vale do Itajaí, Rua Uruguai, 458, Itajaí/SC, CEP 88302-901, Brazil
| | - Milena F Broering
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Rua Uruguai, 458, Itajaí/SC, CEP 88302-901, Brazil
| | - Roberta Nunes
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Rua Uruguai, 458, Itajaí/SC, CEP 88302-901, Brazil
| | | | | | - Dorimar S Stiz
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Rua Uruguai, 458, Itajaí/SC, CEP 88302-901, Brazil
| | - Kathryn A B S da Silva
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Rua Uruguai, 458, Itajaí/SC, CEP 88302-901, Brazil
| | - Luis C Stoeberl
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Rua Uruguai, 458, Itajaí/SC, CEP 88302-901, Brazil
| | - Rogério Corrêa
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Rua Uruguai, 458, Itajaí/SC, CEP 88302-901, Brazil
| | - Valdir C Filho
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Rua Uruguai, 458, Itajaí/SC, CEP 88302-901, Brazil
| | | | - Nara L M Quintão
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Rua Uruguai, 458, Itajaí/SC, CEP 88302-901, Brazil
| |
Collapse
|
27
|
Synthesis, molecular docking and biological evaluation of novel phthaloyl derivatives of 3-amino-3-aryl propionic acids as inhibitors of Trypanosoma cruzi trans-sialidase. Eur J Med Chem 2018; 156:252-268. [PMID: 30006170 DOI: 10.1016/j.ejmech.2018.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 11/22/2022]
Abstract
In the last two decades, trans-sialidase of Trypanosoma cruzi (TcTS) has been an important pharmacological target for developing new anti-Chagas agents. In a continuous effort to discover new potential TcTS inhibitors, 3-amino-3-arylpropionic acid derivatives (series A) and novel phthaloyl derivatives (series B, C and D) were synthesized and molecular docking, TcTS enzyme inhibition and determination of trypanocidal activity were carried out. From four series obtained, compound D-11 had the highest binding affinity value (-11.1 kcal/mol) compared to reference DANA (-7.8 kcal/mol), a natural ligand for TS enzyme. Furthermore, the 3D and 2D interactions analysis of compound D-11 showed a hydrogen bond, π-π stacking, π-anion, hydrophobic and Van der Waals forces with all important amino acid residues (Arg35, Arg245, Arg314, Tyr119, Trp312, Tyr342, Glu230 and Asp59) on the active site of TcTS. Additionally, D-11 showed the highest TcTS enzyme inhibition (86.9% ± 5) by high-performance ion exchange chromatography (HPAEC). Finally, D-11 showed better trypanocidal activity than the reference drugs nifurtimox and benznidazole with an equal % lysis (63 ± 4 and 65 ± 2 at 10 μg/mL) and LC50 value (52.70 ± 2.70 μM and 46.19 ± 2.36 μM) on NINOA and INC-5 strains, respectively. Therefore, D-11 is a small-molecule with potent TcTS inhibition and a strong trypanocidal effect that could help in the development of new anti-Chagas agents.
Collapse
|
28
|
de Oliveira SA, de Oliveira Barbosa M, Filho CALM, Oliveira AR, de Sousa FA, de Farias Santiago E, de Oliveira Filho GB, de Moraes Gomes PAT, da Conceição JM, Brayner FA, Alves LC, Leite ACL. Phthalimido-thiazole as privileged scaffold: activity against immature and adult worms of Schistosoma mansoni. Parasitol Res 2018; 117:2105-2115. [DOI: 10.1007/s00436-018-5897-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/25/2018] [Indexed: 12/26/2022]
|
29
|
da Silva EB, Oliveira E Silva DA, Oliveira AR, da Silva Mendes CH, Dos Santos TAR, da Silva AC, de Castro MCA, Ferreira RS, Moreira DRM, Cardoso MVDO, de Simone CA, Pereira VRA, Leite ACL. Desing and synthesis of potent anti-Trypanosoma cruzi agents new thiazoles derivatives which induce apoptotic parasite death. Eur J Med Chem 2017; 130:39-50. [PMID: 28242550 DOI: 10.1016/j.ejmech.2017.02.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 11/28/2022]
Abstract
Chagas disease, caused by the kinetoplastid protozoan parasite Trypanosoma cruzi, remains a relevant cause of illness and premature death and it is estimated that 6 million to 7 million people are infected worldwide. Although chemotherapy options are limited presenting serious problems, such as low efficacy and high toxicity. T. cruzi is susceptible to thiazoles, making this class of compounds appealing for drug development. Previously, thiazoles resulted in an increase in anti-T. cruzi activity in comparison to thiosemicarbazones. Here, we report the structural planning, synthesis and anti-T. cruzi evaluation of new thiazoles derivatives (3a-m and 4a-m), designed from molecular hybridization associated with non-classical bioisosterism. By varying substituents attached to the phenyl and thiazole rings, substituents were observed to retain, enhance or greatly increase their anti-T. cruzi activity, in comparison to the corresponding thiosemicarbazones. In most cases, electron-withdrawing substituents, such as bromine, 3,4-dichloro and nitro groups, greatly increased antiparasitic activity. Specifically, new thiazoles were identified that inhibit the epimastigote proliferation and were toxic for trypomastigotes without affecting macrophages viability. These compounds were also evaluated against cruzain. However, inhibition of this enzyme was not observed, suggesting that the compounds work through another mechanism. In addition, examination of T. cruzi cell death showed that these molecules induce apoptosis. In conclusion, except for compounds 3h and 3k, all thiazoles derivatives evaluated exhibited higher cytotoxic activity against the trypomastigote forms than the reference medicament benznidazole, without affecting macrophages viability. Compounds 4d and 4k were highlights, CC50 = 1.2 e 1.6 μM, respectively. Mechanistically, these compounds do not inhibit the cruzain, but induce T. cruzi cell death by an apoptotic process, being considered a good starting point for the development of new anti-Chagas drug candidates.
Collapse
Affiliation(s)
- Elany Barbosa da Silva
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil; Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | | | - Arsênio Rodrigues Oliveira
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | - Carlos Henrique da Silva Mendes
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | | | | | - Maria Carolina Acioly de Castro
- Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, 50670-420, Recife, PE, Brazil; Laboratório de Parasitologia, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, 55608-680, Vitória de Santo Antão, PE, Brazil
| | - Rafaela Salgado Ferreira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | | | | | - Carlos Alberto de Simone
- Departamento de Física e Informática, Instituto de Física, Universidade de São Paulo, CEP 13560-970, São Carlos, SP, Brazil
| | | | - Ana Cristina Lima Leite
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil.
| |
Collapse
|
30
|
Pacca CC, Marques RE, Espindola JWP, Filho GBOO, Leite ACL, Teixeira MM, Nogueira ML. Thiosemicarbazones and Phthalyl-Thiazoles compounds exert antiviral activity against yellow fever virus and Saint Louis encephalitis virus. Biomed Pharmacother 2017; 87:381-387. [PMID: 28068627 DOI: 10.1016/j.biopha.2016.12.112] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/23/2016] [Accepted: 12/26/2016] [Indexed: 11/24/2022] Open
Abstract
Arboviruses, arthropod-borneviruses, are frequency associated to human outbreak and represent a serious health problem. The genus Flavivirus, such as Yellow Fever Virus (YFV) and Saint Louis Encephalitis Virus (SLEV), are important pathogens with high morbidity and mortality worldwide. In Brazil, YFV is maintained in sylvatic cycle, but many cases are notified annually, despite the efficiency of vaccine. SLEV causes an acute encephalitis and is widely distributed in the Americas. There is no specific antiviral drugs for these viruses, only supporting treatment that can alleviate symptoms and prevent complications. Here, we evaluated the potential anti-YFV and SLEV activity of a series of thiosemicarbazones and phthalyl-thiazoles. Plaque reduction assay, flow cytometry, immunofluorescence and cellular viability were used to test the compounds in vitro. Treated cells showed efficient inhibition of the viral replication at concentrations that presented minimal toxicity to cells. The assays showed that phthalyl-thiazole and phenoxymethyl-thiosemicarbazone reduced 60% of YFV replication and 75% of SLEV replication.
Collapse
Affiliation(s)
- Carolina Colombelli Pacca
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitarias, Faculdade de Medicina de São José do Rio Preto - FAMERP, 15090-000, São José do Rio Preto, SP, Brazil; Faceres Medical School, 15090-305, São José do Rio Preto, SP, Brazil
| | - Rafael Elias Marques
- Laboratório de Imunofarmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - José Wanderlan P Espindola
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-521, Recife, PE, Brazil
| | - Gevânio B O Oliveira Filho
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-521, Recife, PE, Brazil
| | - Ana Cristina Lima Leite
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-521, Recife, PE, Brazil
| | - Mauro Martins Teixeira
- Laboratório de Imunofarmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Mauricio L Nogueira
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitarias, Faculdade de Medicina de São José do Rio Preto - FAMERP, 15090-000, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
31
|
Abstract
Thalidomide and its derivatives are currently under investigation for their antiangiogenic, immunomodulative, and anticancer properties. Current methods used to synthesize these compounds involve multiple steps and extensive workup procedures. Described herein is an efficient microwave irradiation green synthesis method that allows preparation of thalidomide and its analogs in a one-pot multicomponent synthesis system. The multicomponent synthesis system developed involves an array of cyclic anhydrides, glutamic acid, and ammonium chloride in the presence of catalytic amounts of 4-N,N-dimethylaminopyridine (DMAP) to produce thalidomide and structurally related compounds within minutes in good isolated yields.
Collapse
|
32
|
Gomes PATDM, Oliveira AR, Cardoso MVDO, Santiago EDF, Barbosa MDO, de Siqueira LRP, Moreira DRM, Bastos TM, Brayner FA, Soares MBP, Mendes APDO, de Castro MCAB, Pereira VRA, Leite ACL. Phthalimido-thiazoles as building blocks and their effects on the growth and morphology of Trypanosoma cruzi. Eur J Med Chem 2016; 111:46-57. [DOI: 10.1016/j.ejmech.2016.01.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/21/2015] [Accepted: 01/09/2016] [Indexed: 11/28/2022]
|