1
|
Gottlieb N, Li TY, Young AH, Stokes PRA. The 5-HT7 receptor system as a treatment target for mood and anxiety disorders: A systematic review. J Psychopharmacol 2023; 37:1167-1181. [PMID: 37994803 PMCID: PMC10714716 DOI: 10.1177/02698811231211228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
BACKGROUND Preclinical animal and preliminary human studies indicate that 5-HT7 antagonists have the potential as a new treatment approach for mood and anxiety disorders. In this systematic review, we aimed to review the relationship between the 5-HT7 receptor system and mood and anxiety disorders, and to explore the pharmacology and therapeutic potential of medications that target the 5-HT7 receptor for their treatment. METHODS Medline, Cochrane Library, EMBASE, PsycINFO databases, the National Institute of Health website Clinicaltrials.gov, controlled-trials.com, and relevant grey literature were used to search for original research articles, and reference lists of included articles were then hand searched. RESULTS Sixty-four studies were included in the review: 52 animal studies and 12 human studies. Studies used a variety of preclinical paradigms and questionnaires to assess change in mood, and few studies examined sleep or cognition. Forty-four out of 47 (44/47) preclinical 5-HT7 modulation studies identified potential antidepressant effects and 20/23 studies identified potential anxiolytic effects. In clinical studies, 5/7 identified potential antidepressant effects in major depressive disorder, 1/2 identified potential anxiolytic effects in generalized anxiety disorder, and 3/3 identified potential antidepressant effects in bipolar disorders. CONCLUSION While there is some evidence that the 5-HT7 receptor system may be a potential target for treating mood and anxiety disorders, many agents included in the review also bind to other receptors. Further research is needed using drugs that bind specifically to 5-HT7 receptors to examine treatment proof of concept further.
Collapse
Affiliation(s)
- Natalie Gottlieb
- Natalie Gottlieb, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK.
| | | | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Paul RA Stokes
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
2
|
Zagórska A, Partyka A, Jastrzębska-Więsek M, Czopek A, Fryc M, Siwek A, Głuch-Lutwin M, Mordyl B, Maślanka A, Jaromin A, Kurczab R. Synthesis, computational simulations and biological evaluation of new dual 5HT 1A/5HT 7 receptor ligands based on purine-2,6-dione scaffold. Bioorg Chem 2023; 139:106737. [PMID: 37482048 DOI: 10.1016/j.bioorg.2023.106737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
The new dual 5HT1A/5HT7 receptor ligands were designed based on the purine-2,6-dione scaffold with the fluorine atom. Twenty-one new derivatives were synthesized, and their structure-activity relationship was summarized. Compound 11 (7-(2-(3-fluorophenyl)-2-oxoethyl)-8-((4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)amino)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione) showed the highest affinity to 5HT1AR and 5HT7R, and was the most potent antagonist of 5-HT1AR (Kb = 0.26 ± 0.1 nM) which activity can be to reference compound NAN-190 (Kb = 0.26 ± 0.1 nM). The experimentally established physicochemical parameters of compound 11 showed that compound, as slightly ionized in the blood, could penetrate the blood-brain barrier. A molecular docking study showed that the fluorine substitution introduces additional stabilization effects on binding to 5HT1A/5HT7Rs. In animal assays of depression and anxiety, compound 11 revealed activity in terms of dosage compared to marketed psychotropics such as fluoxetine, citalopram, and sertraline.
Collapse
Affiliation(s)
- Agnieszka Zagórska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland.
| | - Anna Partyka
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | | | - Anna Czopek
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Monika Fryc
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Agata Siwek
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Monika Głuch-Lutwin
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Barbara Mordyl
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Anna Maślanka
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Anna Jaromin
- Faculty of Biotechnology, University of Wrocław, 14a Joliot-Curie Street, 50-383 Wrocław, Poland
| | - Rafał Kurczab
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| |
Collapse
|
3
|
Goel KK, Thapliyal S, Kharb R, Joshi G, Negi A, Kumar B. Imidazoles as Serotonin Receptor Modulators for Treatment of Depression: Structural Insights and Structure-Activity Relationship Studies. Pharmaceutics 2023; 15:2208. [PMID: 37765177 PMCID: PMC10535231 DOI: 10.3390/pharmaceutics15092208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/13/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
Serotoninergic signaling is identified as a crucial player in psychiatric disorders (notably depression), presenting it as a significant therapeutic target for treating such conditions. Inhibitors of serotoninergic signaling (especially selective serotonin reuptake inhibitors (SSRI) or serotonin and norepinephrine reuptake inhibitors (SNRI)) are prominently selected as first-line therapy for the treatment of depression, which benefits via increasing low serotonin levels and norepinephrine by blocking serotonin/norepinephrine reuptake and thereby increasing activity. While developing newer heterocyclic scaffolds to target/modulate the serotonergic systems, imidazole-bearing pharmacophores have emerged. The imidazole-derived pharmacophore already demonstrated unique structural characteristics and an electron-rich environment, ultimately resulting in a diverse range of bioactivities. Therefore, the current manuscript discloses such a specific modification and structural activity relationship (SAR) of attempted derivatization in terms of the serotonergic efficacy of the resultant inhibitor. We also featured a landscape of imidazole-based development, focusing on SAR studies against the serotoninergic system to target depression. This study covers the recent advancements in synthetic methodologies for imidazole derivatives and the development of new molecules having antidepressant activity via modulating serotonergic systems, along with their SAR studies. The focus of the study is to provide structural insights into imidazole-based derivatives as serotonergic system modulators for the treatment of depression.
Collapse
Affiliation(s)
- Kapil Kumar Goel
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to Be University), Haridwar 249404, Uttarakhand, India
| | - Somesh Thapliyal
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar Garhwal 246174, Uttarakhand, India (G.J.)
| | - Rajeev Kharb
- Amity Institute of Pharmacy, Amity University, Noida 201313, Uttar Pradesh, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar Garhwal 246174, Uttarakhand, India (G.J.)
| | - Arvind Negi
- Department of Bioproduct and Biosystems, Aalto University, 02150 Espoo, Finland
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar Garhwal 246174, Uttarakhand, India (G.J.)
- Department of Chemistry, Graphic Era (Deemed to Be University), Dehradun 248002, Uttarakhand, India
| |
Collapse
|
4
|
Asproni B, Catto M, Loriga G, Murineddu G, Corona P, Purgatorio R, Cichero E, Fossa P, Scarano N, Martínez AL, Brea J, Pinna GA. Novel thienocycloalkylpyridazinones as useful scaffolds for acetylcholinesterase inhibition and serotonin 5-HT6 receptor interaction. Bioorg Med Chem 2023; 84:117256. [PMID: 37003157 DOI: 10.1016/j.bmc.2023.117256] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023]
Abstract
A library of eighteen thienocycloalkylpyridazinones was synthesized for human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBChE) inhibition and serotonin 5-HT6 receptor subtype interaction by following a multitarget-directed ligand approach (MTDL), as a suitable strategy for treatment of Alzheimer's disease (AD). The novel compounds featured a tricyclic scaffold, namely thieno[3,2-h]cinnolinone, thienocyclopentapyridazinone and thienocycloheptapyridazinone, connected through alkyl chains of variable length to proper amine moieties, most often represented by N-benzylpiperazine or 1-(phenylsulfonyl)-4-(piperazin-1-ylmethyl)-1H-indole as structural elements addressing AChE and 5-HT6 interaction, respectively. Our study highlighted the versatility of thienocycloalkylpyridazinones as useful architectures for AChE interaction, with several N-benzylpiperazine-based analogues emerging as potent and selective hAChE inhibitors with IC50 in the 0.17-1.23 μM range, exhibiting low to poor activity for hBChE (IC50 = 4.13-9.70 μM). The introduction of 5-HT6 structural moiety phenylsulfonylindole in place of N-benzylpiperazine, in tandem with a pentamethylene linker, gave potent 5-HT6 thieno[3,2-h]cinnolinone and thienocyclopentapyridazinone-based ligands both displaying hAChE inhibition in the low micromolar range and unappreciable activity towards hBChE. While docking studies provided a rational structural explanation for AChE/BChE enzyme and 5-HT6 receptor interaction, in silico prediction of ADME properties of tested compounds suggested further optimization for development of such compounds in the field of MTDL for AD.
Collapse
|
5
|
Synthesis, Docking Studies and Pharmacological Evaluation of Serotoninergic Ligands Containing a 5-Norbornene-2-Carboxamide Nucleus. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196492. [PMID: 36235029 PMCID: PMC9572521 DOI: 10.3390/molecules27196492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022]
Abstract
A new series of 5-norbornene-2-carboxamide derivatives was prepared and their affinities to the 5-HT1A, 5-HT2A, and 5-HT2C receptors were evaluated and compared to a previously synthesized series of derivatives characterized by exo-N-hydroxy-5-norbornene-2,3-dicarboximidenucleus, in order to identify selective ligands for the above-mentioned subtype receptors. Arylpiperazines represents one of the most important classes of 5-HT1AR ligands, and recent research concerning new derivatives has been focused on the modification of one or more portions of such pharmacophore. The combination of structural elements (heterocyclic nucleus, propyl chain and 4-substituted piperazine), known to be critical to the affinity to 5-HT1A receptors, and the proper selection of substituents led to compounds with high specificity and affinity towards serotoninergic receptors. The most active compounds were selected for further in vivo assays to determine their functional activity. Finally, to rationalize the obtained results, molecular docking studies were performed. The results of the pharmacological studies showed that Norbo-4 and Norbo-18 were the most active and promising derivatives for the serotonin receptor considered in this study.
Collapse
|
6
|
Unveiling the Origin of the Selectivity and the Molecular Mechanism in the [3+2] Cycloaddition Reaction of N-aryl-C-carbamoylnitrone with N-arylitaconimide. ORGANICS 2022. [DOI: 10.3390/org3030021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The [3+2] cycloaddition reaction of N-aryl-C-carbamoylnitrone (nitrone 1) with N-arylitaconimide (ethylene 2) was computationally studied using the B3LYP/6-31G(d) level of theory. An analysis of the different energetic profiles and the transition states’ optimized structures clearly indicated that this 32CA occurred through a non-polar, asynchronous, one-step mechanism, favoring the formation of the ortho–endo cycloadduct, as observed experimentally. The analysis of the reactivity indices derived from the conceptual DFT explains well the low polarity of this 32CA reaction. Parr functions and a dual reactivity descriptors analysis correctly explained the regioselectivity ortho of this 32CA reaction. Solvent effects did not modify the obtained selectivity but it increased the activation energies and decreased the exothermic character of this 32CA reaction. A thermodynamic parameters analysis indicated that this 32CA wascharacterized by an ortho regioselectivity and endostereoselectivity and exothermic and exergonic characters.
Collapse
|
7
|
Yao C, Jiang X, Ye X, Xie T, Bai R. Antidepressant Drug Discovery and Development: Mechanism and Drug Design Based on Small Molecules. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chuansheng Yao
- School of Pharmacy Hangzhou Normal University Hangzhou 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| | - Xiaoying Jiang
- College of Material, Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University Hangzhou 311121 P.R. China
| | - Xiang‐Yang Ye
- School of Pharmacy Hangzhou Normal University Hangzhou 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| | - Tian Xie
- School of Pharmacy Hangzhou Normal University Hangzhou 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| | - Renren Bai
- School of Pharmacy Hangzhou Normal University Hangzhou 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| |
Collapse
|
8
|
Singh K, Bhatia R, Kumar B, Singh G, Monga V. Design Strategies, Chemistry and Therapeutic Insights of Multi-target Directed Ligands as Antidepressant Agents. Curr Neuropharmacol 2022; 20:1329-1358. [PMID: 34727859 PMCID: PMC9881079 DOI: 10.2174/1570159x19666211102154311] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/21/2021] [Accepted: 10/19/2021] [Indexed: 11/22/2022] Open
Abstract
Depression is one of the major disorders of the central nervous system worldwide and causes disability and functional impairment. According to the World Health Organization, around 265 million people worldwide are affected by depression. Currently marketed antidepressant drugs take weeks or even months to show anticipated clinical efficacy but remain ineffective in treating suicidal thoughts and cognitive impairment. Due to the multifactorial complexity of the disease, single-target drugs do not always produce satisfactory results and lack the desired level of therapeutic efficacy. Recent literature reports have revealed improved therapeutic potential of multi-target directed ligands due to their synergistic potency and better safety. Medicinal chemists have gone to great extents to design multitarget ligands by generating structural hybrids of different key pharmacophores with improved binding affinities and potency towards different receptors or enzymes. This article has compiled the design strategies of recently published multi-target directed ligands as antidepressant agents. Their biological evaluation, structural-activity relationships, mechanistic and in silico studies have also been described. This article will prove to be highly useful for the researchers to design and develop multi-target ligands as antidepressants with high potency and therapeutic efficacy.
Collapse
Affiliation(s)
- Karanvir Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda-151401, Punjab, India
| |
Collapse
|
9
|
Singh K, Pal R, Khan SA, Kumar B, Akhtar MJ. Insights into the structure activity relationship of nitrogen-containing heterocyclics for the development of antidepressant compounds: An updated review. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
10
|
Kucwaj-Brysz K, Baltrukevich H, Czarnota K, Handzlik J. Chemical update on the potential for serotonin 5-HT 6 and 5-HT 7 receptor agents in the treatment of Alzheimer's disease. Bioorg Med Chem Lett 2021; 49:128275. [PMID: 34311086 DOI: 10.1016/j.bmcl.2021.128275] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 12/18/2022]
Abstract
Despite the better understanding of the mechanisms underlying Alzheimer's Disease (AD) and launched clinical trials, no AD-modifying treatment based on a synthetic drug has been introduced for almost twenty years. The serotonin 5-HT6 and 5-HT7 receptors turned out to be promising biological targets for modulation of central nervous system dysfunctions including cognitive impairment. Within this paper, we evaluate the pharmacological potency of both, 5-HT6R and 5-HT7R, agents in search for novel AD treatment. An overview of chemical structures of the 5-HTRs ligands with simultaneous procognitive action which have undergone preclinical and clinical studies within the last 10 years has been performed.
Collapse
Affiliation(s)
- Katarzyna Kucwaj-Brysz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Hanna Baltrukevich
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Kinga Czarnota
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland.
| |
Collapse
|
11
|
Magli E, Kędzierska E, Kaczor AA, Bielenica A, Severino B, Gibuła-Tarłowska E, Kotlińska JH, Corvino A, Sparaco R, Esposito G, Albrizio S, Perissutti E, Frecentese F, Leśniak A, Bujalska-Zadrożny M, Struga M, Capasso R, Santagada V, Caliendo G, Fiorino F. Synthesis, docking studies, and pharmacological evaluation of 2-hydroxypropyl-4-arylpiperazine derivatives as serotoninergic ligands. Arch Pharm (Weinheim) 2021; 354:e2000414. [PMID: 33543794 DOI: 10.1002/ardp.202000414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/17/2020] [Accepted: 01/08/2021] [Indexed: 01/02/2023]
Abstract
A new series of norbornene and exo-N-hydroxy-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboximide derivatives was prepared, and their affinities to the 5-HT1A , 5-HT2A , and 5-HT2C receptors were evaluated and compared with a previously synthesized series of derivatives characterized by the same nuclei, to identify selective ligands for the subtype receptors. Arylpiperazines represent one of the most important classes of 5-HT1A R ligands, and the research of new derivatives has been focused on the modification of one or more portions of this pharmacophore. The combination of structural elements (heterocyclic nucleus, hydroxyalkyl chain, and 4-substituted piperazine), known to be critical for the affinity to 5-HT1A receptors, and the proper selection of substituents resulted in compounds with high specificity and affinity toward serotoninergic receptors. The most active compounds were selected for further in vivo assays to determine their functional activity. Finally, to rationalize the obtained results, molecular docking studies were performed. The results of the pharmacological studies showed that 3e, 4j, and 4n were the most active and promising derivatives for the serotonin receptor considered in this study.
Collapse
Affiliation(s)
- Elisa Magli
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Ewa Kędzierska
- Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, Lublin, Poland
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland.,School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Anna Bielenica
- Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | - Beatrice Severino
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Ewa Gibuła-Tarłowska
- Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, Lublin, Poland
| | - Jolanta H Kotlińska
- Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, Lublin, Poland
| | - Angela Corvino
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Rosa Sparaco
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Giovanna Esposito
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Stefania Albrizio
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Elisa Perissutti
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Francesco Frecentese
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Anna Leśniak
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Bujalska-Zadrożny
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Marta Struga
- Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | - Raffaele Capasso
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Vincenzo Santagada
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Giuseppe Caliendo
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Ferdinando Fiorino
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Napoli, Italy
| |
Collapse
|
12
|
Mohamed AR, El Kerdawy AM, George RF, Georgey HH, Abdel Gawad NM. Design, synthesis and in silico insights of new 7,8-disubstituted-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione derivatives with potent anticancer and multi-kinase inhibitory activities. Bioorg Chem 2020; 107:104569. [PMID: 33387732 DOI: 10.1016/j.bioorg.2020.104569] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022]
Abstract
Aiming to obtain an efficient anti-proliferative activity, structure- and ligand-based drug design approaches were expanded and utilized to design and refine a small compound library. Subsequently, thirty-two 7,8-disubstituted-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione derivatives were selected for synthesis based on the characteristic pharmacophoric features required for PI3K and B-Raf oncogenes inhibition. All the synthesized compounds were evaluated for their in vitro anticancer activity. Compounds 17 and 22c displayed an acceptable potent activity according to the DTP-NCI and were further evaluated in the NCI five doses assay. To validate our design, compounds with the highest mean growth inhibition percent were screened against the target PI3Kα and B-RafV600E to confirm their multi-kinase activity. The tested compounds showed promising multi-kinase activity. Compounds 17 and 22c anticancer effectiveness and multi-kinase activity against PI3Kα and B-RafV600E were consolidated by the inhibition of B-RafWT, EGFR and VEGFR-2 with IC50 in the sub-micromolar range. Further investigations on the most potent compounds 17 and 22c were carried out by studying their safety on normal cell line, in silico profiling and predicted ADME characteristics.
Collapse
Affiliation(s)
- Abdalla R Mohamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt.
| | - Ahmed M El Kerdawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Giza University, New Giza, km 22 Cairo-Alexandria Desert Road, Cairo, Egypt
| | - Riham F George
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Hanan H Georgey
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo 11777, Egypt
| | - Nagwa M Abdel Gawad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
13
|
Czopek A, Bucki A, Kołaczkowski M, Zagórska A, Drop M, Pawłowski M, Siwek A, Głuch-Lutwin M, Pękala E, Chrzanowska A, Struga M, Partyka A, Wesołowska A. Novel multitarget 5-arylidenehydantoins with arylpiperazinealkyl fragment: Pharmacological evaluation and investigation of cytotoxicity and metabolic stability. Bioorg Med Chem 2019; 27:4163-4173. [DOI: 10.1016/j.bmc.2019.07.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/17/2019] [Accepted: 07/28/2019] [Indexed: 12/21/2022]
|
14
|
Kędzierska E, Fiorino F, Magli E, Poleszak E, Wlaź P, Orzelska-Górka J, Knap B, Kotlińska JH. New arylpiperazine derivatives with antidepressant-like activity containing isonicotinic and picolinic nuclei: evidence for serotonergic system involvement. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:743-754. [DOI: 10.1007/s00210-019-01620-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/16/2019] [Indexed: 01/09/2023]
|
15
|
Zagórska A, Partyka A, Bucki A, Kołaczkowski M, Jastrzębska‐Więsek M, Czopek A, Siwek A, Głuch‐Lutwin M, Bednarski M, Bajda M, Jończyk J, Piska K, Koczurkiewicz P, Wesołowska A, Pawłowski M. Characteristics of metabolic stability and the cell permeability of 2‐pyrimidinyl‐piperazinyl‐alkyl derivatives of 1H‐imidazo[2,1
‐f
]purine‐2,4(3
H
,8
H
)‐dione with antidepressant‐ and anxiolytic‐like activities. Chem Biol Drug Des 2018; 93:511-521. [DOI: 10.1111/cbdd.13442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/29/2018] [Accepted: 11/03/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Agnieszka Zagórska
- Department of Medicinal ChemistryJagiellonian University Medical College Kraków Poland
| | - Anna Partyka
- Department of Clinical PharmacyJagiellonian University Medical College Kraków Poland
| | - Adam Bucki
- Department of Medicinal ChemistryJagiellonian University Medical College Kraków Poland
| | - Marcin Kołaczkowski
- Department of Medicinal ChemistryJagiellonian University Medical College Kraków Poland
| | | | - Anna Czopek
- Department of Medicinal ChemistryJagiellonian University Medical College Kraków Poland
| | - Agata Siwek
- Department of PharmacobiologyJagiellonian University Medical College Kraków Poland
| | - Monika Głuch‐Lutwin
- Department of PharmacodynamicsJagiellonian University Medical College Kraków Poland
| | - Marek Bednarski
- Department of PharmacodynamicsJagiellonian University Medical College Kraków Poland
| | - Marek Bajda
- Department of Physicochemical Drug AnalysisJagiellonian University Medical College Kraków Poland
| | - Jakub Jończyk
- Department of Physicochemical Drug AnalysisJagiellonian University Medical College Kraków Poland
| | - Kamil Piska
- Department of Pharmaceutical BiochemistryJagiellonian University Medical College Kraków Poland
| | - Paulina Koczurkiewicz
- Department of Pharmaceutical BiochemistryJagiellonian University Medical College Kraków Poland
| | - Anna Wesołowska
- Department of Clinical PharmacyJagiellonian University Medical College Kraków Poland
| | - Maciej Pawłowski
- Department of Medicinal ChemistryJagiellonian University Medical College Kraków Poland
| |
Collapse
|
16
|
Yousaf M, Zahoor AF, Faiz S, Javed S, Irfan M. Recent Synthetic Approaches Towards Biologically Potent Derivatives/Analogues of Theophylline. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Muhammad Yousaf
- Department of Chemistry; Government College University Faisalabad; Faisalabad 38000 Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry; Government College University Faisalabad; Faisalabad 38000 Pakistan
| | - Sadia Faiz
- Department of Chemistry; Government College University Faisalabad; Faisalabad 38000 Pakistan
| | - Sadia Javed
- Department of Pharmaceutics; Government College University Faisalabad; Faisalabad 38000 Pakistan
| | - Muhammad Irfan
- Department of Biochemistry; Government College University Faisalabad; Faisalabad 38000 Pakistan
| |
Collapse
|
17
|
Bajda M, Chłoń-Rzepa G, Żmudzki P, Czopek A, Stanisz-Wallis K, Łątka K, Pawłowski M, Zagórska A. Determination of ligand efficiency indices in a group of 7H-purine-2,6-dione derivatives with psychotropic activity using micellar electrokinetic chromatography. Electrophoresis 2018; 39:2446-2453. [DOI: 10.1002/elps.201800156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 06/19/2018] [Accepted: 07/24/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Marek Bajda
- Department of Physicochemical Drug Analysis; Jagiellonian University Medical College; Kraków Poland
| | - Grażyna Chłoń-Rzepa
- Department of Medicinal Chemistry; Jagiellonian University Medical College; Kraków Poland
| | - Paweł Żmudzki
- Department of Medicinal Chemistry; Jagiellonian University Medical College; Kraków Poland
| | - Anna Czopek
- Department of Medicinal Chemistry; Jagiellonian University Medical College; Kraków Poland
| | - Krystyna Stanisz-Wallis
- Department of Pharmacokinetics and Physical Pharmacy; Jagiellonian University Medical College; Kraków Poland
| | - Kamil Łątka
- Department of Physicochemical Drug Analysis; Jagiellonian University Medical College; Kraków Poland
| | - Maciej Pawłowski
- Department of Medicinal Chemistry; Jagiellonian University Medical College; Kraków Poland
| | - Agnieszka Zagórska
- Department of Medicinal Chemistry; Jagiellonian University Medical College; Kraków Poland
| |
Collapse
|
18
|
Kucwaj-Brysz K, Kurczab R, Żesławska E, Lubelska A, Marć MA, Latacz G, Satała G, Nitek W, Kieć-Kononowicz K, Handzlik J. The role of aryl-topology in balancing between selective and dual 5-HT 7R/5-HT 1A actions of 3,5-substituted hydantoins. MEDCHEMCOMM 2018; 9:1033-1044. [PMID: 30108992 DOI: 10.1039/c8md00168e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/04/2018] [Indexed: 11/21/2022]
Abstract
In order to search for active and selective serotonin 5-HT7R antagonists among 3,5-disubstituted arylpiperazine-imidazolidine-2,4-diones, the role of the introduction/deletion and the mutual orientation of aromatic rings was analyzed. Chemical modifications of 2nd generation lead structure of 3-(3-(4-(diphenylmethyl)piperazin-1-yl)-2-hydroxypropyl)-5-(4-fluorophenyl)-5-methylimidazolidine-2,4-dione (2, KKB16) were performed. New derivatives (4-18) were designed and synthesized. X-ray crystallographic analysis of the representative compound 5-(4-fluorophenyl)-3-[2-hydroxy-3-(4-phenylpiperazin-1-yl)propyl]-5-methylimidazolidine-2,4-dione (3) was performed to support molecular modeling and SAR studies. The affinity for 5-HT7R, D2R and 5-HT1AR in radioligand binding assays for the entire series and ADME-Tox parameters in vitro for selected compounds (7, 10, and 13) were evaluated. Molecular docking and pharmacophore model assessment were performed. According to the obtained results, 5-methyl-5-naphthylhydantoin derivatives were found to be the new highly active 5-HT7R agents (Ki ≤ 5 nM) with significant selectivity over 5-HT1AR and D2R. On the contrary, the (1-naphthyl)piperazine moiety was gained with the potent dual 5-HT7R/5-HT1AR action (Ki: 11 nM/19 nM).
Collapse
Affiliation(s)
- Katarzyna Kucwaj-Brysz
- Department of Technology and Biotechnology of Drugs , Jagiellonian University Medical College , Medyczna 9 , 30-688 Cracow , Poland . ; Tel: +012 620 55 80
| | - Rafał Kurczab
- Department of Medicinal Chemistry Institute of Pharmacology , Polish Academy of Science , Smętna 12 , 31-343 , Cracow , Poland
| | - Ewa Żesławska
- Department of Chemistry , Institute of Biology , Pedagogical University of Cracow , Podchorążych 2 , 30-084 Cracow , Poland
| | - Annamaria Lubelska
- Department of Technology and Biotechnology of Drugs , Jagiellonian University Medical College , Medyczna 9 , 30-688 Cracow , Poland . ; Tel: +012 620 55 80
| | - Małgorzata Anna Marć
- Department of Technology and Biotechnology of Drugs , Jagiellonian University Medical College , Medyczna 9 , 30-688 Cracow , Poland . ; Tel: +012 620 55 80
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs , Jagiellonian University Medical College , Medyczna 9 , 30-688 Cracow , Poland . ; Tel: +012 620 55 80
| | - Grzegorz Satała
- Department of Medicinal Chemistry Institute of Pharmacology , Polish Academy of Science , Smętna 12 , 31-343 , Cracow , Poland
| | - Wojciech Nitek
- Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 , Cracow , Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs , Jagiellonian University Medical College , Medyczna 9 , 30-688 Cracow , Poland . ; Tel: +012 620 55 80
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs , Jagiellonian University Medical College , Medyczna 9 , 30-688 Cracow , Poland . ; Tel: +012 620 55 80
| |
Collapse
|
19
|
Kowalska A, Pluta K, Latocha M. Synthesis and anticancer activity of multisubstituted purines and xanthines with one or two propynylthio and aminobutynylthio groups. Med Chem Res 2018; 27:1384-1395. [PMID: 29706750 PMCID: PMC5904222 DOI: 10.1007/s00044-018-2155-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/10/2018] [Indexed: 12/19/2022]
Abstract
A synthesis of new 2,6-disubstituted and 2,6,8-trisubstituted 7-methylpurines as well as 8-substituted 3,7-dimethylxanthines containing a triple bond chain have been worked out. Purinethiones and xanthinethiones were converted into propynylthio derivatives, which were then further transformed via a Mannich reaction into aminobutynylthio derivatives (amine = pyrrolidine, piperidine, morpholine, and diethylamine). The products thus obtained represent various types of the purine and xanthine structure: 8-mono-, 2,6- and 6,8-dipropynylthio, 6- and 8-monoaminobutynylthio, 2,6- and 6,8-diaminobutynylthio derivatives. All of these compounds were tested for their anticancer activity against human glioblastoma SNB-19, human adenocarcinoma MDA-MB-231, and melanoma C-32 cell lines. The anticancer activity depends on the nature of the substituent and its localization in the purine and xanthine framework. Generally, compounds possessing two alkynylthio groups (propynylthio or aminobutynylthio) were more active than those possessing only one group. Some compounds exhibited stronger or similar anticancer activity to cisplatin. All compounds were also tested for their cytotoxic activity against normal human fibroblasts (HFF-1). The most promising anticancer compounds were found to be 2,6-dipropynylthio-7-methylpurine 4, 2-chloro-6,8-dipropynylthio-7-methylpurine 14, and 2-chloro-6,8-di(N-morpholinylbutynylthio)-7-methylpurine 15c acting selectively on glioblastoma SNB-19, melanoma C-32, and adenocarcinoma MDA-MB-231 with the IC50 = 0.07-4.08 μg/mL.
Collapse
Affiliation(s)
- Alicja Kowalska
- 1Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine, The Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Krystian Pluta
- 1Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine, The Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Małgorzata Latocha
- 2Department of Cell Biology, School of Pharmacy with the Division of Laboratory Medicine, The Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland
| |
Collapse
|
20
|
A new piperazine derivative: 1-(4-(3,5-di-tert-butyl-4-hydroxybenzyl) piperazin-1-yl)-2-methoxyethan-1-one with antioxidant and central activity. Naunyn Schmiedebergs Arch Pharmacol 2017; 391:255-269. [DOI: 10.1007/s00210-017-1451-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/05/2017] [Indexed: 12/26/2022]
|
21
|
Romero-Hernández LL, Merino-Montiel P, Meza-Reyes S, Vega-Baez JL, López Ó, Padrón JM, Montiel-Smith S. Synthesis of unprecedented steroidal spiro heterocycles as potential antiproliferative drugs. Eur J Med Chem 2017; 143:21-32. [PMID: 29172080 DOI: 10.1016/j.ejmech.2017.10.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/09/2017] [Accepted: 10/22/2017] [Indexed: 01/14/2023]
Abstract
Herein we report the straightforward preparation of novel conformationally-restricted steroids from trans-androsterone and estrone, decorated with spiranic oxazolidin-2-one or 2-aminooxazoline motifs at C-17 as potential antiproliferative agents. Such unprecedented pharmacophores were accessed using an aminomethylalcohol derivative at C-17 as the key intermediate; reaction of such functionality with triphosgene, or conversion into N-substituted thioureas, followed by an intramolecular cyclodesulfurization reaction promoted by yellow HgO, furnished such spirocycles in excellent yields. Title compounds were tested in vitro against a panel of six human tumor cell lines, named A549 (non-small cell lung), HBL-100 (breast), HeLa (cervix), SW1573 (non-small cell lung), T-47D (breast) and WiDr (colon), and the results were compared with steroidal chemotherapeutic agents (abiraterone and galeterone); the A-ring of the steroidal backbone, the nature of the heterocycle and the N-substituents proved to be essential motifs for establishing structure-activity relationships concerning not only the potency but also the selectivity against tumor cell lines. Estrone derivatives, particularly those bearing a spiranic 2-aminooxazoline scaffold were found to be the most active compounds, with GI50 values ranging from the low micromolar to the submicromolar level (0.34-1.5 μM). Noteworthy, the lead compounds showed a remarkable increase in activity against the resistant cancer cell lines (T-47D and WiDr) compared to the anticancer reference drugs (up to 120-fold).
Collapse
Affiliation(s)
- Laura L Romero-Hernández
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, Pue., Mexico
| | - Penélope Merino-Montiel
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, Pue., Mexico.
| | - Socorro Meza-Reyes
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, Pue., Mexico
| | - José Luis Vega-Baez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, Pue., Mexico
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, c/ Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - Sara Montiel-Smith
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, Pue., Mexico.
| |
Collapse
|
22
|
Chłoń-Rzepa G, Zagórska A, Żmudzki P, Bucki A, Kołaczkowski M, Partyka A, Wesołowska A, Kazek G, Głuch-Lutwin M, Siwek A, Starowicz G, Pawłowski M. Aminoalkyl Derivatives of 8-Alkoxypurine-2,6-diones: Multifunctional 5-HT1A/5-HT7Receptor Ligands and PDE Inhibitors with Antidepressant Activity. Arch Pharm (Weinheim) 2016; 349:889-903. [DOI: 10.1002/ardp.201600260] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Grażyna Chłoń-Rzepa
- Department of Medicinal Chemistry; Jagiellonian University Medical College; Kraków Poland
| | - Agnieszka Zagórska
- Department of Medicinal Chemistry; Jagiellonian University Medical College; Kraków Poland
| | - Paweł Żmudzki
- Department of Medicinal Chemistry; Jagiellonian University Medical College; Kraków Poland
| | - Adam Bucki
- Department of Medicinal Chemistry; Jagiellonian University Medical College; Kraków Poland
| | - Marcin Kołaczkowski
- Department of Medicinal Chemistry; Jagiellonian University Medical College; Kraków Poland
| | - Anna Partyka
- Department of Clinical Pharmacy; Jagiellonian University Medical College; Kraków Poland
| | - Anna Wesołowska
- Department of Clinical Pharmacy; Jagiellonian University Medical College; Kraków Poland
| | - Grzegorz Kazek
- Department of Pharmacological Screening; Jagiellonian University Medical College; Kraków Poland
| | - Monika Głuch-Lutwin
- Department of Pharmacological Screening; Jagiellonian University Medical College; Kraków Poland
| | - Agata Siwek
- Department of Pharmacobiology; Jagiellonian University Medical College; Kraków Poland
| | - Gabriela Starowicz
- Department of Pharmacobiology; Jagiellonian University Medical College; Kraków Poland
| | - Maciej Pawłowski
- Department of Medicinal Chemistry; Jagiellonian University Medical College; Kraków Poland
| |
Collapse
|
23
|
Franchini S, Manasieva LI, Sorbi C, Battisti UM, Fossa P, Cichero E, Denora N, Iacobazzi RM, Cilia A, Pirona L, Ronsisvalle S, Aricò G, Brasili L. Synthesis, biological evaluation and molecular modeling of 1-oxa-4-thiaspiro- and 1,4-dithiaspiro[4.5]decane derivatives as potent and selective 5-HT 1A receptor agonists. Eur J Med Chem 2016; 125:435-452. [PMID: 27689727 DOI: 10.1016/j.ejmech.2016.09.050] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 01/20/2023]
Abstract
Recently, 1-(1,4-dioxaspiro[4,5]dec-2-ylmethyl)-4-(2-methoxyphenyl)piperazine (1) was reported as a potent 5-HT1AR agonist with a moderate 5-HT1AR selectivity. In an extension of this work a series of derivatives of 1, obtained by combining different heterocyclic rings with a more flexible amine chain, was synthesized and tested for binding affinity and activity at 5-HT1AR and α1 adrenoceptors. The results led to the identification of 14 and 15 as novel 5-HT1AR partial agonists, the first being outstanding for selectivity (5-HT1A/α1d = 80), the latter for potency (pD2 = 9.58) and efficacy (Emax = 74%). Theoretical studies of ADME properties shows a good profile for the entire series and MDCKII-MDR1 cells permeability data predict a good BBB permeability of compound 15, which possess a promising neuroprotective activity. Furthermore, in mouse formalin test, compound 15 shows a potent antinociceptive activity suggesting a new strategy for pain control.
Collapse
Affiliation(s)
- Silvia Franchini
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Leda Ivanova Manasieva
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Claudia Sorbi
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Umberto M Battisti
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Paola Fossa
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV 3, 16132, Genova, Italy
| | - Elena Cichero
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV 3, 16132, Genova, Italy
| | - Nunzio Denora
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, I-70125, Bari, Italy
| | - Rosa Maria Iacobazzi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, I-70125, Bari, Italy; Istituto tumori IRCCS "Giovanni Paolo II", Via Orazio Flacco, 65, 70124, Bari, Italy
| | - Antonio Cilia
- Divisione Ricerca e Sviluppo, Recordati S.p.A., Via Civitali 1, 20148, Milano, Italy
| | - Lorenza Pirona
- Divisione Ricerca e Sviluppo, Recordati S.p.A., Via Civitali 1, 20148, Milano, Italy
| | - Simone Ronsisvalle
- Dipartimento di Scienze del Farmaco Sezione di Chimica Farmaceutica e sezione di Farmacologia e Tossicologia, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Giuseppina Aricò
- Dipartimento di Scienze del Farmaco Sezione di Chimica Farmaceutica e sezione di Farmacologia e Tossicologia, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Livio Brasili
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Via Campi 103, 41125, Modena, Italy.
| |
Collapse
|
24
|
Zagórska A, Bucki A, Kołaczkowski M, Siwek A, Głuch-Lutwin M, Starowicz G, Kazek G, Partyka A, Wesołowska A, Słoczyńska K, Pękala E, Pawłowski M. Synthesis and biological evaluation of 2-fluoro and 3-trifluoromethyl-phenyl-piperazinylalkyl derivatives of 1H-imidazo[2,1-f]purine-2,4(3H,8H)-dione as potential antidepressant agents. J Enzyme Inhib Med Chem 2016; 31:10-24. [DOI: 10.1080/14756366.2016.1198902] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | | |
Collapse
|
25
|
Lee D, Lee S, Liu KH, Bae JS, Baek DJ, Lee T. Solid-Phase Synthesis of 1,3,7,8-Tetrasubstituted Xanthine Derivatives on Traceless Solid Support. ACS COMBINATORIAL SCIENCE 2016; 18:70-4. [PMID: 26616892 DOI: 10.1021/acscombsci.5b00148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Traceless solid-phase synthesis of 1,3,7,8-tetrasubstituted xanthine (1,3,7,8-tetrasubstituted 1H-purine-2,6(3H,7H)-dione) derivatives has been developed. The solid-phase synthetic route began on a solid supported N'-cyano-N-substituted carbamimidothioate, which was prepared from cyanamide, isothiocyanate, and Merrifield resin. After N-alkylation of carbamimidothioate resin with ethyl 2-bromoacetate, an imidazole ring is introduced by Thorpe-Ziegler-type cyclization. The resulting imidazole resin is converted to 1,3,7-trisubstituted xanthine resin using sequential reactions, such as Lewis acid-catalyzed urea formation, pyrimidine ring cyclization, and N-alkylation. After oxidation of sulfides to sulfones, traceless cleavage with amine or thiol nucleophiles afforded the desired 1,3,7,8-tetrasubstituted xanthines in good purities and overall yields (eight-steps; 36 examples). This efficient solid-phase synthesis enables the incorporation of four diversity points into the preparation of the 1,3,7,8-tetrasubstituted xanthines.
Collapse
Affiliation(s)
- Doohyun Lee
- College
of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701, Korea
| | - Seungyeon Lee
- College
of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701, Korea
| | - Kwang-Hyeon Liu
- College
of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701, Korea
| | - Jong-Sup Bae
- College
of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701, Korea
| | - Dong Jae Baek
- College
of Pharmacy, Natural Medicine Research Institute, Mokpo National University, 1666 Youngsan-ro, Muan-gun, Jeonnam 534-729, Korea
| | - Taeho Lee
- College
of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701, Korea
| |
Collapse
|
26
|
Chłoń-Rzepa G, Bucki A, Kołaczkowski M, Partyka A, Jastrzębska-Więsek M, Satała G, Bojarski AJ, Kalinowska-Tłuścik J, Kazek G, Mordyl B, Głuch-Lutwin M, Wesołowska A. Arylpiperazinylalkyl derivatives of 8-amino-1,3-dimethylpurine-2,6-dione as novel multitarget 5-HT/D receptor agents with potential antipsychotic activity. J Enzyme Inhib Med Chem 2015; 31:1048-62. [DOI: 10.3109/14756366.2015.1088844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Grażyna Chłoń-Rzepa
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Kraków, Poland,
| | - Adam Bucki
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Kraków, Poland,
| | - Marcin Kołaczkowski
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Kraków, Poland,
| | - Anna Partyka
- Department of Clinical Pharmacy, Jagiellonian University Medical College, Kraków, Poland,
| | | | - Grzegorz Satała
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland,
| | - Andrzej J. Bojarski
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland,
| | - Justyna Kalinowska-Tłuścik
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Kraków, Poland,
| | - Grzegorz Kazek
- Department of Pharmacological Screening, Jagiellonian University Medical College, Kraków, Poland, and
| | - Barbara Mordyl
- Department of Pharmacobiology, Jagiellonian University Medical College, Kraków, Poland
| | - Monika Głuch-Lutwin
- Department of Pharmacobiology, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Wesołowska
- Department of Clinical Pharmacy, Jagiellonian University Medical College, Kraków, Poland,
| |
Collapse
|