1
|
Ma C, Cui S, Xu R. Developments of Fms-like Tyrosine Kinase 3 Inhibitors as Anticancer Agents for AML Treatment. Curr Med Chem 2024; 31:4657-4686. [PMID: 38204232 DOI: 10.2174/0109298673277543231205072556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/01/2023] [Accepted: 10/25/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND FMS-like tyrosine kinase 3 (FLT3) is a commonly mutated gene in acute myeloid leukemia. As a receptor tyrosine kinase (RTK), FLT3 plays a role in the proliferation and differentiation of hematopoietic stem cells. As the most frequent molecular alteration in AML, FLT3 has drawn the attention of many researchers, and a lot of small molecule inhibitors targeting FLT3 have been intensively investigated as potential drugs for AML therapy. METHODS In this paper, PubMed and SciFinder® were used as a tool; the publications about "FLT3 inhibitor" and "Acute myeloid leukemia" were surveyed from 2014 to the present with an exclusion of those published as patents. RESULTS In this study, the structural characterization and biological activities of representative FLT3 inhibitors were summarized. The major challenges and future directions for further research are discussed. CONCLUSION Recently, numerous FLT3 inhibitors have been discovered and employed in FLT3-mutated AML treatment. In order to overcome the drug resistance caused by FLT3 mutations, screening multitargets FLT3 inhibitors has become the main research direction. In addition, the emergence of irreversible FLT3 inhibitors also provides new ideas for discovering new FLT3 inhibitors.
Collapse
Affiliation(s)
- Chenchen Ma
- College of Integrated Traditional Chinese and Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Central Laboratory of Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Shandong Key Laboratory of Dominant Diseases of traditional Chinese Medicine, Jinan 250014, China
| | - Siyuan Cui
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Ruirong Xu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Godesi S, Lee J, Nada H, Quan G, Elkamhawy A, Choi Y, Lee K. Small Molecule c-KIT Inhibitors for the Treatment of Gastrointestinal Stromal Tumors: A Review on Synthesis, Design Strategies, and Structure-Activity Relationship (SAR). Int J Mol Sci 2023; 24:ijms24119450. [PMID: 37298401 DOI: 10.3390/ijms24119450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The proto-oncogenic protein, c-KIT, plays a crucial role in regulating cellular transformation and differentiation processes, such as proliferation, survival, adhesion, and chemotaxis. The overexpression of, and mutations, in c-KIT can lead to its dysregulation and promote various human cancers, particularly gastrointestinal stromal tumors (GISTs); approximately 80-85% of cases are associated with oncogenic mutations in the KIT gene. Inhibition of c-KIT has emerged as a promising therapeutic target for GISTs. However, the currently approved drugs are associated with resistance and significant side effects, highlighting the urgent need to develop highly selective c-KIT inhibitors that are not affected by these mutations for GISTs. Herein, the recent research efforts in medicinal chemistry aimed at developing potent small-molecule c-KIT inhibitors with high kinase selectivity for GISTs are discussed from a structure-activity relationship perspective. Moreover, the synthetic pathways, pharmacokinetic properties, and binding patterns of the inhibitors are also discussed to facilitate future development of more potent and pharmacokinetically stable small-molecule c-KIT inhibitors.
Collapse
Affiliation(s)
- Sreenivasulu Godesi
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Joohan Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Hossam Nada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Guofeng Quan
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Ahmed Elkamhawy
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Yongseok Choi
- College of Biosciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| |
Collapse
|
3
|
Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, Yang W, Tian C, Miao Z, Wang T, Yang S. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther 2021; 6:201. [PMID: 34054126 PMCID: PMC8165101 DOI: 10.1038/s41392-021-00572-w] [Citation(s) in RCA: 782] [Impact Index Per Article: 195.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Due to the advantages in efficacy and safety compared with traditional chemotherapy drugs, targeted therapeutic drugs have become mainstream cancer treatments. Since the first tyrosine kinase inhibitor imatinib was approved to enter the market by the US Food and Drug Administration (FDA) in 2001, an increasing number of small-molecule targeted drugs have been developed for the treatment of malignancies. By December 2020, 89 small-molecule targeted antitumor drugs have been approved by the US FDA and the National Medical Products Administration (NMPA) of China. Despite great progress, small-molecule targeted anti-cancer drugs still face many challenges, such as a low response rate and drug resistance. To better promote the development of targeted anti-cancer drugs, we conducted a comprehensive review of small-molecule targeted anti-cancer drugs according to the target classification. We present all the approved drugs as well as important drug candidates in clinical trials for each target, discuss the current challenges, and provide insights and perspectives for the research and development of anti-cancer drugs.
Collapse
Affiliation(s)
- Lei Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Yueshan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Liang Xiong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Wenjing Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ming Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ting Yuan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Wei Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Chenyu Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zhuang Miao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Tianqi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
4
|
Lai ZS, Yeh TK, Chou YC, Hsu T, Lu CT, Kung FC, Hsieh MY, Lin CH, Chen CT, James Shen CK, Jiaang WT. Potent and orally active purine-based fetal hemoglobin inducers for treating β-thalassemia and sickle cell disease. Eur J Med Chem 2021; 209:112938. [PMID: 33109398 DOI: 10.1016/j.ejmech.2020.112938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/23/2020] [Accepted: 10/10/2020] [Indexed: 11/25/2022]
Abstract
Reactivation of fetal hemoglobin (HbF) expression by therapeutic agents has been suggested as an alternative treatment to modulate anemia and the related symptoms of severe β-thalassemia and sickle cell disease (SCD). Hydroxyurea (HU) is the first US FDA-approved HbF inducer for treating SCD. However, approximately 25% of the patients with SCD do not respond to HU. A previous study identified TN1 (1) as a small-molecule HbF inducer. However, this study found that the poor potency and oral bioavailability of compound 1 limits the development of this inducer for clinical use. To develop drug-like compounds, further structure-activity relationship studies on the purine-based structure of 1 were conducted. Herein, we report our discovery of a more potent inducer, compound 13a, that can efficiently induce γ-globin gene expression at non-cytotoxic concentrations. The molecular mechanism of 13a, for the regulation HbF expression, was also investigated. In addition, we demonstrated that oral administration of 13a can ameliorate anemia and the related symptoms in SCD mice. The results of this study suggest that 13a can be further developed as a novel agent for treating hemoglobinopathies, such as β-thalassemia and SCD.
Collapse
Affiliation(s)
- Zheng-Sheng Lai
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan, ROC; Institute of Molecular Medicine, College of Medicine, National Taiwan University, No.7.Chung San South Road, Taipei, 10002, Taiwan, ROC
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Rd., Zhunan Town, Miaoli Country, 35053, Taiwan, ROC
| | - Yu-Chi Chou
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Tsu Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Rd., Zhunan Town, Miaoli Country, 35053, Taiwan, ROC
| | - Cheng-Tai Lu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Rd., Zhunan Town, Miaoli Country, 35053, Taiwan, ROC
| | - Fang-Chun Kung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Rd., Zhunan Town, Miaoli Country, 35053, Taiwan, ROC
| | - Ming-Yen Hsieh
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Rd., Zhunan Town, Miaoli Country, 35053, Taiwan, ROC
| | - Che-Kun James Shen
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Weir-Torn Jiaang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Rd., Zhunan Town, Miaoli Country, 35053, Taiwan, ROC.
| |
Collapse
|
5
|
Zhong Y, Qiu RZ, Sun SL, Zhao C, Fan TY, Chen M, Li NG, Shi ZH. Small-Molecule Fms-like Tyrosine Kinase 3 Inhibitors: An Attractive and Efficient Method for the Treatment of Acute Myeloid Leukemia. J Med Chem 2020; 63:12403-12428. [PMID: 32659083 DOI: 10.1021/acs.jmedchem.0c00696] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fms-like tyrosine kinase 3 (FLT3) is an important member of the class III receptor tyrosine kinase (RTK) family, which is involved in the proliferation of hematopoietic cells and lymphocytes. In recent years, increasing evidence have demonstrated that the activation and mutation of FLT3 is closely implicated in the occurrence and development of acute myeloid leukemia (AML). The exploration of small-molecule inhibitors targeting FLT3 has aroused wide interest of pharmaceutical chemists and is expected to bring new hope for AML therapy. In this review, we specifically highlighted FLT3 mediated JAK/STAT, RAS/MAPK, and PI3K/AKT/mTOR signaling. The structural properties and biological activities of representative FLT3 inhibitors reported from 2014 to the present were also summarized. In addition, the major challenges in the current advance of novel FLT3 inhibitors were further analyzed, with the aim to guide future drug discovery.
Collapse
Affiliation(s)
- Yue Zhong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Run-Ze Qiu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chao Zhao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tian-Yuan Fan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Min Chen
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhi-Hao Shi
- Department of Organic Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
6
|
Abutayeh RF, Almaliti J, Taha MO. Design and Synthesis of New Sulfonamides-Based Flt3 Inhibitors. Med Chem 2020; 16:403-412. [PMID: 30931863 DOI: 10.2174/1573406415666190401144053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/21/2019] [Accepted: 03/07/2019] [Indexed: 02/06/2023]
Abstract
Background:
Flt3 is an oncogenic kinase involved in different leukemias. It is most
prominently associated with acute myeloid leukemia (AML). Flt3-specific inhibitors have shown
promising results in interfering with AML.
Methods:
The crystallographic structures of two inhibitors complexed within Flt3, namely, quizartinib
and F6M, were used to guide the synthesis of new sulfonamide-based Flt3 inhibitors.
Results:
One of the prepared compounds showed low micromolar anti-Flt3 bioactivity, and interestingly,
low micromolar bioactivity against the related oncogenic kinase VEGFR2.
Conclusion:
Sulfonamides were successfully used as privileged scaffolds for the synthesis of
novel Flt3 inhibitors of micromolar potencies.
Collapse
Affiliation(s)
- Reem F. Abutayeh
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Jehad Almaliti
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan
| | - Mutasem O. Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan
| |
Collapse
|
7
|
Morales ML, Arenas A, Ortiz-Ruiz A, Leivas A, Rapado I, Rodríguez-García A, Castro N, Zagorac I, Quintela-Fandino M, Gómez-López G, Gallardo M, Ayala R, Linares M, Martínez-López J. MEK inhibition enhances the response to tyrosine kinase inhibitors in acute myeloid leukemia. Sci Rep 2019; 9:18630. [PMID: 31819100 PMCID: PMC6901485 DOI: 10.1038/s41598-019-54901-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/19/2019] [Indexed: 12/28/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is a key driver of acute myeloid leukemia (AML). Several tyrosine kinase inhibitors (TKIs) targeting FLT3 have been evaluated clinically, but their effects are limited when used in monotherapy due to the emergence of drug-resistance. Thus, a better understanding of drug-resistance pathways could be a good strategy to explore and evaluate new combinational therapies for AML. Here, we used phosphoproteomics to identify differentially-phosphorylated proteins in patients with AML and TKI resistance. We then studied resistance mechanisms in vitro and evaluated the efficacy and safety of rational combinational therapy in vitro, ex vivo and in vivo in mice. Proteomic and immunohistochemical studies showed the sustained activation of ERK1/2 in bone marrow samples of patients with AML after developing resistance to FLT3 inhibitors, which was identified as a common resistance pathway. We examined the concomitant inhibition of MEK-ERK1/2 and FLT3 as a strategy to overcome drug-resistance, finding that the MEK inhibitor trametinib remained potent in TKI-resistant cells and exerted strong synergy when combined with the TKI midostaurin in cells with mutated and wild-type FLT3. Importantly, this combination was not toxic to CD34+ cells from healthy donors, but produced survival improvements in vivo when compared with single therapy groups. Thus, our data point to trametinib plus midostaurin as a potentially beneficial therapy in patients with AML.
Collapse
Affiliation(s)
- María Luz Morales
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Alicia Arenas
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Alejandra Ortiz-Ruiz
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Alejandra Leivas
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Inmaculada Rapado
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
- Servicio de Hematología, Hospital 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, Madrid, Spain
| | - Alba Rodríguez-García
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Nerea Castro
- Servicio de Hematología, Hospital 12 de Octubre, Madrid, Spain
| | - Ivana Zagorac
- Breast Cancer Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Miguel Quintela-Fandino
- Breast Cancer Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Gonzalo Gómez-López
- Bioinformatics Unit, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Miguel Gallardo
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Rosa Ayala
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
- Servicio de Hematología, Hospital 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, Madrid, Spain
- Universidad Complutense de Madrid, Madrid, Spain
| | - María Linares
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain.
- Universidad Complutense de Madrid, Madrid, Spain.
| | - Joaquín Martínez-López
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
- Servicio de Hematología, Hospital 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, Madrid, Spain
- Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Lin WH, Wu SY, Yeh TK, Chen CT, Song JS, Shiao HY, Kuo CC, Hsu T, Lu CT, Wang PC, Wu TS, Peng YH, Lin HY, Chen CP, Weng YL, Kung FC, Wu MH, Su YC, Huang KW, Chou LH, Hsueh CC, Yen KJ, Kuo PC, Huang CL, Chen LT, Shih C, Tsai HJ, Jiaang WT. Identification of a Multitargeted Tyrosine Kinase Inhibitor for the Treatment of Gastrointestinal Stromal Tumors and Acute Myeloid Leukemia. J Med Chem 2019; 62:11135-11150. [DOI: 10.1021/acs.jmedchem.9b01229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Wen-Hsing Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Su-Ying Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Hui-Yi Shiao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Ching-Chuan Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Tsu Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Cheng-Tai Lu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Pei-Chen Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Tsung-Sheng Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Yi-Hui Peng
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Hui-You Lin
- National Institute of Cancer Research, National Health Research Institutes, Tainan City 704, Taiwan R.O.C
| | - Ching-Ping Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Ya-Ling Weng
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Fang-Chun Kung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Mine-Hsine Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Yu-Chieh Su
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Kuo-Wei Huang
- National Institute of Cancer Research, National Health Research Institutes, Tainan City 704, Taiwan R.O.C
| | - Ling-Hui Chou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Ching-Cheng Hsueh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Kuei-Jung Yen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Po-Chu Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Chen-Lung Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan City 704, Taiwan R.O.C
| | - Chuan Shih
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Hui-Jen Tsai
- National Institute of Cancer Research, National Health Research Institutes, Tainan City 704, Taiwan R.O.C
| | - Weir-Torn Jiaang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| |
Collapse
|
9
|
Wu TS, Lin WH, Tsai HJ, Hsueh CC, Hsu T, Wang PC, Lin HY, Peng YH, Lu CT, Lee LC, Tu CH, Kung FC, Shiao HY, Yeh TK, Song JS, Chang JY, Su YC, Chen LT, Chen CT, Jiaang WT, Wu SY. Discovery of Conformational Control Inhibitors Switching off the Activated c-KIT and Targeting a Broad Range of Clinically Relevant c-KIT Mutants. J Med Chem 2019; 62:3940-3957. [DOI: 10.1021/acs.jmedchem.8b01845] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Tsung-Sheng Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Wen-Hsing Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Hui-Jen Tsai
- National Institute of Cancer Research, National Health Research Institutes, Tainan City 704, Taiwan R.O.C
- Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan City 704, Taiwan R.O.C
| | - Ching-Cheng Hsueh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Tsu Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Pei-Chen Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Hui-You Lin
- National Institute of Cancer Research, National Health Research Institutes, Tainan City 704, Taiwan R.O.C
| | - Yi-Hui Peng
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Cheng-Tai Lu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Lung-Chun Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Chih-Hsiang Tu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Fang-Chun Kung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Hui-Yi Shiao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Jia-Yu Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Yu-Chieh Su
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan City 704, Taiwan R.O.C
- Institute of Molecular Medicine, National Cheng Kung University, Tainan City 704, Taiwan R.O.C
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Weir-Torn Jiaang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Su-Ying Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| |
Collapse
|
10
|
Liang X, Wang B, Chen C, Wang A, Hu C, Zou F, Yu K, Liu Q, Li F, Hu Z, Lu T, Wang J, Wang L, Weisberg EL, Li L, Xia R, Wang W, Ren T, Ge J, Liu J, Liu Q. Discovery of N-(4-(6-Acetamidopyrimidin-4-yloxy)phenyl)-2-(2-(trifluoromethyl)phenyl)acetamide (CHMFL-FLT3-335) as a Potent FMS-like Tyrosine Kinase 3 Internal Tandem Duplication (FLT3-ITD) Mutant Selective Inhibitor for Acute Myeloid Leukemia. J Med Chem 2019; 62:875-892. [PMID: 30565931 DOI: 10.1021/acs.jmedchem.8b01594] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Most of the current FMS-like tyrosine kinase 3 (FLT3) inhibitors lack selectivity between FLT3 kinase and cKIT kinase as well as the FLT3 wt and internal tandem duplication (ITD) mutants. We report a new compound 27, which displays GI50 values of 30-80 nM against different ITD mutants and achieves selectivity over both FLT3 wt (8-fold) and cKIT kinase in the transformed BaF3 cells (>300-fold). 27 potently inhibits the proliferation of the FLT3-ITD-positive acute myeloid leukemia cancer lines through suppression of the phosphorylation of FLT3 kinase and downstream signaling pathways, induction of apoptosis, and arresting the cell cycle into the G0/G1 phase. 27 also displays potent antiproliferative effect against FLT3-ITD-positive patient primary cells, whereas it does not apparently affect FLT3 wt primary cells. In addition, it also exhibits a good therapeutic window to PBMC compared to PKC412. In the in vivo studies, 27 demonstrates favorable PK profiles and suppresses the tumor growth in the MV4-11 cell inoculated mouse xenograft model.
Collapse
Affiliation(s)
- Xiaofei Liang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China.,Precision Medicine Research Laboratory of Anhui Province , Hefei , Anhui 230088 , P. R. China
| | - Beilei Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China.,University of Science and Technology of China , Hefei , Anhui 230036 , P. R. China
| | - Cheng Chen
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China.,University of Science and Technology of China , Hefei , Anhui 230036 , P. R. China
| | - Aoli Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China.,Precision Medicine Research Laboratory of Anhui Province , Hefei , Anhui 230088 , P. R. China
| | - Chen Hu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China.,University of Science and Technology of China , Hefei , Anhui 230036 , P. R. China
| | - Fengming Zou
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China.,Precision Medicine Research Laboratory of Anhui Province , Hefei , Anhui 230088 , P. R. China
| | - Kailin Yu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China.,Precision Medicine Research Laboratory of Anhui Province , Hefei , Anhui 230088 , P. R. China
| | - Qingwang Liu
- Precision Medicine Research Laboratory of Anhui Province , Hefei , Anhui 230088 , P. R. China.,Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230088 , P. R. China
| | - Feng Li
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China.,University of Science and Technology of China , Hefei , Anhui 230036 , P. R. China
| | - Zhenquan Hu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China.,Precision Medicine Research Laboratory of Anhui Province , Hefei , Anhui 230088 , P. R. China
| | - Tingting Lu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China.,University of Science and Technology of China , Hefei , Anhui 230036 , P. R. China
| | - Junjie Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China.,University of Science and Technology of China , Hefei , Anhui 230036 , P. R. China
| | - Li Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China.,University of Science and Technology of China , Hefei , Anhui 230036 , P. R. China
| | - Ellen L Weisberg
- Department of Medical Oncology, Dana Farber Cancer Institute , Harvard Medical School , 450 Brookline Avenue , Boston , Massachusetts 02115 , United States
| | - Lili Li
- Department of Hematology , The First Affiliated Hospital of Anhui Medical University , Hefei , Anhui 230022 , P. R. China
| | - Ruixiang Xia
- Department of Hematology , The First Affiliated Hospital of Anhui Medical University , Hefei , Anhui 230022 , P. R. China
| | - Wenchao Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China.,Precision Medicine Research Laboratory of Anhui Province , Hefei , Anhui 230088 , P. R. China
| | - Tao Ren
- Precision Medicine Research Laboratory of Anhui Province , Hefei , Anhui 230088 , P. R. China.,Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230088 , P. R. China
| | - Jian Ge
- Department of Hematology , The First Affiliated Hospital of Anhui Medical University , Hefei , Anhui 230022 , P. R. China
| | - Jing Liu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China.,Precision Medicine Research Laboratory of Anhui Province , Hefei , Anhui 230088 , P. R. China.,Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230088 , P. R. China
| | - Qingsong Liu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China.,Precision Medicine Research Laboratory of Anhui Province , Hefei , Anhui 230088 , P. R. China.,University of Science and Technology of China , Hefei , Anhui 230036 , P. R. China.,Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230088 , P. R. China.,Institute of Physical Science and Information Technology , Anhui University , Hefei , Anhui 230601 , P. R. China
| |
Collapse
|
11
|
Ma F, Liu P, Lei M, Liu J, Wang H, Zhao S, Hu L. Design, synthesis and biological evaluation of indolin-2-one-based derivatives as potent, selective and efficacious inhibitors of FMS-like tyrosine kinase3 (FLT3). Eur J Med Chem 2016; 127:72-86. [PMID: 28038328 DOI: 10.1016/j.ejmech.2016.12.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/28/2016] [Accepted: 12/18/2016] [Indexed: 01/26/2023]
Abstract
Activating mutations of FMS-like tyrosine kinase 3 (FLT3) are present in approximately one third of acute myeloid leukemia (AML) patients, which has been proposed as a promising drug target for AML therapy. A series of indolin-2-one derivatives bearing different groups at the solvent interface position based on sunitinib as FLT3 inhibitors were designed, synthesized and evaluated in FLT3-dependent human AML cell line MV4-11. Structure-activity relationship (SAR)analysis showed that heterocyclic alkane at the solvent interface position could significantly increase the potency for the inhibition of proliferation of MV4-11 cell line. Compound 10a and 10d exhibited better efficacy (MV4-11, IC50: 14.7 nM for 10a and 24.8 nM for 10d) than positive control sunitinib (MV4-11, IC50: 38.5 nM). The kinase and cellular inhibition assay exhibited that 10d (FLT3, IC50: 5.3 nM) was a potent and selective FLT3 inhibitor. Furthermore, the pharmacokinetic experiments showed that 10d had good properties of oral bioavailability, Cmax, Tmax, T1/2 and AUC in mice, respectively. The in vivo study indicated that 10d could significantly suppress tumor growth in MV4-11 xenografts nude mice model and occupied with a commendable therapeutic window compared to sunitinib.
Collapse
Affiliation(s)
- Fei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Peng Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Min Lei
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, Jiangsu, 200237, China.
| | - Hongtao Wang
- Shijiazhuang Yiling Pharmceutical Company, 238 Tianshan Street, Shijiazhuang, 050035, China
| | - Shaohua Zhao
- Shijiazhuang Yiling Pharmceutical Company, 238 Tianshan Street, Shijiazhuang, 050035, China
| | - Lihong Hu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, Jiangsu, 200237, China.
| |
Collapse
|