1
|
Todorova SE, Rusew RI, Shivachev BL, Kurteva VB. Polydentate N, O-Ligands Possessing Unsymmetrical Urea Fragments Attached to a p-Cresol Scaffold. Molecules 2023; 28:6540. [PMID: 37764315 PMCID: PMC10536015 DOI: 10.3390/molecules28186540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, three series of polydentate N,O-ligands possessing unsymmetrical urea fragments attached to a p-cresol scaffold are obtained, namely mono- and bi-substituted open-chain aromatics, synthesised using a common experiment, as well as fused aryloxazinones. Separate protocols for the preparation of each series are developed. It is found that in the case of open-chain compounds, the reaction output is strongly dependent on both bis-amine and carbamoyl chloride substituents, while oxazinones can be effectively obtained via a common protocol. The products are characterized via 1D and 2D NMR spectra in solution and using single-crystal XRD. A preliminary study on the coordination abilities of the products performed via ITC shows that there are no substantial interactions in the pH range of 5.0-8.5 in general.
Collapse
Affiliation(s)
- Stanislava E. Todorova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria
| | - Rusi I. Rusew
- Institute of Mineralogy and Crystallography “Acad. Ivan Kostov”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 107, 1113 Sofia, Bulgaria;
| | - Boris L. Shivachev
- Institute of Mineralogy and Crystallography “Acad. Ivan Kostov”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 107, 1113 Sofia, Bulgaria;
| | - Vanya B. Kurteva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria
| |
Collapse
|
2
|
Thakur A, Faujdar C, Sharma R, Sharma S, Malik B, Nepali K, Liou JP. Glioblastoma: Current Status, Emerging Targets, and Recent Advances. J Med Chem 2022; 65:8596-8685. [PMID: 35786935 PMCID: PMC9297300 DOI: 10.1021/acs.jmedchem.1c01946] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Glioblastoma (GBM) is a highly malignant
brain tumor characterized
by a heterogeneous population of genetically unstable and highly infiltrative
cells that are resistant to chemotherapy. Although substantial efforts
have been invested in the field of anti-GBM drug discovery in the
past decade, success has primarily been confined to the preclinical
level, and clinical studies have often been hampered due to efficacy-,
selectivity-, or physicochemical property-related issues. Thus, expansion
of the list of molecular targets coupled with a pragmatic design of
new small-molecule inhibitors with central nervous system (CNS)-penetrating
ability is required to steer the wheels of anti-GBM drug discovery
endeavors. This Perspective presents various aspects of drug discovery
(challenges in GBM drug discovery and delivery, therapeutic targets,
and agents under clinical investigation). The comprehensively covered
sections include the recent medicinal chemistry campaigns embarked
upon to validate the potential of numerous enzymes/proteins/receptors
as therapeutic targets in GBM.
Collapse
Affiliation(s)
- Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Chetna Faujdar
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201307, India
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Basant Malik
- Department of Sterile Product Development, Research and Development-Unit 2, Jubiliant Generics Ltd., Noida 201301, India
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
3
|
Nada H, Elkamhawy A, Abdellattif MH, Angeli A, Lee CH, Supuran CT, Lee K. 4-Anilinoquinazoline-based benzenesulfonamides as nanomolar inhibitors of carbonic anhydrase isoforms I, II, IX, and XII: design, synthesis, in-vitro, and in-silico biological studies. J Enzyme Inhib Med Chem 2022; 37:994-1004. [PMID: 35350942 PMCID: PMC8973350 DOI: 10.1080/14756366.2022.2055553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Human carbonic anhydrase inhibitors (hCAIs) are a key therapeutic class with a multitude of novel applications such as anticonvulsants, topically acting antiglaucoma, and anticancer drugs. Herein, a new series of 4-anilinoquinazoline-based benzenesulfonamides were designed, synthesised, and biologically assessed as potential hCAIs. The target compounds are based on the well-tolerated kinase scaffold (4-anilinoquinazoline). Compounds 3a (89.4 nM), 4e (91.2 nM), and 4f (60.9 nM) exhibited 2.8, 2.7, and 4 folds higher potency against hCA I when compared to the standard (AAZ, V), respectively. A single digit nanomolar activity was elicited by compounds 3a (8.7 nM), 4a (2.4 nM), and 4e (4.6 nM) with 1.4, 5, and 2.6 folds of potency compared to AAZ (12.1 nM) against isoform hCA II, respectively. Structure-activity relationship (SAR) and molecular docking studies validated our design approach that revealed highly potent hCAIs.
Collapse
Affiliation(s)
- Hossam Nada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Ahmed Elkamhawy
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea.,Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Magda H Abdellattif
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Chang Hoon Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
4
|
Sun G, Mao L, Deng W, Xu S, Zhao J, Yang J, Yao K, Yuan M, Li W. Discovery of a Series of 1,2,3-Triazole-Containing Erlotinib Derivatives With Potent Anti-Tumor Activities Against Non-Small Cell Lung Cancer. Front Chem 2022; 9:789030. [PMID: 35071184 PMCID: PMC8776995 DOI: 10.3389/fchem.2021.789030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/10/2021] [Indexed: 01/04/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are emerging at the vanguard of therapy for non-small-cell lung cancer (NSCLC) patients with EGFR-activating mutations. However, the increasing therapeutic resistance caused by novel mutations or activated bypass pathways has impaired their performance. In this study, we link one of the commercial EGFR-TKIs, Erlotinib, to different azide compounds to synthesize a novel class of 1,2,3-triazole ring-containing Erlotinib derivatives. We discovered that several new compounds show robust antiproliferation activity against diverse NSCLC cells in vitro including PC-9, H460, H1975 and A549. Two of the most potent compounds, e4 and e12 have been found to be more efficient than Erlotinib in all NSCLC cell lines except PC-9. They significantly induce apoptosis and cell cycle arrest in PC-9 and H460 cells. The antitumor efficacy of compound e4 in vivo is close to that of Erlotinib in a PC-9 xenograft mouse model. Most Erlotinib-1,2,3-triazole compounds exhibit moderate to good inhibitory activities toward wild-type EGFR as indicated by enzyme-linked immunosorbent assay (ELISA), and the EGFR phosphorylation was inhibited in H460 and PC-9 cells exposed to e4 or e12. These data suggest that these Erlotinib-1,2,3-triazole compounds are suitable candidates for use against NSCLC and more unknown mechanisms merit further investigation.
Collapse
Affiliation(s)
- Ge Sun
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Longfei Mao
- Henan Engineering Research Center of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Wenjing Deng
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shuxiang Xu
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jie Zhao
- Henan Engineering Research Center of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Jianxue Yang
- Department of Neurology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- School of Nursing, Henan University of Science and Technology, Luoyang, China
| | - Kaitai Yao
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Miaomiao Yuan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wei Li
- Henan Engineering Research Center of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| |
Collapse
|
5
|
H. Abdellattif M, Elkamhawy A, Nada H. Synthesis, Biological Evaluation, and In Silico Studies of New Heterocycles Incorporating 4,5,6,7-Tetrabromophthalimide Moiety as Potential Antibacterial and Anticancer Agents. HETEROCYCLES 2022. [DOI: 10.3987/com-21-14535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Elkamhawy A, Woo J, Gouda NA, Kim J, Nada H, Roh EJ, Park KD, Cho J, Lee K. Melatonin Analogues Potently Inhibit MAO-B and Protect PC12 Cells against Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10101604. [PMID: 34679739 PMCID: PMC8533333 DOI: 10.3390/antiox10101604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/03/2021] [Accepted: 10/09/2021] [Indexed: 12/21/2022] Open
Abstract
Monoamine oxidase B (MAO-B) metabolizes dopamine and plays an important role in oxidative stress by altering the redox state of neuronal and glial cells. MAO-B inhibitors are a promising therapeutical approach for Parkinson’s disease (PD). Herein, 24 melatonin analogues (3a–x) were synthesized as novel MAO-B inhibitors with the potential to counteract oxidative stress in neuronal PC12 cells. Structure elucidation, characterization, and purity of the synthesized compounds were performed using 1H-NMR, 13C-NMR, HRMS, and HPLC. At 10 µM, 12 compounds showed >50% MAO-B inhibition. Among them, compounds 3n, 3r, and 3u–w showed >70% inhibition of MAO-B and IC50 values of 1.41, 0.91, 1.20, 0.66, and 2.41 µM, respectively. When compared with the modest selectivity index of rasagiline (II, a well-known MAO-B inhibitor, SI > 50), compounds 3n, 3r, 3u, and 3v demonstrated better selectivity indices (SI > 71, 109, 83, and 151, respectively). Furthermore, compounds 3n and 3r exhibited safe neurotoxicity profiles in PC12 cells and reversed 6-OHDA- and rotenone-induced neuronal oxidative stress. Both compounds significantly up-regulated the expression of the anti-oxidant enzyme, heme oxygenase (HO)-1. Treatment with Zn(II)-protoporphyrin IX (ZnPP), a selective HO-1 inhibitor, abolished the neuroprotective effects of the tested compounds, suggesting a critical role of HO-1 up-regulation. Both compounds increased the nuclear translocation of Nrf2, which is a key regulator of the antioxidative response. Taken together, these data show that compounds 3n and 3r could be further exploited for their multi-targeted role in oxidative stress-related PD therapy.
Collapse
Affiliation(s)
- Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (A.E.); (J.W.); (N.A.G.); (H.N.)
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Jiyu Woo
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (A.E.); (J.W.); (N.A.G.); (H.N.)
| | - Noha A. Gouda
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (A.E.); (J.W.); (N.A.G.); (H.N.)
| | - Jushin Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Hossam Nada
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (A.E.); (J.W.); (N.A.G.); (H.N.)
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University, Cairo 11829, Egypt
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
- Correspondence: (K.D.P.); (J.C.); (K.L.)
| | - Jungsook Cho
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (A.E.); (J.W.); (N.A.G.); (H.N.)
- Correspondence: (K.D.P.); (J.C.); (K.L.)
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (A.E.); (J.W.); (N.A.G.); (H.N.)
- Correspondence: (K.D.P.); (J.C.); (K.L.)
| |
Collapse
|
7
|
Elkamhawy A, Kim HJ, Elsherbeny MH, Paik S, Park JH, Gotina L, Abdellattif MH, Gouda NA, Cho J, Lee K, Nim Pae A, Park KD, Roh EJ. Discovery of 3,4-dichloro-N-(1H-indol-5-yl)benzamide: A highly potent, selective, and competitive hMAO-B inhibitor with high BBB permeability profile and neuroprotective action. Bioorg Chem 2021; 116:105352. [PMID: 34562673 DOI: 10.1016/j.bioorg.2021.105352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/29/2021] [Accepted: 09/07/2021] [Indexed: 01/07/2023]
Abstract
Since there is no disease-modifying treatment discovered yet for Parkinson's disease (PD), there is still a vital need to develop novel selective monoamine oxidase B (MAO-B) inhibitors as promising therapeutically active candidates for PD patients. Herein, we report the design, synthesis, and full characterization of new twenty-six indole derivatives as potential human MAO-B (hMAO-B) selective inhibitors. Six compounds (2i, 3b-e, and 5) exhibited low micromolar to nanomolar inhibitory activities over hMAO-B; compared to our recently reported N-substituted indole-based lead compound VIII (hMAO-B IC50 = 777 nM), compound 5 (3,4-dichloro-N-(1H-indol-5-yl)benzamide) exhibited 18-fold increase in potency (IC50 = 42 nM). A selectivity study over hMAO-A revealed an excellent selectivity index of compound 5 (SI > 2375) with a 47-fold increase compared to rasagiline (II, a well-known MAO-B inhibitor, SI > 50). A further kinetic evaluation of compound 5 over hMAO-B showed a reversible and competitive mode of inhibition with Ki value of 7 nM. Highly effective permeability and high CNS bioavailability of compound 5 with Pe = 54.49 × 10-6 cm/s were demonstrated. Compound 5 also exhibited a low cytotoxicity profile and a promising neuroprotective effect against the 6-hydroxydopamine-induced neuronal cell damage in PC12 cells, which was more effective than that of rasagiline. Docking simulations on both hMAO-B and hMAO-A supported the in vitro data and served as further molecular evidence. Accordingly, we report the discovery of compound 5 as one of the most potent indole-based MAO-B inhibitors to date which is noteworthy to be further evaluated as a promising agent for PD treatment.
Collapse
Affiliation(s)
- Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Hyeon Jeong Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Mohamed H Elsherbeny
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza 12566, Egypt
| | - Sora Paik
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jong-Hyun Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Lizaveta Gotina
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Magda H Abdellattif
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Noha A Gouda
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Jungsook Cho
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
8
|
Development of New Meridianin/Leucettine-Derived Hybrid Small Molecules as Nanomolar Multi-Kinase Inhibitors with Antitumor Activity. Biomedicines 2021; 9:biomedicines9091131. [PMID: 34572319 PMCID: PMC8468039 DOI: 10.3390/biomedicines9091131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/23/2021] [Accepted: 08/27/2021] [Indexed: 12/31/2022] Open
Abstract
Although the sea ecosystem offers a broad range of bioactivities including anticancer, none of the FDA-approved antiproliferative protein kinase inhibitors are derived from a marine source. In a step to develop new marine-inspired potent kinase inhibitors with antiproliferative activities, a new series of hybrid small molecules (5a–5g) was designed and synthesized based on chemical moieties derived from two marine natural products (Meridianin E and Leucettamine B). Over a panel of 14 cancer-related kinases, a single dose of 10 µM of the parent hybrid 5a possessing the benzo[d][1,3]dioxole moiety of Leucettamine B was able to inhibit the activity of FMS, LCK, LYN, and DAPK1 kinases with 82.5 ± 0.6, 81.4 ± 0.6, 75.2 ± 0.0, and 55 ± 1.1%, respectively. Further optimization revealed the most potent multiple kinase inhibitor of this new series (5g) with IC50 values of 110, 87.7, and 169 nM against FMS, LCK, and LYN kinases, respectively. Compared to imatinib (FDA-approved multiple kinase inhibitor), compound 5g was found to be ~ 9- and 2-fold more potent than imatinib over both FMS and LCK kinases, respectively. In silico docking simulation models of the synthesized compounds within the active site of FMS, LCK, LYN, and DAPK1 kinases offered reasonable explanations of the elicited biological activities. In an in vitro anticancer assay using a library of 60 cancer cell lines that include blood, lung, colon, CNS, skin, ovarian, renal, prostate, and breast cancers, it was found that compound 5g was able to suppress 60 and 70% of tumor growth in leukemia SR and renal RXF 393 cell lines, respectively. Moreover, an ADME study indicated a suitable profile of compound 5g concerning cell permeability and blood-brain barrier (BBB) impermeability, avoiding possible CNS side effects. Accordingly, compound 5g is reported as a potential lead towards novel antiproliferative marine-derived kinase modulators.
Collapse
|
9
|
Hassan R, Mohi-Ud-Din R, Dar MO, Shah AJ, Mir PA, Shaikh M, Pottoo FH. Bioactive Heterocyclic Compounds as Potential Therapeutics in the Treatment of Gliomas: A Review. Anticancer Agents Med Chem 2021; 22:551-565. [PMID: 34488596 DOI: 10.2174/1871520621666210901112954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 12/24/2022]
Abstract
Cancer is one of the most alarming diseases, with an estimation of 9.6 million deaths in 2018. Glioma occurs in glial cells surrounding nerve cells. The majority of the patients with gliomas have a terminal prognosis, and the ailment has significant sway on patients and their families, be it physical, psychological, or economic wellbeing. As Glioma exhibits, both intra and inter tumour heterogeneity with multidrug resistance and current therapies are ineffective. So the development of safer anti gliomas agents is the need of hour. Bioactive heterocyclic compounds, eithernatural or synthetic,are of potential interest since they have been active against different targets with a wide range of biological activities, including anticancer activities. In addition, they can cross the biological barriers and thus interfere with various signalling pathways to induce cancer cell death. All these advantages make bioactive natural compounds prospective candidates in the management of glioma. In this review, we assessed various bioactive heterocyclic compounds, such as jaceosidin, hispudlin, luteolin, silibinin, cannabidiol, tetrahydrocannabinol, didemnin B, thymoquinone, paclitaxel, doxorubicin, and cucurbitacins for their potential anti-glioma activity. Also, different kinds of chemical reactions to obtain various heterocyclic derivatives, e.g. indole, indazole, benzimidazole, benzoquinone, quinoline, quinazoline, pyrimidine, and triazine, are listed.
Collapse
Affiliation(s)
- Reyaz Hassan
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir. India
| | - Roohi Mohi-Ud-Din
- Pharmacognosy Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, Kashmir. India
| | - Mohammad Ovais Dar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Science and Research (NIPER), S.A.S. Nagar, Mohali, Punjab-160062. India
| | - Abdul Jalil Shah
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir. India
| | - Prince Ahad Mir
- Amritsar Pharmacy College, 12 KM stone Amritsar Jalandhar GT Road, Mandwala-143001. India
| | - Majeed Shaikh
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001. India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 31441, Dammam. Saudi Arabia
| |
Collapse
|
10
|
Grover P, Bhardwaj M, Kapoor G, Mehta L, Ghai R, Nagarajan K. Advances on Quinazoline Based Congeners for Anticancer Potential. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210212121056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The heterocyclic compounds have a great significance in medicinal chemistry because
they have extensive biological activities. Cancer is globally the leading cause of death
and it is a challenge to develop appropriate treatment for the management of cancer. Continuous
efforts are being made to find a suitable medicinal agent for cancer therapy. Nitrogencontaining
heterocycles have received noteworthy attention due to their wide and distinctive
pharmacological activities. One of the most important nitrogen-containing heterocycles in
medicinal chemistry is ‘quinazoline’ that possesses a wide spectrum of biological properties.
This scaffold is an important pharmacophore and is considered a privileged structure. Various
substituted quinazolines displayed anticancer activity against different types of cancer. This
review highlights the recent advances in quinazoline based molecules as anticancer agents.
Several in-vitro and in-vivo models used along with the results are also included. A subpart briefing natural quinazoline
containing anticancer compounds is also incorporated in the review.
Collapse
Affiliation(s)
- Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, India
| | - Monika Bhardwaj
- Natural Product Chemistry Division, Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Garima Kapoor
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, India
| | - Lovekesh Mehta
- Amity Institute of Pharmacy, Amity University, Noida, 201301, India
| | - Roma Ghai
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, India
| | - K. Nagarajan
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, India
| |
Collapse
|
11
|
El-Damasy AK, Haque MM, Park JW, Shin SC, Lee JS, EunKyeong Kim E, Keum G. 2-Anilinoquinoline based arylamides as broad spectrum anticancer agents with B-RAF V600E/C-RAF kinase inhibitory effects: Design, synthesis, in vitro cell-based and oncogenic kinase assessments. Eur J Med Chem 2020; 208:112756. [PMID: 32942186 DOI: 10.1016/j.ejmech.2020.112756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/27/2020] [Accepted: 08/12/2020] [Indexed: 11/15/2022]
Abstract
Prompted by the urgent demand for identification of new anticancer agents with improved potency and efficacy, a new series of arylamides incorporating the privileged 2-anilinoquinoline scaffold has been designed, synthesized, and biologically assessed. Aiming at extensive evaluation of the target compounds' potency and spectrum, a panel of 60 clinically important cancer cell lines representing nine cancer types has been used. Compounds 9a and 9c, with piperazine substituted phenyl ring, emerged as the most active members surpassing the anticancer potencies of the FDA-approved drug imatinib. They elicited sub-micromolar or one-digit micromolar GI50 values over the majority of tested cancer cells including multidrug resistant (MDR) cells like colon HCT-15, renal TK-10 and UO-31, and ovarian NCI/ADR-RES. In vitro mechanistic study showed that compounds 9a and 9c could trigger morphological changes, apoptosis and cell cycle arrest in HCT-116 colon cancer cells. Besides, compound 9c altered microtubule polymerization pattern in a similar fashion to paclitaxel. Kinase screening of 9c disclosed its inhibitory activity over B-RAFV600E and C-RAF kinases with IC50 values of 0.888 μM and 0.229 μM, respectively. Taken together, the current report presents compounds 9a and 9c as promising broad-spectrum potent anticancer candidates, which could be considered for further development of new anticancer drugs.
Collapse
Affiliation(s)
- Ashraf K El-Damasy
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 136-791, Republic of Korea; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Md Mamunul Haque
- Molecular Recognition Research Center, KIST, Seoul, 02792, Republic of Korea
| | - Jung Woo Park
- Center for Supercomputing Applications, Div. of National Supercomputing R&D, Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sang Chul Shin
- Biomedical Research Institute, KIST, Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jun-Seok Lee
- Molecular Recognition Research Center, KIST, Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, KIST, Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Gyochang Keum
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 136-791, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
12
|
Design, synthesis and cytotoxicity of the antitumor agent 1-azabicycles for chemoresistant glioblastoma cells. Invest New Drugs 2019; 38:1257-1271. [PMID: 31838735 DOI: 10.1007/s10637-019-00877-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/05/2019] [Indexed: 10/25/2022]
Abstract
Twelve multi-functional pyrrolizidinones, indolizidinones and pyrroliazepinones were prepared from formal aza-[3 + 2] and aza-[3 + 3] cycloadditions of five- to seven-membered heterocyclic enaminones as diverse ambident electrophiles. The antitumor activity of these alkaloid-like compounds was investigated through an initial screening performed on human glioblastoma multiform (GBM) cell lines (GL-15, U251), on murine glioma cells line (C6) and on normal glial cells. Of the compounds tested, the new pyrrolo[1,2a]azepinone, [ethyl (3-oxo-1,2-diphenyl-6,7,8,9-tetrahydro-3H-pyrrolo[1,2a]azepin-9a(5H)-yl)acetate] or (Compound-13) exhibited selective cytotoxic effects on GBM-temozolomide resistant cells. Compound-13 exerted dose-dependent cytotoxic activity by promoting arrest of cells in the G0/G1 phase of the cell cycle in the first 24 h. The apoptotic effect observed was in a time-dependent manner. Anti-migratory effect promoted by the treatment with compound-13 was also observed. Moreover, healthy mixed glial cell cultures from rat brain exhibited no cytotoxicity effect upon exposure to compound-13. Thus, the present study paves the way for the use of compound-13 as novel antitumor scaffold candidate for glioma cell therapy.
Collapse
|
13
|
Malhotra A, Kaur T, Bansal R. Synthesis and Pharmacological Evaluation of 4‐Aryloxyquinazoline Derivatives as Potential Cytotoxic Agents. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Anjleena Malhotra
- University Institute of Pharmaceutical SciencesPanjab University Chandigarh 160014 India
| | - Tejinder Kaur
- University Institute of Pharmaceutical SciencesPanjab University Chandigarh 160014 India
| | - Ranju Bansal
- University Institute of Pharmaceutical SciencesPanjab University Chandigarh 160014 India
| |
Collapse
|
14
|
Denora N, Lee C, Iacobazzi RM, Choi JY, Song IH, Yoo JS, Piao Y, Lopalco A, Leonetti F, Lee BC, Kim SE. TSPO-targeted NIR-fluorescent ultra-small iron oxide nanoparticles for glioblastoma imaging. Eur J Pharm Sci 2019; 139:105047. [PMID: 31422171 DOI: 10.1016/j.ejps.2019.105047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/15/2019] [Accepted: 08/15/2019] [Indexed: 12/29/2022]
Abstract
The translocator protein 18 kDa (TSPO) is mainly located in outer membrane of mitochondria and results highly expressed in a variety of tumor including breast, colon, prostate, ovarian and brain (such as glioblastoma). Glioblastoma multiforme (GBM) is the most common and lethal type of primary brain tumor. Although GBM patients had currently available therapies, the median survival is <14 months. Complete surgical resection of GBM is critical to improve GBM treatment. In this study, we performed the one-step synthesis of water-dispersible ultra-small iron oxide nanoparticles (USPIONs) and combine them with an imidazopyridine based TSPO ligand and a fluorescent dye. The optical and structural characteristics of TSPO targeted-USPIONs were properly evaluated at each step of preparation demonstrating the high colloidal stability in physiological media and the ability to preserve the relevant optical properties in the NIR region. The cellular uptake in TSPO expressing cells was assessed by confocal microscopy. The TSPO selectivity was confirmed in vivo by competition studies with the TSPO ligand PK 11195. In vivo fluorescence imaging of U87-MG xenograft models were performed to highlight the great potential of the new NIR imaging nanosystem for diagnosis and successful delineation of GBM.
Collapse
Affiliation(s)
- Nunzio Denora
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari 70125, Italy; Institute for Physical and Chemical Processes (IPCF)-CNR, SS Bari, Via Orabona, St. 4, 70125 Bari, Italy.
| | - Chaedong Lee
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 16229, Republic of Korea.
| | | | - Ji Young Choi
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 16229, Republic of Korea; Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea.
| | - In Ho Song
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea.
| | - Jung Sun Yoo
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region.
| | - Yuanzhe Piao
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 16229, Republic of Korea; Advanced Institutes of Convergence Technology, Suwon 16229, Republic of Korea.
| | - Antonio Lopalco
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari 70125, Italy.
| | - Francesco Leonetti
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari 70125, Italy.
| | - Byung Chul Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; Advanced Institutes of Convergence Technology, Suwon 16229, Republic of Korea.
| | - Sang Eun Kim
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 16229, Republic of Korea; Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; Advanced Institutes of Convergence Technology, Suwon 16229, Republic of Korea.
| |
Collapse
|
15
|
Fernandes GFDS, Fernandes BC, Valente V, Dos Santos JL. Recent advances in the discovery of small molecules targeting glioblastoma. Eur J Med Chem 2018; 164:8-26. [PMID: 30583248 DOI: 10.1016/j.ejmech.2018.12.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/22/2022]
Abstract
Glioblastoma (GBM) is one of the most common central nervous system cancers. It is characterized as a fast-growing tumor that arises from multiple cell types with neural stem-cell-like properties. Additionally, GBM tumors are highly invasive, which is attributed to the presence of glioblastoma stem cells that makes surgery ineffective in most cases. Currently, temozolomide is the unique chemotherapy option approved by the U.S. Food and Drug Administration for GBM treatment. This review analyzes the emergence and development of new synthetic small molecules discovered as promising anti-glioblastoma agents. A number of compounds were described herein and grouped according to the main chemical class used in the drug discovery process. Importantly, we focused only on synthetic compounds published in the last 10 years, thus excluding natural products. Furthermore, we included in this review only those most biologically active compounds with proven in vitro and/or in vivo efficacy.
Collapse
Affiliation(s)
- Guilherme Felipe Dos Santos Fernandes
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, 14800-903, Brazil; São Paulo State University (UNESP), Institute of Chemistry, Araraquara, 14800-060, Brazil
| | - Barbara Colatto Fernandes
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, 14800-903, Brazil
| | - Valeria Valente
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, 14800-903, Brazil
| | - Jean Leandro Dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, 14800-903, Brazil; São Paulo State University (UNESP), Institute of Chemistry, Araraquara, 14800-060, Brazil.
| |
Collapse
|
16
|
Zeng A, Ye T, Cao D, Huang X, Yang Y, Chen X, Xie Y, Yao S, Zhao C. Identify a Blood-Brain Barrier Penetrating Drug-TNB using Zebrafish Orthotopic Glioblastoma Xenograft Model. Sci Rep 2017; 7:14372. [PMID: 29085081 PMCID: PMC5662771 DOI: 10.1038/s41598-017-14766-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 10/12/2017] [Indexed: 02/05/2023] Open
Abstract
The blood-brain barrier (BBB) is necessary for maintaining brain homeostasis, but it also represents a major challenge for drug delivery to the brain tumors. A suitable in vivo Glioblastoma Multiforme (GBM) model is needed for efficient testing of BBB crossable pharmaceuticals. In this study, we firstly confirmed the BBB functionality in 3dpf zebrafish embryos by Lucifer Yellow, Evans Blue and DAPI microinjection. We then transplanted human GBM tumor cells into the zebrafish brain, in which implanted GBM cells (U87 and U251) were highly mitotic and invasive, mimicking their malignancy features in rodents' brain. Interestingly, we found that, although extensive endothelial proliferation and vessel dilation were observed in GBM xenografts, the BBB was still not disturbed. Next, using the zebrafish orthotopic GBM xenograft model as an in vivo visual readout, we successfully identified a promising small compound named TNB, which could efficiently cross the zebrafish BBB and inhibit the progression of orthotopic GBM xenografts. These results indicate that TNB is a promising BBB crossable GBM drug worth to be further characterized in human BBB setting, also suggest the zebrafish orthotopic GBM model as an efficient visual readout for the BBB penetrating anti-GBM drugs.
Collapse
Affiliation(s)
- Anqi Zeng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, P.R. China
| | - Tinghong Ye
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, P.R. China
| | - Dan Cao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, P.R. China
| | - Xi Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, P.R. China
| | - Yu Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, P.R. China
| | - Xiuli Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, P.R. China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, P.R. China
| | - Shaohua Yao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, P.R. China.
| | - Chengjian Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, P.R. China.
| |
Collapse
|
17
|
Kim T, Son WS, Morshed MN, Londhe AM, Jung SY, Park JH, Park WK, Lim SM, Park KD, Cho SJ, Jeong KS, Lee J, Pae AN. Discovery of thienopyrrolotriazine derivatives to protect mitochondrial function against Aβ-induced neurotoxicity. Eur J Med Chem 2017; 141:240-256. [PMID: 29031071 DOI: 10.1016/j.ejmech.2017.09.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 01/13/2023]
Abstract
Recovery of mitochondrial dysfunction has gained increasing attention as an alternative therapeutic strategy for Alzheimer's disease (AD). Recent studies suggested that the 18 kDa mitochondrial translocator protein (TSPO) has the potential to serve as a drug target for the treatment of AD. In this study, we generated a structure-based pharmacophore model and virtually screened a commercial library, identifying SVH07 as a virtual hit, which contained a tricyclic core structure, thieno[2',3':4,5]pyrrolo[1,2-d][1,2,4]triazine group. A series of SVH07 analogues were synthesized and their effects on the mitochondrial membrane potential and ATP production were determined by using neuronal cells under Aβ-induced toxicity. Among these analogues, compound 26 significantly recovered mitochondrial membrane depolarization and ATP production. In vitro binding assays indicated that SVH07 and 26 showed high affinities to TSPO with the IC50 values in a nanomolar range. We believe that compound 26 is a promising lead compound for the development of TSPO-targeted mitochondrial functional modulators with therapeutic potential in AD.
Collapse
Affiliation(s)
- TaeHun Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Biological Chemistry, Korea University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejon 34113, Republic of Korea
| | - Woo Seung Son
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Department of Chemistry, Yonsei University, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Mohammad Neaz Morshed
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Center for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka 1000, Bangladesh
| | - Ashwini M Londhe
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Biological Chemistry, Korea University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejon 34113, Republic of Korea
| | - Seo Yun Jung
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jong-Hyun Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Woo-Kyu Park
- Center for Drug Discovery Technology, Korea Research Institute of Chemical Technology, Gajeong-ro 141, Yuseong-gu, Daejon 34114, Republic of Korea
| | - Sang Min Lim
- Biological Chemistry, Korea University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejon 34113, Republic of Korea; Center for Neuro-Medicine, Korea Institute of Science and Technology (KIST), Hwarangno 14- gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Biological Chemistry, Korea University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejon 34113, Republic of Korea
| | - Sung Jin Cho
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Kyu-Sung Jeong
- Department of Chemistry, Yonsei University, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Jiyoun Lee
- Department of Global Medical Science, Sungshin University, Seoul 01133, Republic of Korea.
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Biological Chemistry, Korea University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejon 34113, Republic of Korea.
| |
Collapse
|
18
|
Synthesis of 2-aryl quinazolines from (2-aminophenyl)methanol and oxime ether catalyzed by copper ferrite nanoparticles. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.01.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Design, synthesis, and biological evaluation of novel quinazolinyl-diaryl urea derivatives as potential anticancer agents. Eur J Med Chem 2016; 107:12-25. [DOI: 10.1016/j.ejmech.2015.10.045] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/21/2015] [Accepted: 10/27/2015] [Indexed: 12/19/2022]
|