1
|
Shen Y, Li Y, Wang X, Wei J, Shen Y, Wu L, Luo K. Late-stage C-H trifluoroacetylation of quinoxaline-2(1 H)-ones using masked trifluoroacyl reagents. Org Biomol Chem 2025; 23:1683-1688. [PMID: 39790052 DOI: 10.1039/d4ob01945h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
A strategy for trifluoroacetylation of quinoxaline-2(1H)-ones has been investigated. This strategy employs masked trifluoroacyl reagents to obtain trifluoroacetylated quinoxaline-2(1H)-ones under metal-, catalyst-, and light-free conditions. This approach is distinguished by its functional group compatibility and tolerance, as well as the simplicity of the experimental process, making it suitable for gram-scale synthesis.
Collapse
Affiliation(s)
- Yawei Shen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Yuan Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Xia Wang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Jiaoyan Wei
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Yafen Shen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Kai Luo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| |
Collapse
|
2
|
Liu L, Liu J, Li S, Yang M, Zhao X, Lu K. Visible light induced hydroxyfluoroalkylation of quinoxalin-2(1 H)-ones with N-trifluoroethoxyphthalimide under catalyst-free conditions. Org Biomol Chem 2025; 23:629-637. [PMID: 39587952 DOI: 10.1039/d4ob01616e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
For the first time, we achieved visible light-induced direct C3-hydroxyfluoroalkylation of quinoxalin-2(1H)-ones using N-trifluoroethoxyphthalimide as the trifluoroethanol radical precursor, without the need for a photocatalyst. The metal-free and catalyst-free nature of this method makes it an efficient and environmentally friendly approach for synthesizing C3-hydroxyfluoroalkylated quinoxalin-2(1H)-ones.
Collapse
Affiliation(s)
- Liting Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China.
| | - Jing Liu
- Department of Chemistry, College of Sciences, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Siqi Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China.
| | - Mengfei Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China.
| | - Xia Zhao
- College of Chemistry, TianJin Key Laboratory of Structure and Performance for Functional Molecules, TianJin Normal University, TianJin, 300387, China
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China.
- Department of Chemistry, College of Sciences, Tianjin University of Science &Technology, Tianjin 300457, China
| |
Collapse
|
3
|
Mizuta S, Yamaguchi T, Iwasaki M, Ishikawa T. A facile access to aliphatic trifluoromethyl ketones via photocatalyzed cross-coupling of bromotrifluoroacetone and alkenes. Org Biomol Chem 2024; 22:8847-8856. [PMID: 39258408 DOI: 10.1039/d4ob01247j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Biological molecules incorporating trifluoromethyl ketones (TFMKs) have emerged as reversible covalent inhibitors, aiding in the management and treatment of inflammatory diseases, cancer, and respiratory conditions. TFMKs, renowned for their versatile binding properties and adaptability, are pivotal in the rational design of novel drugs for diverse diseases. The photocatalytic insertion of alkenes, abundant feedstocks, into the α-carbon of trifluoromethylacetone represents a highly effective and atom-economical method for synthesizing valuable TFMKs. However, these processes typically necessitate high-energy photoirradiation (λ > 300 nm, Hg lamp) and stoichiometric oxidants to generate the acetonyl radical from acetone. In our study, we demonstrate the visible-light photocatalytic radical addition into olefins using bromotrifluoroacetone as the trifluoroacetonyl radical precursor under mild conditions. Aliphatic trifluoromethyl ketones or the corresponding bromo-substituted products can be obtained by selecting an appropriate photocatalyst and solvent. Comprehensive experimental investigations, including cyclic voltammetry, Stern-Volmer quenching studies, and kinetic isotope effects, corroborate the synthesis of trifluoroacetonyl radical species from bromotrifluoroacetone under photoredox conditions. Further, we demonstrate the efficient synthesis of an oseltamivir derivative bearing a trifluoromethylketone moiety, which shows promising biological activity. Hence, this methodology will streamline the direct introduction of trifluoromethyl ketone into biological target molecules during drug discovery.
Collapse
Affiliation(s)
- Satoshi Mizuta
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan.
| | - Tomoko Yamaguchi
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan.
| | - Masaharu Iwasaki
- Laboratory of Emerging Viral Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Advanced Modalities and Drug Delivery System, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
- RNA Frontier Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| | - Takeshi Ishikawa
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|
4
|
Zhang H, Shen Q, Hu Z, Wu PQ, Chen Y, Zhao JX, Yue JM. Design, Synthesis, and Biological Evaluation of HDAC Inhibitors Containing Natural Product-Inspired N-Linked 2-Acetylpyrrole Cap. Molecules 2024; 29:4653. [PMID: 39407581 PMCID: PMC11477621 DOI: 10.3390/molecules29194653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Drawing inspiration from the structural resemblance between a natural product N-(3-carboxypropyl)-2-acetylpyrrole and phenylbutyric acid, a pioneer HDAC inhibitor evaluated in clinical trials, we embarked on the design and synthesis of a novel array of HDAC inhibitors containing an N-linked 2-acetylpyrrole cap by utilizing the pharmacophore fusion strategy. Among them, compound 20 exhibited potential inhibitory activity on HDAC1, and demonstrated notable potency against RPMI-8226 cells with an IC50 value of 2.89 ± 0.43 μM, which was better than chidamide (IC50 = 10.23 ± 1.02 μM). Western blot analysis and Annexin V-FTIC/propidium iodide (PI) staining showed that 20 could enhance the acetylation of histone H3, as well as remarkably induce apoptosis of RPMI-8226 cancer cells. The docking study highlighted the presence of a hydrogen bond between the carbonyl oxygen of the 2-acetylpyrrole cap group and Phe198 of the HDAC1 enzyme in 20, emphasizing the crucial role of introducing this natural product-inspired cap group. Molecular dynamics simulations showed that the docked complex had good conformational stability. The ADME parameters calculation showed that 20 possesses remarkable theoretical drug-likeness properties. Taken together, these results suggested that 20 is worthy of further exploration as a potential HDAC-targeted anticancer drug candidate.
Collapse
Affiliation(s)
- Han Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China;
- State Key Laboratory of Drug Research, Ethnomedicine and Biofunctional Molecule Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; (Z.H.); (P.-Q.W.)
| | - Qianqian Shen
- State Key Laboratory of Chemical Biology, Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China;
| | - Zhu Hu
- State Key Laboratory of Drug Research, Ethnomedicine and Biofunctional Molecule Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; (Z.H.); (P.-Q.W.)
| | - Pei-Qian Wu
- State Key Laboratory of Drug Research, Ethnomedicine and Biofunctional Molecule Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; (Z.H.); (P.-Q.W.)
| | - Yi Chen
- State Key Laboratory of Chemical Biology, Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China;
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai 264117, China
| | - Jin-Xin Zhao
- State Key Laboratory of Drug Research, Ethnomedicine and Biofunctional Molecule Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; (Z.H.); (P.-Q.W.)
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai 264117, China
| | - Jian-Min Yue
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China;
- State Key Laboratory of Drug Research, Ethnomedicine and Biofunctional Molecule Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; (Z.H.); (P.-Q.W.)
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai 264117, China
| |
Collapse
|
5
|
Gallego-Gamo A, Sarró P, Ji Y, Pleixats R, Molins E, Gimbert-Suriñach C, Vallribera A, Granados A. Direct Synthesis of 2-Hydroxytrifluoroethylacetophenones via Organophotoredox-Mediated Net-Neutral Radical/Polar Crossover. J Org Chem 2024; 89:11682-11692. [PMID: 39087492 PMCID: PMC11334190 DOI: 10.1021/acs.joc.4c01419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Alkene difunctionalization is a very attractive tool in synthetic organic chemistry. Herein, we disclose an operationally and practically simple method to access 2-hydroxytrifluoroethylacetophenones from styrene derivatives via photoredox catalysis. This light-mediated transformation promotes the generation of the 1-hydroxy-2,2,2-trifluoroethyl carbon-centered radical as key synthon, which undergoes Giese addition with styrenes followed by a Kornblum oxidation process. The presented method is not only mild and cost-effective, but also utilizes an organic photocatalyst and DMSO as oxidant. Experimental investigations support the operative mechanism via net-neutral radical/polar crossover.
Collapse
Affiliation(s)
- Albert Gallego-Gamo
- Department
of Chemistry and Centro de Innovación en Química Avanzada
(ORFEO−CINQA), Universitat Autònoma
de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Pau Sarró
- Department
of Chemistry and Centro de Innovación en Química Avanzada
(ORFEO−CINQA), Universitat Autònoma
de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Yingmin Ji
- Department
of Chemistry and Centro de Innovación en Química Avanzada
(ORFEO−CINQA), Universitat Autònoma
de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Roser Pleixats
- Department
of Chemistry and Centro de Innovación en Química Avanzada
(ORFEO−CINQA), Universitat Autònoma
de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Elies Molins
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Carolina Gimbert-Suriñach
- Department
of Chemistry and Centro de Innovación en Química Avanzada
(ORFEO−CINQA), Universitat Autònoma
de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Adelina Vallribera
- Department
of Chemistry and Centro de Innovación en Química Avanzada
(ORFEO−CINQA), Universitat Autònoma
de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Albert Granados
- Department
of Chemistry and Centro de Innovación en Química Avanzada
(ORFEO−CINQA), Universitat Autònoma
de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
6
|
Ye ZP, Guo M, Ye YQ, Yuan CP, Wang HL, Yang JS, Chen HB, Xiang HY, Chen K, Yang H. Iodine(III)-Mediated Trifluoroacetylation of a C(sp 2)-H or C(sp)-H Bond with Masked Trifluoroacyl Reagents. Org Lett 2024; 26:5196-5201. [PMID: 38858221 DOI: 10.1021/acs.orglett.4c01780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
A novel strategy for incorporating a trifluoroacetyl functionality into a range of structurally varied unsaturated bonds was developed by using PhI(OCOMe)2 as an oxidant with a masked trifluoroacyl reagent as a trifluoroacetyl radical precursor. The oxidative decarboxylation of the masked trifluoroacyl precursor followed by a tandem radical process provides versatile access to 5-exo-trig cyclization of N-arylacrylamides, direct C(sp2)-H trifluoroacetylation of quinolines, isoquinoline, 2H-indazole, and quinoxalin-2(1H)-ones, and C(sp)-H trifluoroacetylation of alkynes. This protocol is characterized by mild reaction conditions, operational simplicity, and broad functional group compatibility.
Collapse
Affiliation(s)
- Zhi-Peng Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Meng Guo
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yong-Qing Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Chu-Ping Yuan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hai-Long Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jing-Song Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hong-Bin Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Jiangxi Time Chemical Company, Ltd., Fuzhou 344800, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Xiangjiang Laboratory, Changsha 410205, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Xiangjiang Laboratory, Changsha 410205, P. R. China
| |
Collapse
|
7
|
Gallego-Gamo A, Pleixats R, Gimbert-Suriñach C, Vallribera A, Granados A. Hydroxytrifluoroethylation and Trifluoroacetylation Reactions via SET Processes. Chemistry 2024:e202303854. [PMID: 38183331 DOI: 10.1002/chem.202303854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/08/2024]
Abstract
Hydroxytrifluoroethyl and trifluoroacetyl groups are of utmost importance in biologically active compounds, but methods to tether these motifs to organic architectures have been limited. Typically, the preparation of these compounds relied on the use of strong bases or multistep routes. The renaissance of radical chemistry in photocatalytic, transition metal mediated, and hydrogen atom transfer (HAT) processes have allowed the installation of these medicinally relevant fluorinated motifs. This review provides an overview of the methods available for the direct synthesis of hydroxytrifluoroethyl- and trifluoroacetyl-derived compounds governed by single-electron transfer processes.
Collapse
Affiliation(s)
- Albert Gallego-Gamo
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Roser Pleixats
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Carolina Gimbert-Suriñach
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Adelina Vallribera
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Albert Granados
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| |
Collapse
|
8
|
Al-Sanea MM, Nasr TM, Bondock S, Gawish AY, Mohamed NM. Design, synthesis and cytotoxic evaluation of novel bis-thiazole derivatives as preferential Pim1 kinase inhibitors with in vivo and in silico study. J Enzyme Inhib Med Chem 2023; 38:2166936. [PMID: 36728746 PMCID: PMC9897788 DOI: 10.1080/14756366.2023.2166936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Bis-thiazole derivatives were synthesised conforming to the Pim1 pharmacophore model following Hantzsch condensation. Pim1 has a major role in regulating the G1/S phase which upon inhibition the cell cycle stops at its early stages. Derivatives 3b and 8b showed the best Pim1 IC50 0.32 and 0.24 µM, respectively relative to staurosporine IC50 0.36 µM. Further confirmation of 3b and 8b Pim1 inhibition was implemented by hindering the T47D cell cycle at G0/G1 and S phases where 3b showed 66.5% cells accumulation at G0/G1 phase while 8b demonstrated 26.5% cells accumulation at the S phase compared to 53.9% and 14.9% of a control group for both phases, respectively. Additional in vivo cytotoxic evaluation of 3b and 8b revealed strong antitumor activity with up-regulation of caspase-3 and down-regulation of VEGF and TNF α immune expression with concomitant elevation of malondialdehyde levels in case of 8b.
Collapse
Affiliation(s)
- Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Tamer M. Nasr
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Modern University for Technology and Information (MTI) University, Cairo, Egypt,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Helwan, Egypt
| | - Samir Bondock
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia,Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Aya Y. Gawish
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information (MTI) University, Cairo, Egypt
| | - Nada M. Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Modern University for Technology and Information (MTI) University, Cairo, Egypt,CONTACT Nada M. Mohamed Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Modern University for Technology and Information (MTI) University, Cairo, Egypt
| |
Collapse
|
9
|
Du HW, Du YD, Zeng XW, Shu W. Access to Trifluoromethylketones from Alkyl Bromides and Trifluoroacetic Anhydride by Photocatalysis. Angew Chem Int Ed Engl 2023; 62:e202308732. [PMID: 37534823 DOI: 10.1002/anie.202308732] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/04/2023]
Abstract
Aliphatic trifluoromethyl ketones are a type of unique fluorine-containing subunit which play a significant role in altering the physical and biological properties of molecules. Catalytic methods to provide direct access to aliphatic trifluoromethyl ketones are highly desirable yet remain underdeveloped, partially owing to the high reactivity and instability of trifluoroacetyl radical. Herein, we report a photocatalytic synthesis of trifluoromethyl ketones from alkyl bromides with trifluoroacetic anhydride. The reaction features dual visible-light and halogen-atom-transfer catalysis, followed by an enabling radical-radical cross-coupling of an alkyl radical with a stabilized trifluoromethyl radical. The reaction provides straightforward access to aliphatic trifluoromethyl ketones from readily available and cost-effective alkyl halides and trifluoroacetic anhydride (TFAA).
Collapse
Affiliation(s)
- Hai-Wu Du
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Yi-Dan Du
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Xian-Wang Zeng
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, P. R. China
| |
Collapse
|
10
|
Peng J, Xie F, Qin P, Liu Y, Niu H, Sun J, Xue H, Zhao Q, Liu J, Wu J. Recent development of selective inhibitors targeting the HDAC6 as anti-cancer drugs: Structure, function and design. Bioorg Chem 2023; 138:106622. [PMID: 37244230 DOI: 10.1016/j.bioorg.2023.106622] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
HDAC6, a member of the histone deacetylase family, mainly is a cytosolic protein and regulates cell growth by acting on non-histone substrates, such as α -tubulin, cortactin, heat shock protein HSP90, programmed death 1 (PD-1) and programmed death ligand 1 (PD-L1), that are closely related to the proliferation, invasion, immune escape and angiogenesis of cancer tissues. The approved drugs targeting the HDACs are all pan-inhibitors and have many side effects due to their lack of selectivity. Therefore, development of selective inhibitors of HDAC6 has attracted much attention in the field of cancer therapy. In this review, we will summarize the relationship between HDAC6 and cancer, and discuss the design strategies of HDAC6 inhibitors for cancer treatment in recent years.
Collapse
Affiliation(s)
- Jie Peng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Fei Xie
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Pengxia Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Yujing Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Haoqian Niu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jie Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Haoyu Xue
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Qianlong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jingqian Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jingde Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
11
|
Frühauf A, Behringer M, Meyer-Almes FJ. Significance of Five-Membered Heterocycles in Human Histone Deacetylase Inhibitors. Molecules 2023; 28:5686. [PMID: 37570656 PMCID: PMC10419652 DOI: 10.3390/molecules28155686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/15/2023] [Accepted: 07/15/2023] [Indexed: 08/13/2023] Open
Abstract
Five-membered heteroaromatic rings, in particular, have gained prominence in medicinal chemistry as they offer enhanced metabolic stability, solubility and bioavailability, crucial factors in developing effective drugs. The unique physicochemical properties and biological effects of five-membered heterocycles have positioned them as key structural motifs in numerous clinically effective drugs. Hence, the exploration of five-ring heterocycles remains an important research area in medicinal chemistry, with the aim of discovering new therapeutic agents for various diseases. This review addresses the incorporation of heteroatoms such as nitrogen, oxygen and sulfur into the aromatic ring of these heterocyclic compounds, enhancing their polarity and facilitating both aromatic stacking interactions and the formation of hydrogen bonds. Histone deacetylases are present in numerous multiprotein complexes within the epigenetic machinery and play a central role in various cellular processes. They have emerged as important targets for cancer, neurodegenerative diseases and other therapeutic indications. In histone deacetylase inhibitors (HDACi's), five-ring heterocycles perform various functions as a zinc-binding group, a linker or head group, contributing to binding activity and selective recognition. This review focuses on providing an up-to-date overview of the different five-membered heterocycles utilized in HDACi motifs, highlighting their biological properties. It summarizes relevant publications from the past decade, offering insights into the recent advancements in this field of research.
Collapse
Affiliation(s)
- Anton Frühauf
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Haardtring 100, 64295 Darmstadt, Germany
| | - Martin Behringer
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Haardtring 100, 64295 Darmstadt, Germany
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Haardtring 100, 64295 Darmstadt, Germany
| |
Collapse
|
12
|
Geurs S, Clarisse D, De Bosscher K, D'hooghe M. The Zinc-Binding Group Effect: Lessons from Non-Hydroxamic Acid Vorinostat Analogs. J Med Chem 2023. [PMID: 37276138 DOI: 10.1021/acs.jmedchem.3c00226] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Histone deacetylases (HDACs) are enzymes pursued as drug targets in various cancers and several non-oncological conditions, such as inflammation and neurodegenerative disorders. In the past decade, HDAC inhibitors (HDACi) have emerged as relevant pharmaceuticals, with many efforts devoted to the development of new representatives. However, the growing safety concerns regarding the established hydroxamic acid-based HDAC inhibitors tend to drive current research more toward the design of inhibitors bearing alternative zinc-binding groups (ZBGs). This Perspective presents an overview of all non-hydroxamic acid ZBGs that have been incorporated into the clinically approved prototypical HDACi, suberoylanilide hydroxamic acid (vorinostat). This provides the unique opportunity to compare the inhibition potential and biological effects of different ZBGs in a direct way, as the compounds selected for this Perspective differ only in their ZBG. To that end, different strategies used to select a ZBG, its properties, activity, and liabilities are discussed.
Collapse
Affiliation(s)
- Silke Geurs
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B-9052 Ghent, Belgium
| | - Dorien Clarisse
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B-9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B-9052 Ghent, Belgium
| | - Karolien De Bosscher
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B-9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B-9052 Ghent, Belgium
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
13
|
Han S, Samony KL, Nabi RN, Bache CA, Kim DK. Hydrotrifluoroacetylation of Alkenes via Designer Masked Acyl Reagents. J Am Chem Soc 2023; 145:11530-11536. [PMID: 37192402 DOI: 10.1021/jacs.3c04294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Because of its impressive ability to promote pharmaceutical activity, the introduction of trifluoromethylacyl (CF3CO) functionality into organic compounds has become an important and growing research area. Although various protocols have been developed to access trifluoroketones, the use of trifluoroacetyl radicals remains virtually undeveloped. Herein, we disclose a novel method for trifluoroacetylation through an umpolung reagent, thereby transforming an electrophilic radical into a nucleophilic radical. The applicability of this transformation is highlighted by large-scale, late-stage reactions of complex bioactive molecules sclareolide and loratadine. Furthermore, the direct transformation of trifluoromethyl ketones into various fluorinated analogues illustrates the potential synthetic application of our developed method.
Collapse
Affiliation(s)
- Sangil Han
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Kyra L Samony
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Rifat N Nabi
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Campbell A Bache
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Daniel K Kim
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
14
|
Riddhidev B, Endri K, Sabitri L, Kotsull Lauren N, Nishanth K, Dragan I, Mary Kay H P, James S, William T, L M Viranga T. Rational design of metabolically stable HDAC inhibitors: An overhaul of trifluoromethyl ketones. Eur J Med Chem 2022; 244:114807. [PMID: 36244186 PMCID: PMC10257519 DOI: 10.1016/j.ejmech.2022.114807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/04/2022]
Abstract
Epigenetic regulation of gene expression using histone deacetylase (HDAC) inhibitors is a promising strategy for developing new anticancer agents. The most common HDAC inhibitors are hydroxamates, which, though highly potent, have limitations due to their poor pharmacokinetic properties and lack of isoform selectivity. Trifluoromethylketones (TFMK) developed as alternatives to hydroxamates are rapidly metabolized to inactive trifluoromethyl alcohols in vivo, which prevented their further development as potential drug candidates. In order to overcome this limitation, we designed trifluoropyruvamides (TFPAs) as TFMK surrogates. The presence of an additional electron withdrawing group next to the ketone carbonyl group made the hydrate form of the ketone more stable, thus preventing its metabolic reduction to alcohol in vivo. In addition, this structural modification reduces the potential of the TFMK group to act as a covalent warhead to eliminate off-target effects. Additional structural changes in the cap group of the inhibitors gave analogues with IC50 values ranging from upper nanomolar to low micromolar in the cytotoxicity assay, and they were more selective for cancer cells over normal cells. Some of the most active analogues inhibited HDAC enzymes with low nanomolar IC50 values and were found to be more selective for HDAC8 over other isoforms. These molecules provide a new class of HDAC inhibitors with a metabolically stable metal-binding group that could be used to develop selective HDAC inhibitors by further structural modification.
Collapse
Affiliation(s)
- Banerjee Riddhidev
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43606, USA
| | - Karaj Endri
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43606, USA
| | - Lamichhane Sabitri
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH, 43606, USA
| | - N Kotsull Lauren
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Kuganesan Nishanth
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH, 43606, USA
| | - Isailovic Dragan
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH, 43606, USA
| | - Pflum Mary Kay H
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Slama James
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43606, USA
| | - Taylor William
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH, 43606, USA.
| | - Tillekeratne L M Viranga
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43606, USA.
| |
Collapse
|
15
|
Kumbhar N, Nimal S, Barale S, Kamble S, Bavi R, Sonawane K, Gacche R. Identification of novel leads as potent inhibitors of HDAC3 using ligand-based pharmacophore modeling and MD simulation. Sci Rep 2022; 12:1712. [PMID: 35110603 PMCID: PMC8810932 DOI: 10.1038/s41598-022-05698-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/03/2022] [Indexed: 02/08/2023] Open
Abstract
In the landscape of epigenetic regulation, histone deacetylase 3 (HDAC3) has emerged as a prominent therapeutic target for the design and development of candidate drugs against various types of cancers and other human disorders. Herein, we have performed ligand-based pharmacophore modeling, virtual screening, molecular docking, and MD simulations to design potent and selective inhibitors against HDAC3. The predicted best pharmacophore model 'Hypo 1' showed excellent correlation (R2 = 0.994), lowest RMSD (0.373), lowest total cost value (102.519), and highest cost difference (124.08). Hypo 1 consists of four salient pharmacophore features viz. one hydrogen bond acceptor (HBA), one ring aromatic (RA), and two hydrophobic (HYP). Hypo 1 was validated by Fischer's randomization with a 95% of confidence level and the external test set of 60 compounds with a good correlation coefficient (R2 = 0.970). The virtual screening of chemical databases, drug-like properties calculations followed by molecular docking resulted in identifying 22 representative hit compounds. Performed 50 ns of MD simulations on top three hits were retained the salient π-stacking, Zn2+ coordination, hydrogen bonding, and hydrophobic interactions with catalytic residues from the active site pocket of HDAC3. Total binding energy calculated by MM-PBSA showed that the Hit 1 and Hit 2 formed stable complexes with HDAC3 as compared to reference TSA. Further, the PLIP analysis showed a close resemblance between the salient pharmacophore features of Hypo 1 and the presence of molecular interactions in co-crystallized FDA-approved drugs. We conclude that the screened hit compounds may act as potent inhibitors of HDAC3 and further preclinical and clinical studies may pave the way for developing them as effective therapeutic agents for the treatment of different cancers and neurodegenerative disorders.
Collapse
Affiliation(s)
- Navanath Kumbhar
- Department of Biotechnology, Savitribai Phule Pune University Pune, Pune, Maharashtra (MS), 411007, India
| | - Snehal Nimal
- Department of Biotechnology, Savitribai Phule Pune University Pune, Pune, Maharashtra (MS), 411007, India
| | - Sagar Barale
- Department of Microbiology, Shivaji University, Kolhapur, Maharashtra (MS), 416004, India
| | - Subodh Kamble
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur, Maharashtra (MS), 416004, India
| | - Rohit Bavi
- School of Chemical Science, Punyashlok Ahilyadevi Holkar Solapur University, Solapur, Maharashtra (MS), 413255, India
| | - Kailas Sonawane
- Department of Microbiology, Shivaji University, Kolhapur, Maharashtra (MS), 416004, India
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur, Maharashtra (MS), 416004, India
| | - Rajesh Gacche
- Department of Biotechnology, Savitribai Phule Pune University Pune, Pune, Maharashtra (MS), 411007, India.
| |
Collapse
|
16
|
Frühauf A, Meyer-Almes FJ. Non-Hydroxamate Zinc-Binding Groups as Warheads for Histone Deacetylases. Molecules 2021; 26:5151. [PMID: 34500583 PMCID: PMC8434074 DOI: 10.3390/molecules26175151] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Histone deacetylases (HDACs) remove acetyl groups from acetylated lysine residues and have a large variety of substrates and interaction partners. Therefore, it is not surprising that HDACs are involved in many diseases. Most inhibitors of zinc-dependent HDACs (HDACis) including approved drugs contain a hydroxamate as a zinc-binding group (ZBG), which is by far the biggest contributor to affinity, while chemical variation of the residual molecule is exploited to create more or less selectivity against HDAC isozymes or other metalloproteins. Hydroxamates have a propensity for nonspecificity and have recently come under considerable suspicion because of potential mutagenicity. Therefore, there are significant concerns when applying hydroxamate-containing compounds as therapeutics in chronic diseases beyond oncology due to unwanted toxic side effects. In the last years, several alternative ZBGs have been developed, which can replace the critical hydroxamate group in HDACis, while preserving high potency. Moreover, these compounds can be developed into highly selective inhibitors. This review aims at providing an overview of the progress in the field of non-hydroxamic HDACis in the time period from 2015 to present. Formally, ZBGs are clustered according to their binding mode and structural similarity to provide qualitative assessments and predictions based on available structural information.
Collapse
Affiliation(s)
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany;
| |
Collapse
|
17
|
Su M, Gong X, Liu F. An update on the emerging approaches for histone deacetylase (HDAC) inhibitor drug discovery and future perspectives. Expert Opin Drug Discov 2021; 16:745-761. [PMID: 33530771 DOI: 10.1080/17460441.2021.1877656] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION HDACs catalyze the removal of acetyl groups from the ε-N-acetylated lysine residues of various protein substrates including both histone and nonhistone proteins. Different HDACs have distinct biological functions and are recruited to specific regions of the genome. HDAC inhibitors have attracted much attention in recent decades; indeed, there have been more than thirty HDAC inhibitors investigated in clinic trials with five approvals being achieved. AREAS COVERED This review covers the emerging approaches for HDAC inhibitor drug discovery from the past five years and includes discussion of structure-based rational design, isoform selectivity, and dual mechanism/multi-targeting. Chemical structures in addition to the in vitro and in vivo inhibiting activity of these compounds have also been discussed. EXPERT OPINION The exact role and biological functions of HDACs is still under investigation with a variety of HDAC inhibitors having been designed and evaluated. HDAC inhibitors have shown promise in treating cancer, AD, metabolic disease, viral infection, and multiple sclerosis, but there is still a lot of room for clinical improvement. In the future, more efforts should be put into (i) HDAC isoform identification (ii) the optimization of selectivity, activity, and pharmacokinetics; and (iii) unconventional approaches for discovering different effective scaffolds and pharmacophores.
Collapse
Affiliation(s)
- Ma Su
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, PR China
| | - Xingyu Gong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, PR China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, PR China
| |
Collapse
|
18
|
An Overview of the Synthesis and Antimicrobial, Antiprotozoal, and Antitumor Activity of Thiazole and Bisthiazole Derivatives. Molecules 2021; 26:molecules26030624. [PMID: 33504100 PMCID: PMC7865802 DOI: 10.3390/molecules26030624] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
Thiazole, a five-membered heteroaromatic ring, is an important scaffold of a large number of synthetic compounds. Its diverse pharmacological activity is reflected in many clinically approved thiazole-containing molecules, with an extensive range of biological activities, such as antibacterial, antifungal, antiviral, antihelmintic, antitumor, and anti-inflammatory effects. Due to its significance in the field of medicinal chemistry, numerous biologically active thiazole and bisthiazole derivatives have been reported in the scientific literature. The current review provides an overview of different methods for the synthesis of thiazole and bisthiazole derivatives and describes various compounds bearing a thiazole and bisthiazole moiety possessing antibacterial, antifungal, antiprotozoal, and antitumor activity, encouraging further research on the discovery of thiazole-containing drugs.
Collapse
|
19
|
Latif NAA, Abbas EMH, Farghaly TA, Awad HM. Synthesis, Characterization, and Anticancer Screening of Some
New Bithiazole Derivatives. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020060202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
20
|
Sultana F, Manasa KL, Shaik SP, Bonam SR, Kamal A. Zinc Dependent Histone Deacetylase Inhibitors in Cancer Therapeutics: Recent Update. Curr Med Chem 2020; 26:7212-7280. [PMID: 29852860 DOI: 10.2174/0929867325666180530094120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/12/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Histone deacetylases (HDAC) are an important class of enzymes that play a pivotal role in epigenetic regulation of gene expression that modifies the terminal of core histones leading to remodelling of chromatin topology and thereby controlling gene expression. HDAC inhibitors (HDACi) counter this action and can result in hyperacetylation of histones, thereby inducing an array of cellular consequences such as activation of apoptotic pathways, generation of reactive oxygen species (ROS), cell cycle arrest and autophagy. Hence, there is a growing interest in the potential clinical use of HDAC inhibitors as a new class of targeted cancer therapeutics. Methodology and Result: Several research articles spanning between 2016 and 2017 were reviewed in this article and presently offer critical insights into the important strategies such as structure-based rational drug design, multi-parameter lead optimization methodologies, relevant SAR studies and biology of various class of HDAC inhibitors, such as hydroxamic acids, benzamides, cyclic peptides, aliphatic acids, summarising the clinical trials and results of various combination drug therapy till date. CONCLUSION This review will provide a platform to the synthetic chemists and biologists to cater the needs of both molecular targeted therapy and combination drug therapy to design and synthesize safe and selective HDAC inhibitors in cancer therapeutics.
Collapse
Affiliation(s)
- Faria Sultana
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India
| | - Kesari Lakshmi Manasa
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India.,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Siddiq Pasha Shaik
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India.,Academy of Scientific and Innovative Research, New Delhi, 110 025, India
| | - Srinivasa Reddy Bonam
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Ahmed Kamal
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India.,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India.,Academy of Scientific and Innovative Research, New Delhi, 110 025, India.,School of Pharmaceutical Education and Research (SPER), Jamia Hamdard University, New Delhi, 110062, India
| |
Collapse
|
21
|
Zhang SW, Gong CJ, Su MB, Chen F, He T, Zhang YM, Shen QQ, Su Y, Ding J, Li J, Chen Y, Nan FJ. Synthesis and in Vitro and in Vivo Biological Evaluation of Tissue-Specific Bisthiazole Histone Deacetylase (HDAC) Inhibitors. J Med Chem 2019; 63:804-815. [DOI: 10.1021/acs.jmedchem.9b01792] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Shu-Wei Zhang
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Chao-Jun Gong
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ming-Bo Su
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Fei Chen
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ting He
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yang-Ming Zhang
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
| | - Qian-Qian Shen
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Su
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Ding
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jia Li
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yi Chen
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fa-Jun Nan
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
| |
Collapse
|
22
|
Ren Y, Sun Q, Yuan Z, Jiang Y. Combined inhibition of HDAC and DNMT1 induces p85α/MEK-mediated cell cycle arrest by dual target inhibitor 208 in U937 cells. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.03.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
23
|
New Series of Thiazole Derivatives: Synthesis, Structural Elucidation, Antimicrobial Activity, Molecular Modeling and MOE Docking. Molecules 2019; 24:molecules24091741. [PMID: 31060260 PMCID: PMC6539608 DOI: 10.3390/molecules24091741] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/15/2022] Open
Abstract
Based on the extensive biological activities of thiazole derivatives against different types of diseases, we are interested in the effective part of many natural compounds, so we synthesized a new series of compounds containing di-, tri- and tetrathiazole moieties. The formation of such derivatives proceeded via reaction of 2-bromo-1-(4-methyl-2-(methylamino)thiazol-5-yl)ethan-1-one with heterocyclic amines, o-aminothiophenol and thiosemicarbazone derivatives. The structure and mechanistic pathways for all products were discussed and proved based on spectral results, in addition to conformational studies. Our aim after the synthesis is to investigate their antimicrobial activity against various types of bacteria and fungi species. Preceeding such an investigation, a molecular docking study was carried out with selected conformers, as representative examples, against three pathogen-proteins. This preliminary stage could support the biological application. The potency of these compounds as antimicrobial agents has been evaluated. The results showed that derivatives which have di- and trithiazole rings displayed high activity that exceeds the used standard antibiotic.
Collapse
|
24
|
Li Y, Wang F, Chen X, Wang J, Zhao Y, Li Y, He B. Zinc-dependent Deacetylase (HDAC) Inhibitors with Different Zinc Binding Groups. Curr Top Med Chem 2019; 19:223-241. [PMID: 30674261 DOI: 10.2174/1568026619666190122144949] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 12/24/2022]
Abstract
The state of histone acetylation plays a very crucial role in carcinogenesis and its development by chromatin remodeling and thus altering transcription of oncogenes and tumor suppressor genes. Such epigenetic regulation was controlled by zinc-dependent histone deacetylases (HDACs), one of the major regulators. Due to the therapeutic potential of HDACs as one of the promising drug targets in cancer, HDAC inhibitors have been intensively investigated over the last few decades. Notably, there are five HDAC inhibitors already approved to the market. Vorinostat (SAHA), Belinostat (PXD-101) and Romidepsin (FK228) have been approved by Food and Drug Administration (FDA) in USA for treating cutaneous T-cell lymphoma (CTCL) or peripheral T cell lymphoma (PTCL) while Panbinostat (LBH-589) has also been approved by the FDA for the treatment of multiple myeloma. Recently, Chidamide was approved by China Food and Drug Administration (CFDA) for the treatment of PTCL. The structural feature of almost all HDAC inhibitors consists of Cap group, linker, and zinc-binding group (ZBG). The binding of ZBG groups to zinc ion plays a decisive role in the inhibition of HDAC. Therefore, we will summarize the developed HDAC inhibitors according to different ZBG groups and discuss their binding mode with zinc ion.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China.,School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Fang Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China.,School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Xiaoxue Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China.,School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Jie Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China.,School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Yonglong Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China.,School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Yongjun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China.,School of Pharmacy, Guizhou Medical University, Guiyang 550004, China.,Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China.,School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
25
|
Depetter Y, Geurs S, Vanden Bussche F, De Vreese R, Franceus J, Desmet T, De Wever O, D'hooghe M. Assessment of the trifluoromethyl ketone functionality as an alternative zinc-binding group for selective HDAC6 inhibition. MEDCHEMCOMM 2018; 9:1011-1016. [PMID: 30108990 PMCID: PMC6072519 DOI: 10.1039/c8md00107c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/04/2018] [Indexed: 01/23/2023]
Abstract
Recent studies point towards the possible disadvantages of using hydroxamic acid-based zinc-binding groups in HDAC inhibitors due to e.g. mutagenicity issues. In this work, we elaborated on our previously developed Tubathian series, a class of highly selective thiaheterocyclic HDAC6 inhibitors, by replacing the benzohydroxamic acid function by an alternative zinc chelator, i.e., an aromatic trifluoromethyl ketone. Unfortunately, these compounds showed a reduced potency to inhibit HDAC6 as compared to their hydroxamic acid counterparts. In agreement, the most active trifluoromethyl ketone was unable to influence the growth of SK-OV-3 ovarian cancer cells nor to alter the acetylation status of tubulin and histone H3. These data suggest that replacement of the zinc-binding hydroxamic acid function with a trifluoromethyl ketone zinc-binding moiety within reported benzohydroxamic HDAC6 inhibitors should not be considered as a standard strategy in HDAC inhibitor development.
Collapse
Affiliation(s)
- Yves Depetter
- SynBioC Research Group , Department of Green Chemistry and Technology , Faculty of Bioscience Engineering , Ghent University , Coupure Links 653 , B-9000 Ghent , Belgium .
- Laboratory of Experimental Cancer Research , Department of Radiation Oncology and Experimental Cancer Research , Ghent University , Corneel Heymanslaan 10 , B-9000 Ghent , Belgium
- Cancer Research Institute Ghent (CRIG) , Ghent , Belgium
| | - Silke Geurs
- SynBioC Research Group , Department of Green Chemistry and Technology , Faculty of Bioscience Engineering , Ghent University , Coupure Links 653 , B-9000 Ghent , Belgium .
| | - Flore Vanden Bussche
- SynBioC Research Group , Department of Green Chemistry and Technology , Faculty of Bioscience Engineering , Ghent University , Coupure Links 653 , B-9000 Ghent , Belgium .
| | - Rob De Vreese
- SynBioC Research Group , Department of Green Chemistry and Technology , Faculty of Bioscience Engineering , Ghent University , Coupure Links 653 , B-9000 Ghent , Belgium .
| | - Jorick Franceus
- Centre for Synthetic Biology (CSB) , Department of Biotechnology , Faculty of Bioscience Engineering , Ghent University , Coupure Links 653 , B-9000 Ghent , Belgium
| | - Tom Desmet
- Centre for Synthetic Biology (CSB) , Department of Biotechnology , Faculty of Bioscience Engineering , Ghent University , Coupure Links 653 , B-9000 Ghent , Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research , Department of Radiation Oncology and Experimental Cancer Research , Ghent University , Corneel Heymanslaan 10 , B-9000 Ghent , Belgium
- Cancer Research Institute Ghent (CRIG) , Ghent , Belgium
| | - Matthias D'hooghe
- SynBioC Research Group , Department of Green Chemistry and Technology , Faculty of Bioscience Engineering , Ghent University , Coupure Links 653 , B-9000 Ghent , Belgium .
| |
Collapse
|
26
|
Funabiki K, Hayakawa A, Inuzuka T. Convenient, functional group-tolerant, transition metal-free synthesis of aryl and heteroaryl trifluoromethyl ketones with the use of methyl trifluoroacetate. Org Biomol Chem 2018; 16:913-918. [DOI: 10.1039/c7ob02862h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new convenient, functional group-tolerant, transition metal-free route to aryl trifluoromethyl ketones under mild conditions is described.
Collapse
Affiliation(s)
- Kazumasa Funabiki
- Department of Chemistry and Biomolecular Science
- Gifu University
- Gifu 501-1193
- Japan
| | - Ayaka Hayakawa
- Department of Chemistry and Biomolecular Science
- Gifu University
- Gifu 501-1193
- Japan
| | - Toshiyasu Inuzuka
- Division of Instrumental Analysis
- Life Science Research Center
- Gifu University
- Gifu 501-1193
- Japan
| |
Collapse
|
27
|
Wang X, Lei B, Ma L, Zhu L, Zhang X, Zuo H, Zhuang D, Li Z. Cobalt-Catalyzed Cross-Dehydrogenative C(sp 2 )-C(sp 3 ) Coupling of Oxazole/Thiazole with Ether or Cycloalkane. Chem Asian J 2017; 12:2799-2803. [PMID: 28929591 DOI: 10.1002/asia.201701258] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/18/2017] [Indexed: 11/08/2022]
Abstract
Direct C5-alkylation of oxazole/thiazole with ether or cycloalkane has been achieved through a cobalt-catalyzed cross-dehydrogenative coupling (CDC) process in moderate to good yields. This transformation represents the first C(sp2 )-C(sp3 ) cross-coupling at the C5-position of the oxazole/thiazole via double C-H bond cleavages. Various functional groups on oxazole/thiazole substrates, as well as water and air, are well-tolerated with this concise and practical protocol, constituting straightforward access to heterocycles with great medicinal significance. A preliminary mechanism involving a radical process has also been proposed.
Collapse
Affiliation(s)
- Xiaojiao Wang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Bowen Lei
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Lifang Ma
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Lisi Zhu
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Xinyue Zhang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Hao Zuo
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Dailin Zhuang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Ziyuan Li
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, China
| |
Collapse
|
28
|
Yuan Z, Sun Q, Li D, Miao S, Chen S, Song L, Gao C, Chen Y, Tan C, Jiang Y. Design, synthesis and anticancer potential of NSC-319745 hydroxamic acid derivatives as DNMT and HDAC inhibitors. Eur J Med Chem 2017; 134:281-292. [DOI: 10.1016/j.ejmech.2017.04.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/01/2017] [Accepted: 04/08/2017] [Indexed: 12/12/2022]
|