1
|
Zheng Y, Chen Y, He Y, Rizzo A, Zhou Y, Low KH, Krenske EH, Chiu P. Dearomative Intramolecular (4+3) Cycloadditions of Thiophenes. Angew Chem Int Ed Engl 2024; 63:e202407059. [PMID: 38758985 DOI: 10.1002/anie.202407059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/19/2024]
Abstract
Unexpectedly facile dearomative intramolecular (4+3) cycloadditions of thiophenes with epoxy enolsilanes, providing sulfur-bridged cycloadducts, are reported. A total of fifteen thiophene substrates have been found to undergo (4+3) cycloaddition smoothly to produce endo and exo (4+3) adducts in yields of up to 83 % with moderate to good diastereoselectivity. Complete conservation of enantiomeric purity was observed when the optically enriched epoxide was used. The desulfurizing transformations of the sulfur-bridged skeleton of the cycloadducts provide functionalized 6,7-fused bicyclic frameworks consisting of 1,3-cycloheptadiene subunits. Density functional theory calculations reveal the origins of the facile dearomatization of thiophenes in these (4+3) cycloadditions.
Collapse
Affiliation(s)
- Yufen Zheng
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Yueyao Chen
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Science Park, Shatin, Hong Kong
| | - Yuxuan He
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Antonio Rizzo
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Yuchen Zhou
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Kam-Hung Low
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Elizabeth H Krenske
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Pauline Chiu
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
| |
Collapse
|
2
|
Kar SS, Gharai SR, Sahu SK, Ravichandiran V, Swain SP. The Current Landscape in the Development of Small-molecule Modulators Targeting Sphingosine-1-phosphate Receptors to Treat Neurodegenerative Diseases. Curr Top Med Chem 2024; 24:2431-2446. [PMID: 38676503 DOI: 10.2174/0115680266288509240422112839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024]
Abstract
Sphingosine 1-phosphate (S1P) is extensively researched as a lysophospholipid and is crucial in various physiological and pathological processes. It achieves this via signalling through five different subtypes of G protein-coupled receptors (GPCRs), namely S1PR1 to S1PR5. S1PR modulators possess the ability to traverse the blood-brain barrier, potentially leading to direct actions within the Central Nervous System (CNS). S1PR modulators specifically bind to receptors located on the surface of naive and central memory lymphocytes, causing these cells to be trapped or confined within the lymph node. The investigation of the S1P pathway has resulted in the approval of three S1PR modulators, namely fingolimod, siponimod, and ozanimod, as medications for the treatment of patients suffering from Multiple Sclerosis (MS). Additionally, new S1PR modulators, such as ponesimod and etrasimod, are currently being developed and tested in clinical trials. Research on the creation of S1P modulators in neurodegenerative illnesses is ongoing as scientists continue to explore novel possibilities for selective S1P modulators. This study provides a concise overview of sphingolipid metabolism, the mechanism by which S1P receptors are affected, and the structural characteristics of several small molecule S1P modulators, with a particular focus on their structure-activity connections.
Collapse
Affiliation(s)
- Sidhartha Sankar Kar
- Faculty of Pharmacy, C. V. Raman Global University, Mahura, Bhubaneswar, 752054, Odisha, India
| | - Soumya Ranjan Gharai
- Department of Pharmaceutical Chemistry, Institute of Pharmacy & Technology, Salipur, Cuttack, 754202, Odisha, India
| | - Sujit Kumar Sahu
- Department of Pharmaceutical Chemistry, Institute of Pharmacy & Technology, Salipur, Cuttack, 754202, Odisha, India
| | - Velayutham Ravichandiran
- Department of Medicinal Chemistry and Centre for Marine Therapeutics (CMT), National Institute of Pharmaceutical Education and Research, Kolkata, 168, Maniktala Main Road, Kolkata, 700054, India
| | - Sharada Prasanna Swain
- Department of Medicinal Chemistry and Centre for Marine Therapeutics (CMT), National Institute of Pharmaceutical Education and Research, Kolkata, 168, Maniktala Main Road, Kolkata, 700054, India
| |
Collapse
|
3
|
Harrison TJ, Chen X, Yasoshima K, Bauer D. Phototoxicity─Medicinal Chemistry Strategies for Risk Mitigation in Drug Discovery. J Med Chem 2023. [PMID: 37450689 DOI: 10.1021/acs.jmedchem.3c00749] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Phototoxicity is a common safety concern encountered by project teams in pharmaceutical research and has the potential to stop progression of an otherwise promising candidate molecule. This perspective aims to provide an overview of the approaches toward mitigation of phototoxicity that medicinal chemists have taken during the lead optimization phase in the context of regulatory standards for photosafety evaluation. Various strategies are laid out based on available literature examples in order to highlight how structural modification can be utilized toward successful mitigation of a phototoxicity liability. A proposed flowchart is presented as a guidance tool to be used by the practicing medicinal chemist when facing a phototoxicity risk. The description of available tools to consider in the drug design process will include an overview of the evolution of in silico methods and their application as well as structure alerts for consideration as potential phototoxicophores.
Collapse
Affiliation(s)
- Tyler J Harrison
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Xin Chen
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Kayo Yasoshima
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Daniel Bauer
- Preclinical Safety, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| |
Collapse
|
4
|
Sabry MA, Ghaly MA, Maarouf AR, El-Subbagh HI. New thiazole-based derivatives as EGFR/HER2 and DHFR inhibitors: Synthesis, molecular modeling simulations and anticancer activity. Eur J Med Chem 2022; 241:114661. [PMID: 35964425 DOI: 10.1016/j.ejmech.2022.114661] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022]
Abstract
New series of thiazole and imidazo[2,1-b]thiazole derivatives were synthesized and tested for their in vitro anticancer activity. Compounds 27, 34, 39 and 42-44 showed the best anticancer activity against the tested cancer cell lines with high safety profile and selectivity indices, especially MCF-7 breast cancer, compared to sorafenib. As an attempt to reveal their mode of cytotoxicity, EGFR, HER2 kinase and DHFR inhibition assays were performed. Compounds 39 and 43 were the most potent dual EGFR/HER2 kinase inhibitors, with IC50 values of 0.153 (EGFR), 0.108 (HER2) and 0.122 (EGFR), 0.078 (HER2) μM, respectively. 39 and 42 were the best DHFR inhibitors showing IC50 0.291 and 0.123 μM, respectively. 39 and 43 induced their cytotoxicity via cell cycle arrest at G1/S and G1 phases, respectively, and apoptosis rather than necrosis in the MCF-7 breast cancer cell line. In vivo anti-breast cancer assay of 39 and 43 showed significant tumor volume reduction with recovered caspase-3 immunoexpression. Modeling study results proved the importance of the 5-(4-substituted phenyl)-imidazo[2,1-b]thiazole moiety and the hydrazide side chain for the anticancer activity. The most potent compounds showed good drug-likeness features and could be used as prototypes for further optimization. 39 could be an example of a multi-targeting anticancer agent that acts by inhibiting EGFR/HER2 kinase, DHFR enzymes and cellular apoptosis.
Collapse
Affiliation(s)
- Mohamed A Sabry
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt.
| | - Mariam A Ghaly
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt.
| | - Azza R Maarouf
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt
| | - Hussein I El-Subbagh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt.
| |
Collapse
|
5
|
Luo D, Liu X, Jiang L, Guo Z, Lv Y, Tian X, Wang X, Cui S, Wan S, Qu X, Xu X, Li X. Rational Design, Synthesis, and Biological Evaluation of Novel S1PR2 Antagonists for Reversing 5-FU-Resistance in Colorectal Cancer. J Med Chem 2022; 65:14553-14577. [PMID: 36269639 DOI: 10.1021/acs.jmedchem.2c00958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Resistance to 5-FU reduces its clinical efficacy for the treatment of colorectal cancer. Sphingosine-1-phosphate receptor 2 (S1PR2) has emerged as a potential target to reverse 5-FU-resistance by inhibiting the expression of dihydropyrimidine dehydrogenase (DPD). In this study, 38 novel S1PR2 antagonists based on aryl urea structure were designed and synthesized, and the structure-activity relationship was investigated based on the S1PR2 binding assay. Representative compound 43 potently interacts with S1PR2 with a KD value of 0.73 nM. It displays potent 5-FU resensitizing activity in multiple 5-FU-resistant tumor cell lines, particularly in SW620/5-FU (EC50 = 1.99 ± 0.03 μM) but shows no cytotoxicity in the normal colon cell line NCM460 up to 1000 μM. Moreover, 43 significantly enhances the antitumor efficacy of 5-FU in the SW620/5-FU animal model. These data suggest that 43 could be a novel lead compound for developing a 5-FU resensitizing agent.
Collapse
Affiliation(s)
- Dongdong Luo
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Xiaochun Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Leilei Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Zhikun Guo
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China
| | - Yan Lv
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Xiaochen Tian
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Xiaoyan Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Shuxiang Cui
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China
| | - Shengbiao Wan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Xianjun Qu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, 100069 Beijing, China
| | - Ximing Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Xiaoyang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| |
Collapse
|
6
|
Park SJ, Kim J, Kim J, Kim Y, Lee EH, Kim HJ, Kim S, Kim B, Kim R, Choi JW, Park JH, Park KD. Synthesis and Evaluation of Serinolamide Derivatives as Sphingosine-1-Phosphate-1 (S1P 1) Receptor Agonists. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092818. [PMID: 35566164 PMCID: PMC9101607 DOI: 10.3390/molecules27092818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022]
Abstract
Sphingosine-1-phosphate-1 (S1P1) receptor agonists are well-known drugs for treating multiple sclerosis (MS) caused by autoreactive lymphocytes that attack the myelin sheath. Therefore, an effective therapeutic strategy is to reduce the lymphocytes in the blood by inducing S1P1 receptor internalization. We synthesized serinolamide A, a natural product of the sea, and performed S1P1 receptor internalization assay to evaluate functionally antagonistic S1P1 receptor agonist activity. In order to synthesize derivatives with better efficacy than serinolamide A and B, new derivatives were synthesized by introducing the phenyl ring moiety of fingolimod. Among them, compounds 19 and 21 had superior S1P1 agonistic effects to serinolamide. We also confirmed that compound 19 effectively inhibited lymphocyte outflow in peripheral lymphocyte count (PLC) assay.
Collapse
Affiliation(s)
- Sun Jun Park
- Convergence Research Center for Brain Science, Korea Institute of Science & Technology (KIST), Seoul 02792, Korea; (S.J.P.); (J.K.); (J.K.); (Y.K.); (E.H.L.); (H.J.K.); (S.K.); (B.K.); (R.K.); (J.W.C.)
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Jushin Kim
- Convergence Research Center for Brain Science, Korea Institute of Science & Technology (KIST), Seoul 02792, Korea; (S.J.P.); (J.K.); (J.K.); (Y.K.); (E.H.L.); (H.J.K.); (S.K.); (B.K.); (R.K.); (J.W.C.)
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Jaehwan Kim
- Convergence Research Center for Brain Science, Korea Institute of Science & Technology (KIST), Seoul 02792, Korea; (S.J.P.); (J.K.); (J.K.); (Y.K.); (E.H.L.); (H.J.K.); (S.K.); (B.K.); (R.K.); (J.W.C.)
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Yoowon Kim
- Convergence Research Center for Brain Science, Korea Institute of Science & Technology (KIST), Seoul 02792, Korea; (S.J.P.); (J.K.); (J.K.); (Y.K.); (E.H.L.); (H.J.K.); (S.K.); (B.K.); (R.K.); (J.W.C.)
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Elijah Hwejin Lee
- Convergence Research Center for Brain Science, Korea Institute of Science & Technology (KIST), Seoul 02792, Korea; (S.J.P.); (J.K.); (J.K.); (Y.K.); (E.H.L.); (H.J.K.); (S.K.); (B.K.); (R.K.); (J.W.C.)
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Hyeon Jeong Kim
- Convergence Research Center for Brain Science, Korea Institute of Science & Technology (KIST), Seoul 02792, Korea; (S.J.P.); (J.K.); (J.K.); (Y.K.); (E.H.L.); (H.J.K.); (S.K.); (B.K.); (R.K.); (J.W.C.)
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Siwon Kim
- Convergence Research Center for Brain Science, Korea Institute of Science & Technology (KIST), Seoul 02792, Korea; (S.J.P.); (J.K.); (J.K.); (Y.K.); (E.H.L.); (H.J.K.); (S.K.); (B.K.); (R.K.); (J.W.C.)
| | - Byungeun Kim
- Convergence Research Center for Brain Science, Korea Institute of Science & Technology (KIST), Seoul 02792, Korea; (S.J.P.); (J.K.); (J.K.); (Y.K.); (E.H.L.); (H.J.K.); (S.K.); (B.K.); (R.K.); (J.W.C.)
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Rium Kim
- Convergence Research Center for Brain Science, Korea Institute of Science & Technology (KIST), Seoul 02792, Korea; (S.J.P.); (J.K.); (J.K.); (Y.K.); (E.H.L.); (H.J.K.); (S.K.); (B.K.); (R.K.); (J.W.C.)
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Ji Won Choi
- Convergence Research Center for Brain Science, Korea Institute of Science & Technology (KIST), Seoul 02792, Korea; (S.J.P.); (J.K.); (J.K.); (Y.K.); (E.H.L.); (H.J.K.); (S.K.); (B.K.); (R.K.); (J.W.C.)
| | - Jong-Hyun Park
- Convergence Research Center for Brain Science, Korea Institute of Science & Technology (KIST), Seoul 02792, Korea; (S.J.P.); (J.K.); (J.K.); (Y.K.); (E.H.L.); (H.J.K.); (S.K.); (B.K.); (R.K.); (J.W.C.)
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
- Correspondence: (J.-H.P.); (K.D.P.)
| | - Ki Duk Park
- Convergence Research Center for Brain Science, Korea Institute of Science & Technology (KIST), Seoul 02792, Korea; (S.J.P.); (J.K.); (J.K.); (Y.K.); (E.H.L.); (H.J.K.); (S.K.); (B.K.); (R.K.); (J.W.C.)
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
- Correspondence: (J.-H.P.); (K.D.P.)
| |
Collapse
|
7
|
Park SJ, Yeon SK, Kim Y, Kim HJ, Kim S, Kim J, Choi JW, Kim B, Lee EH, Kim R, Seo SH, Lee J, Kim JW, Lee HY, Hwang H, Bahn YS, Cheong E, Park JH, Park KD. Discovery of Novel Sphingosine-1-Phosphate-1 Receptor Agonists for the Treatment of Multiple Sclerosis. J Med Chem 2022; 65:3539-3562. [PMID: 35077170 DOI: 10.1021/acs.jmedchem.1c01979] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The sphingosine-1-phosphate-1 (S1P1) receptor agonists have great potential for the treatment of multiple sclerosis (MS) because they can inhibit lymphocyte egress through receptor internalization. We designed and synthesized triazole and isoxazoline derivatives to discover a novel S1P1 agonist for MS treatment. Of the two scaffolds, the isoxazoline derivative was determined to have excellent in vitro efficacy and drug-like properties. Among them, compound 21l was found to have superior drug-like properties as well as excellent in vitro efficacies (EC50 = 7.03 nM in β-arrestin recruitment and EC50 = 11.8 nM in internalization). We also confirmed that 21l effectively inhibited lymphocyte egress in the peripheral lymphocyte count test and significantly improved the clinical score in the experimental autoimmune encephalitis MS mouse model.
Collapse
Affiliation(s)
- Sun Jun Park
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea.,Division of Bio-Med Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.,Cureverse Co., Ltd., KIST, 1st Floor, H2 Building, Seoul 02792, Republic of Korea
| | - Seul Ki Yeon
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
| | - Yoowon Kim
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyeon Jeong Kim
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Siwon Kim
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea.,Division of Bio-Med Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Jushin Kim
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Ji Won Choi
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
| | - Byungeun Kim
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea.,Division of Bio-Med Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Elijah Hwejin Lee
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea.,Division of Bio-Med Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Rium Kim
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea.,Division of Bio-Med Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Seon Hee Seo
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
| | - Jaeick Lee
- Doping Control Center, KIST, Seoul 02792, Republic of Korea
| | - Jun Woo Kim
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Ha-Yeon Lee
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Hayoung Hwang
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Hyun Park
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea.,Division of Bio-Med Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea.,Division of Bio-Med Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
8
|
Hsu DS, Cheng CY. Construction of Spirofused Tricyclic Frameworks by NHC-Catalyzed Intramolecular Stetter Reaction of a Benzaldehyde Tether with a Cyclic Enone. J Org Chem 2019; 84:10832-10842. [PMID: 31397574 DOI: 10.1021/acs.joc.9b01403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Various benzaldehyde tethers with a cyclic enone were prepared from commercially available 2-hydroxybenzaldehydes via a three-step sequence involving triflate formation, Sonogashira cross-coupling, and regioselective hydrogenation. These substrates were then exposed to an N-heterocyclic carbene, whereupon intramolecular Stetter reaction proceeded smoothly to give various spirofused tricyclic 1,4-diketones in 30-87% yields. Furaldehyde and nicotinaldehyde derivatives also participated in the reaction under the Stetter conditions.
Collapse
Affiliation(s)
- Day-Shin Hsu
- Department of Chemistry and Biochemistry , National Chung Cheng University , Minhsiung 621 , Taiwan
| | - Chiao-Yun Cheng
- Department of Chemistry and Biochemistry , National Chung Cheng University , Minhsiung 621 , Taiwan
| |
Collapse
|
9
|
Dyckman AJ. Modulators of Sphingosine-1-phosphate Pathway Biology: Recent Advances of Sphingosine-1-phosphate Receptor 1 (S1P 1) Agonists and Future Perspectives. J Med Chem 2017; 60:5267-5289. [PMID: 28291340 DOI: 10.1021/acs.jmedchem.6b01575] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The sphingoid base derived class of lipids (sphingolipids) is a family of interconverting molecules that play key roles in numerous structural and signaling processes. The biosynthetic pathway of the sphingolipids affords many opportunities for therapeutic intervention: targeting the ligands directly, targeting the various proteins involved in the interconversion of the ligands, or targeting the receptors that respond to the ligands. The focus of this article is on the most advanced of the sphingosine-related therapeutics, agonists of sphingosine-1-phosphate receptor 1 (S1P1). The diverse structural classes of S1P1 agonists will be discussed and the status of compounds of clinical relevance will be detailed. An examination of how potential safety concerns are being navigated with compounds currently under clinical evaluation is followed by a discussion of the novel methods being explored to identify next-generation S1P1 agonists with improved safety profiles. Finally, therapeutic opportunities for sphingosine-related targets outside of S1P1 are touched upon.
Collapse
Affiliation(s)
- Alaric J Dyckman
- Research and Development, Bristol-Myers Squibb Company , P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|