1
|
Sumran G, Sharma M, Aggarwal R. Insight into the therapeutic potential of pyrazole-thiazole hybrids: A comprehensive review. Arch Pharm (Weinheim) 2024; 357:e2400576. [PMID: 39367561 DOI: 10.1002/ardp.202400576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 10/06/2024]
Abstract
Several pyrazole-thiazole hybrids featuring two potentially bioactive pharmacophores with or without linker have been synthesized using the molecular hybridization approach as target structures by medicinal chemists to modulate multiple drug targets simultaneously. The presented review aims to provide an overview of the diversified and wide array of pharmacological activities of these hybrids bestowing anticancer, antifungal, antibacterial, analgesic, anti-inflammatory, antioxidant, antitubercular, antiviral, antiparasitic, and miscellaneous activities. The structure-activity relationships and potential mechanism of action are also reviewed to shed light on the development of more effective and biotargeted candidates. This review focuses on the latest research advances in the biological profile of pyrazole-thiazole hybrids reported from 2015 to the present, providing medicinal researchers with a comprehensive platform to rationally design and develop more promising pyrazole-thiazole hybrids.
Collapse
Affiliation(s)
- Garima Sumran
- Department of Chemistry, D. A. V. College (Lahore), Ambala City, Haryana, India
| | - Manisha Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
- CSIR-National Institute of Science Communication and Policy Research, New Delhi, India
| |
Collapse
|
2
|
Bimoussa A, Oubella A, Alossaimi MA, Aziz M, Attaullah HM, Ejaz SA, Morjani H, Auhmani A, Robert A, Riahi A, Riadi Y, Ait Itto MY. Novel Bis-1,2,3-triazole-thiazolidinone hybrid as anticancer agents that induce apoptosis and molecular modeling study. Future Med Chem 2024; 16:2193-2210. [PMID: 39387360 PMCID: PMC11622789 DOI: 10.1080/17568919.2024.2394019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 08/12/2024] [Indexed: 10/15/2024] Open
Abstract
Aim: A series of (R)-Carvone-based 1,2,3-triazole-thiazolidinone 17a-h hybrids were synthesized and characterized by spectroscopic techniques NMR and HRMS. The chemical reactivity and the stability parameters were observed via DFT.Method/results: The objective was to evaluate the anticancer activity of the synthesized compounds against cancer cell lines. The mechanism of action by which the 17b and 17g exert their effect suggested that they may induce apoptosis through activation of caspase-3/7. This effect was observed against the most important NIMA-related kinases via Docking investigation. The designed compounds were identified as the best inhibitors of the NEK family via the inactivation of the caspase-3. The Docking results were supported by Dynamics where the binding energies justified the medicinal importance of the synthesized derivatives.
Collapse
Affiliation(s)
- Abdoullah Bimoussa
- Laboratory of Organic Synthesis & Physico-Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, Université Cadi Ayyad, BP PO Box 2390, Marrakech, 40001, Morocco
| | - Ali Oubella
- Laboratory of Organic & Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
| | - Manal A Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Hafiz Muhammad Attaullah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Hamid Morjani
- BioSpectroscopie Translationnelle, BioSpecT-EA7506, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51 Rue Cognacq Jay, 51096, Reims Cedex, France
| | - Aziz Auhmani
- Laboratory of Organic Synthesis & Physico-Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, Université Cadi Ayyad, BP PO Box 2390, Marrakech, 40001, Morocco
| | - Anthony Robert
- Equipe MSO, CNRS UMR 7312 Institut de Chimie Moléculaire Université de Reims Champagne-Ardenne, Bat. Europol'Agro - Moulin de La Housse UFR SciencesB.P.,1039, 51687, Reims Cedex 2, France
| | - Abdelkhalek Riahi
- Equipe MSO, CNRS UMR 7312 Institut de Chimie Moléculaire Université de Reims Champagne-Ardenne, Bat. Europol'Agro - Moulin de La Housse UFR SciencesB.P.,1039, 51687, Reims Cedex 2, France
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Moulay Youssef Ait Itto
- Laboratory of Organic Synthesis & Physico-Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, Université Cadi Ayyad, BP PO Box 2390, Marrakech, 40001, Morocco
| |
Collapse
|
3
|
Szlachcikowska D, Tabęcka-Łonczyńska A, Holota S, Roman O, Shepeta Y, Lesyk R, Szychowski KA. Role of Ciminalum-4-thiazolidinone Hybrids in Molecular NF-κB Dependent Pathways. Int J Mol Sci 2024; 25:7329. [PMID: 39000436 PMCID: PMC11242080 DOI: 10.3390/ijms25137329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
A range of hybrid molecules incorporating the ciminalum moiety in the thiazolidinone ring demonstrate significant anticancer and antimicrobial properties. Therefore, the aim of our study was to evaluate the properties and mechanism of action of two 4-thiazolidinone-based derivatives, i.e., 3-{5-[(Z,2Z)-2-chloro-3-(4-nitrophenyl)-2-propenylidene]-4-oxo-2-thioxothiazolidin-3-yl}propanoic acid (Les-45) and 5-[2-chloro-3-(4-nitrophenyl)-2-propenylidene]-2-(3-hydroxyphenylamino)thiazol-4(5H)-one (Les-247). In our study, we analyzed the impact of Les-45 and Les-247 on metabolic activity, caspase-3 activity, and the expression of genes and proteins related to inflammatory and antioxidant defenses and cytoskeleton rearrangement in healthy human fibroblasts (BJ) and a human lung carcinoma cell line (A549). The cells were exposed to increasing concentrations (1 nM to 100 μM) of the studied compounds for 24 h and 48 h. A decrease in the metabolic activity in the BJ and A549 cell lines was induced by both compounds at a concentration range from 10 to 100 µM. Both compounds decreased the mRNA expression of NRF2 (nuclear factor erythroid 2-related factor 2) and β-actin in the BJ cells. Interestingly, a significant decrease in the level of NF-κB gene and protein expression was detected in the BJ cell line, suggesting a direct impact of the studied compounds on the inhibition of inflammation. However, more studies are needed due to the ability of Les-45 and Les-247 to interfere with the tubulin/actin cytoskeleton, i.e., a critical system existing in eukaryotic cells.
Collapse
Affiliation(s)
- Dominika Szlachcikowska
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (D.S.); (R.L.); (K.A.S.)
| | - Anna Tabęcka-Łonczyńska
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (D.S.); (R.L.); (K.A.S.)
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; (S.H.); (O.R.)
- Department of Organic Chemistry and Pharmacy, Lesya Ukrainka Volyn National University, Volya Avenue 13, 43025 Lutsk, Ukraine
| | - Olexandra Roman
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; (S.H.); (O.R.)
| | - Yulia Shepeta
- Department of Pharmaceutical Chemistry, National Pirogov Memorial Medical University, Pirogov 56, 21018 Vinnytsia, Ukraine;
| | - Roman Lesyk
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (D.S.); (R.L.); (K.A.S.)
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; (S.H.); (O.R.)
| | - Konrad A. Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (D.S.); (R.L.); (K.A.S.)
| |
Collapse
|
4
|
Maddipatla S, Bakchi B, Gadhave RR, Ammara A, Sau S, Rani B, Nanduri S, Kalia NP, Supuran CT, Yaddanapudi VM. Exploring rhodanine linked enamine-carbohydrazide derivatives as mycobacterial carbonic anhydrase inhibitors: Design, synthesis, biological evaluation, and molecular docking studies. Arch Pharm (Weinheim) 2024; 357:e2400064. [PMID: 38498883 DOI: 10.1002/ardp.202400064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024]
Abstract
With the rise of multidrug-resistant tuberculosis, the imperative for an alternative and superior treatment regimen, incorporating novel mechanisms of action, has become crucial. In pursuit of this goal, we have developed and synthesized a new series of rhodanine-linked enamine-carbohydrazide derivatives, exploring their potential as inhibitors of mycobacterial carbonic anhydrase. The findings reveal their efficacy, displaying notable selectivity toward the mycobacterial carbonic anhydrase 2 (mtCA 2) enzyme. While exhibiting moderate activity against human carbonic anhydrase isoforms, this series demonstrates promising selectivity, positioning these compounds as potential antitubercular agents. Compound 6d was the best one from the series with a Ki value of 9.5 µM toward mtCA 2. Most of the compounds displayed moderate to good inhibition against the Mtb H37Rv strain; compound 11k showed a minimum inhibitory concentration of 1 µg/mL. Molecular docking studies revealed that compounds 6d and 11k show metal coordination with the zinc ion, like classical CA inhibitors.
Collapse
Affiliation(s)
- Sarvan Maddipatla
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Bulti Bakchi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Rutuja Rama Gadhave
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Andrea Ammara
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Sesto Fiorentino, Firenze, Italy
| | - Shashikanta Sau
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Bandela Rani
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Srinivas Nanduri
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Nitin Pal Kalia
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Sesto Fiorentino, Firenze, Italy
| | - Venkata Madhavi Yaddanapudi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| |
Collapse
|
5
|
Kosińska K, Skóra B, Holota S, Shepeta Y, Tabęcka-Łonczyńska A, Lesyk R, Szychowski KA. Role of 4-Thiazolidinone-Pyrazoline/Indoline Hybrids Les-4369 and Les-3467 in BJ and A549 Cell Lines. Cells 2024; 13:1007. [PMID: 38920636 PMCID: PMC11202306 DOI: 10.3390/cells13121007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Cancer is one of the most important problems of modern societies. Recently, studies have reported the anticancer properties of rosiglitazone related to its ability to bind peroxisome proliferator receptor γ (PPARγ), which has various effects on cancer and can inhibit cell proliferation. In this study, we investigated the effect of new 4-thiazolidinone (4-TZD) hybrids Les-4369 and Les-3467 and their effect on reactive oxygen species (ROS) production, metabolic activity, lactate dehydrogenase (LDH) release, caspase-3 activity, and gene and protein expression in human foreskin fibroblast (BJ) cells and lung adenocarcinoma (A549) cells. The ROS production and caspase-3 activity were mainly increased in the micromolar concentrations of the studied compounds in both cell lines. Les-3467 and Les-4369 increased the mRNA expression of PPARG, P53 (tumor protein P53), and ATM (ATM serine/threonine kinase) in the BJ cells, while the mRNA expression of these genes (except PPARG) was mainly decreased in the A549 cells treated with both of the tested compounds. Our results indicate a decrease in the protein expression of AhR, PPARγ, and PARP-1 in the BJ cells exposed to 1 µM Les-3467 and Les-4369. In the A549 cells, the protein expression of AhR, PPARγ, and PARP-1 increased in the treatment with 1 µM Les-3467 and Les-4369. We have also shown the PPARγ modulatory properties of Les-3467 and Les-4369. However, both compounds prove weak anticancer properties evidenced by their action at high concentrations and non-selective effects against BJ and A549 cells.
Collapse
Affiliation(s)
- Karolina Kosińska
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (B.S.); (A.T.-Ł.); (R.L.); (K.A.S.)
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (B.S.); (A.T.-Ł.); (R.L.); (K.A.S.)
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine;
- Department of Organic Chemistry and Pharmacy, Lesya Ukrainka Volyn National University, Volya Avenue 13, 43025 Lutsk, Ukraine
| | - Yulia Shepeta
- Department of Pharmaceutical Chemistry, National Pirogov Memorial Medical University, Pirogov 56, 21018 Vinnytsia, Ukraine;
| | - Anna Tabęcka-Łonczyńska
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (B.S.); (A.T.-Ł.); (R.L.); (K.A.S.)
| | - Roman Lesyk
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (B.S.); (A.T.-Ł.); (R.L.); (K.A.S.)
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine;
| | - Konrad A. Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (B.S.); (A.T.-Ł.); (R.L.); (K.A.S.)
| |
Collapse
|
6
|
Ramadan WS, Saber-Ayad MM, Saleh E, Abdu-Allah HH, El-Shorbagi ANA, Menon V, Tarazi H, Semreen MH, Soares NC, Hafezi S, Venkatakhalam T, Ahmed S, Kanie O, Hamoudi R, El-Awady R. Design, synthesis and mechanistic anticancer activity of new acetylated 5-aminosalicylate-thiazolinone hybrid derivatives. iScience 2024; 27:108659. [PMID: 38235331 PMCID: PMC10792193 DOI: 10.1016/j.isci.2023.108659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/29/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024] Open
Abstract
The development of hybrid compounds has been widely considered as a promising strategy to circumvent the difficulties that emerge in cancer treatment. The well-established strategy of adding acetyl groups to certain drugs has been demonstrated to enhance their therapeutic efficacy. Based on our previous work, an approach of accommodating two chemical entities into a single structure was implemented to synthesize new acetylated hybrids (HH32 and HH33) from 5-aminosalicylic acid and 4-thiazolinone derivatives. These acetylated hybrids showed potential anticancer activities and distinct metabolomic profile with antiproliferative properties. The in-silico molecular docking predicts a strong binding of HH32 and HH33 to cell cycle regulators, and transcriptomic analysis revealed DNA repair and cell cycle as the main targets of HH33 compounds. These findings were validated using in vitro models. In conclusion, the pleiotropic biological effects of HH32 and HH33 compounds on cancer cells demonstrated a new avenue to develop more potent cancer therapies.
Collapse
Affiliation(s)
- Wafaa S. Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Maha M. Saber-Ayad
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ekram Saleh
- Medical Biochemistry and Molecular Biology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 12613, Egypt
| | | | - Abdel-nasser A. El-Shorbagi
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Faculty of Pharmacy, Assiut University, Assiut 16122, Egypt
| | - Varsha Menon
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hamadeh Tarazi
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammad H. Semreen
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nelson C. Soares
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Shirin Hafezi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Thenmozhi Venkatakhalam
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Samrein Ahmed
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Biosciences and Chemistry, College of Health, Wellbeing and Life sciences, University of Sheffield Hallam, Sheffield S1 1WB, United Kingdom
| | - Osamu Kanie
- Department of Applied Biochemistry, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Division of Surgery and Interventional Science, Faculty of Medical Science, University College London, London, United Kingdom
| | - Raafat El-Awady
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
7
|
Gornowicz A, Lesyk R, Czarnomysy R, Holota S, Shepeta Y, Popławska B, Podolak M, Szymanowski W, Bielawski K, Bielawska A. Multi-Targeting Anticancer Activity of a New 4-Thiazolidinone Derivative with Anti-HER2 Antibodies in Human AGS Gastric Cancer Cells. Int J Mol Sci 2023; 24:ijms24076791. [PMID: 37047765 PMCID: PMC10095353 DOI: 10.3390/ijms24076791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Combining chemotherapy with immunotherapy still remains a regimen in anticancer therapy. Novel 4-thiazolidinone-bearing hybrid molecules possess well-documented anticancer activity, and together with anti-HER2 antibodies, may represent a promising strategy in treating patients with gastric cancer with confirmed human epidermal growth factor receptor 2 (HER2) expression. The aim of the study was to synthesize a new 4-thiazolidinone derivative (Les-4367) and investigate its molecular mechanism of action in combination with trastuzumab or pertuzumab in human AGS gastric cancer cells. AGS cell viability and antiproliferative potential were examined. The effect of the tested combinations as well as monotherapy on apoptosis and autophagy was also determined. Metalloproteinase-2 (MMP-2), intercellular adhesion molecule 1 (ICAM-1), pro-inflammatory and anti-inflammatory cytokine concentrations were also demonstrated by the ELISA technique. We proved that pertuzumab and trastuzumab were very effective in increasing the sensitivity of AGS gastric cancer cells to novel Les-4367. The molecular mechanism of action of the tested combination is connected with the induction of apoptosis. Additionally, the anticancer activity is not associated with the autophagy process. Decreased concentrations of pro-inflammatory cytokines, MMP-2 and ICAM-1-were observed. The novel combination of drugs based on anti-HER2 antibodies with Les-4367 is a promising strategy against AGS gastric cancer cells.
Collapse
Affiliation(s)
- Agnieszka Gornowicz
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Roman Lesyk
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Yulia Shepeta
- Department of Pharmaceutical Chemistry, National Pirogov Memorial Medical University, Pirogov 56, 21018 Vinnytsya, Ukraine
| | - Bożena Popławska
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Magdalena Podolak
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Wojciech Szymanowski
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Anna Bielawska
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
8
|
Bimoussa A, Fawzi M, Oubella A, Ejaz SA, Sajjad Bilal M, Labd Taha M, Auhmani A, Morjani H, Robert A, Riahi A, Ait Itto MY. Hybrids of thiazolidinone with 1,2,3-triazole derivatives: design, synthesis, biological evaluation, in silico studies, molecular docking, molecular dynamics simulations, and ADMET profiling. J Biomol Struct Dyn 2023; 41:11987-11999. [PMID: 36617941 DOI: 10.1080/07391102.2022.2164357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023]
Abstract
A new series of thiazolidinone linked 1,2,3-triazole hybrids 5a-h was designed and synthesized using the copper-catalyzed Huisgen azide-alkyne cycloaddition (CuAAC) between thiazolidinone linked alkyne and aromatic azides. The structures of the newly synthesized compounds were established by NMR (1H and 13C) and HRMS. The targeted thiazolidinone-1,2,3-triazole hybrids were evaluated for their cytotoxic activity against four human cancer cell lines, including fibrosarcoma (HT-1080), lung carcinoma (A-549), and breast carcinoma (MCF-7 and MDA-MB-231) using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliun bromide (MTT). The obtained data showed that most of these compounds have moderate anti-proliferative activity with IC50 values between 10.26 ± 0.71 and 53.93 ± 1.20 μM. The compound 5a exhibited higher activity with an IC50 value of 10.26 ± 0.71 µM, compared to 5d with an IC50 value of 11.56 ± 1.98 µM for the HT-1080 and MCF-7 cancer cells line, respectively. Moreover, Annexin-V apoptosis was assessed by flow cytometry for hybrid compounds 5a and 5d against HT-1080 and MCF-7 competitor cell lines, as they increase the level of active caspase 3/7. The experimental results were further confirmed by docking studies followed by molecular dynamic simulations. Both the potent derivatives i.e. 5a and 5d have comparable docking scores and MD simulations results showed that the docked complex of 5a is somewhat more stable than 5d primarily for protein p53. The ADMET profile of both derivatives established their safety zone and drug-like potential.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdoullah Bimoussa
- Department of Chemistry, Faculty of Sciences Semlalia, Laboratory of Organic Synthesis and Physico-Molecular Chemistry, Marrakesh, Morocco
| | - Mourad Fawzi
- Department of Chemistry, Faculty of Sciences Semlalia, Laboratory of Organic Synthesis and Physico-Molecular Chemistry, Marrakesh, Morocco
| | - Ali Oubella
- Department of Chemistry, Faculty of Sciences Semlalia, Laboratory of Organic Synthesis and Physico-Molecular Chemistry, Marrakesh, Morocco
- Laboratory of Organic and Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Sajjad Bilal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mohamed Labd Taha
- Laboratory of Organic and Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Aziz Auhmani
- Department of Chemistry, Faculty of Sciences Semlalia, Laboratory of Organic Synthesis and Physico-Molecular Chemistry, Marrakesh, Morocco
| | - Hamid Morjani
- BioSpectroscopie Translationnelle, BioSpecT-EA7506, UFR de Pharmacie, Université de Reims Champagne-Ardenne, Reims Cedex, France
| | - Anthony Robert
- Equipe MSO, CNRS UMR 7312 Institut de Chimie Moléculaire, Université de Reims Champagne-Ardenne, Bat. Europol'Agro - Moulin de La Housse UFR Sciences B.P, Reims Cedex, France
| | - Abdelkhalek Riahi
- Equipe MSO, CNRS UMR 7312 Institut de Chimie Moléculaire, Université de Reims Champagne-Ardenne, Bat. Europol'Agro - Moulin de La Housse UFR Sciences B.P, Reims Cedex, France
| | - My Youssef Ait Itto
- Department of Chemistry, Faculty of Sciences Semlalia, Laboratory of Organic Synthesis and Physico-Molecular Chemistry, Marrakesh, Morocco
| |
Collapse
|
9
|
Novel hybrid pyrrolidinedione-thiazolidinones as potential anticancer agents: Synthesis and biological evaluation. Eur J Med Chem 2022; 238:114422. [DOI: 10.1016/j.ejmech.2022.114422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 01/20/2023]
|
10
|
Tilekar K, Shelke O, Upadhyay N, Lavecchia A, Ramaa CS. Current status and future prospects of molecular hybrids with thiazolidinedione (TZD) scaffold in anticancer drug discovery. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
Skóra B, Lewińska A, Kryshchyshyn-Dylevych A, Kaminskyy D, Lesyk R, Szychowski KA. Evaluation of Anticancer and Antibacterial Activity of Four 4-Thiazolidinone-Based Derivatives. Molecules 2022; 27:894. [PMID: 35164157 PMCID: PMC8839971 DOI: 10.3390/molecules27030894] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/16/2022] Open
Abstract
Heterocycles are commonly known for their unique features, e.g., antibacterial or anticancer properties. Although many synthetic heterocycles, such as 4-thiazolidinone (4-TZD), have been synthesized, their potential applications have not yet been fully investigated. However, many researchers have reported relevant results that can be a basis for the search for new potential drugs. Therefore, the aim of this study was to evaluate the cytotoxic, cytostatic, and antibacterial effects of certain 4-thiazolidinone-based derivatives, Les-3166, Les-5935, Les-6009, and Les-6166, on human fibroblasts (BJ), neuroblastoma (SH-SY5Y), epithelial lung carcinoma (A549), and colorectal adenocarcinoma (CACO-2) cell lines in vitro. All tested compounds applied in a concentration range from 10 to 100 µM were able to decrease metabolic activity in the BJ, A549, and SH-SY5Y cell lines. However, the action of Les-3166 was mainly based on the ROS-independent pathway, similarly to Les-6009. In turn, Les-5935 and Les-6166 were able to promote ROS production in BJ, A549, and SH-SY5Y cells, compared to the control. Les-3166, Les-6009, and Les-6166 significantly increased the caspase-3 activity, especially at the concentrations of 50 µM and 100 µM. However, Les-5935 did not induce apoptosis. Only Les-5935 showed a minor cytostatic effect on SH-SY5Y cells. Additionally, the antibacterial properties of the tested compounds against P. aeruginosa bacterial biofilm can be ranked as follows: Les-3166 > Les-5935 > Les-6009. Les-6166 did not show any anti-biofilm activity. In summary, the study showed that Les-5935, Les-6009, and Les-6166 were characterized by anticancer properties, especially in the human lung cancer cell. In cases of BJ, SH-SY5Y, and CACO-2 cells the anticancer usage of such compounds is limited due to effect visible only at 50 and 100 µM.
Collapse
Affiliation(s)
- Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (R.L.); (K.A.S.)
| | - Anna Lewińska
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland;
| | - Anna Kryshchyshyn-Dylevych
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; (A.K.-D.); (D.K.)
| | - Danylo Kaminskyy
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; (A.K.-D.); (D.K.)
| | - Roman Lesyk
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (R.L.); (K.A.S.)
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; (A.K.-D.); (D.K.)
| | - Konrad A. Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (R.L.); (K.A.S.)
| |
Collapse
|
12
|
Nafie MS, Kishk SM, Mahgoub S, Amer AM. Quinoline-based thiazolidinone derivatives as potent cytotoxic and apoptosis-inducing agents through EGFR inhibition. Chem Biol Drug Des 2021; 99:547-560. [PMID: 34873844 DOI: 10.1111/cbdd.13997] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/13/2021] [Accepted: 12/01/2021] [Indexed: 01/06/2023]
Abstract
Quinoline-based thiazolidinone heterocycles exhibited potent activity in the field of cancer therapy. Hence, ten quinoline-based thiazolidinone derivatives were evaluated for their anticancer activity through cytotoxic activity, epidermal growth factor receptor (EGFR) inhibition pathway, apoptosis investigation through flow cytometric analyses, RT-PCR gene expression, in vivo solid-Ehrlich carcinoma model, and finally in silico approach for highlighting the interaction pose. Results revealed that compound 7 exhibited cytotoxic activity against HCT-116 cells with an IC50 value of 7.43 µM compared to 5-FU (IC50 = 11.36 µM) with moderate cytotoxic activity against the FHC (IC50 = 35.27 µM), and it exhibited remarkable inhibition activity of EGFR with IC50 value of 96.43 nM compared to Erlotinib (IC50 = 78.65 nM). Moreover, it significantly stimulated apoptotic colon cancer cell death with 171.58-fold arresting cell cycle at G2 and S-phases. Additionally, it ameliorated both biochemical and histochemical structures near normal with tumor inhibition ratio of 52.92% compared to 5-FU of 57.16%, with immunohistochemical examinations of EGFR inhibition in the treated group compared to control. Finally, molecular docking study highlighted its good binding affinity through good interactive binding pose inside the EGFR protein. In conclusion, the potent EGFR inhibitory activity of compound 7 was investigated using three integrated approaches in vitro, in vivo, and in silico, so it worth be validated and developed as a chemotherapeutic anticancer agent.
Collapse
Affiliation(s)
- Mohamed S Nafie
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Safaa M Kishk
- Pharmaceutical Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Sebaey Mahgoub
- Proteomics and Metabolomics Unit, Department of Basic Research, Children's Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Atef M Amer
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
13
|
Copper catalyzed decarboxylative coupling between coumarin 3-carboxylic acid and 4-thiazolidinones. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Synthesis of new 2-(thiazol-4-yl)thiazolidin-4-one derivatives as potential anti-mycobacterial agents. Bioorg Chem 2021; 115:105192. [PMID: 34314920 DOI: 10.1016/j.bioorg.2021.105192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/23/2021] [Accepted: 07/16/2021] [Indexed: 12/25/2022]
Abstract
To search for potent antimycobacterial lead compounds, a new series of 3-substituted phenyl-2-(2-(substituted phenyl)thiazol-4-yl) thiazolidin-4-one (5a-t) derivatives have been synthesized by the condensation of 2-substituted phenyl thiazole-4-carbaldehyde with aromatic amine followed by cyclocondensation with thioglycolic acid. The structure of the newly synthesized 2-(thiazol-4-yl)thiazolidin-4-one derivatives were characterized by the spectroscopic analysis. The synthesized compounds were screened for antimycobacterial activity against Mycobacterium tuberculosis H37Ra (MTB) (ATCC 25177) and Mycobacterium bovis BCG (BCG, ATCC 35743). Most of the 2-(thiazol-4-yl)thiazolidin-4-one derivatives showed good to excellent antimycobacterial activity against both the Mtb strains. Nine derivatives 5c, 5g, 5j, 5m, 5n, 5o, 5p, 5s, and 5t showed excellent activity against M. bovis BCG with MIC 4.43 to 24.04 μM were further evaluated for the cytotoxicity activity against HeLa A549, and HCT-116 cell lines and showed no significant cytotoxic activity at the maximum concentration evaluated. The potential antimycobacterial activities enforced that the thiazolyl-thiazolidin-4-one derivatives could lead to compounds that could treat tuberculosis.
Collapse
|
15
|
Oubella A, El Mansouri AE, Fawzi M, Bimoussa A, Laamari Y, Auhmani A, Morjani H, Robert A, Riahi A, Youssef Ait Itto M. Thiazolidinone-linked1,2,3-triazoles with monoterpenic skeleton as new potential anticancer agents: Design, synthesis and molecular docking studies. Bioorg Chem 2021; 115:105184. [PMID: 34333421 DOI: 10.1016/j.bioorg.2021.105184] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/15/2021] [Accepted: 07/13/2021] [Indexed: 01/07/2023]
Abstract
A novel series of 1,2,3-triazole-thiazolidinone-carvone hybrid compounds has been designed and synthesized using the copper-catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition (CuAAC) process based on (R)-Carvone-O-propargylated 5-hydroxybenzylidene-thiazolidin-4-one derivative as starting material. All compounds were characterized and identified based on their NMR and HRMS spectroscopic data. HMBC correlations confirm that under the CuAAC reaction conditions, only the 1,4-disubstituted triazole regioisomers were formed. The targeted 1,2,3-triazole-thiazolidinone-carvone hybrids and their precursors were evaluated for their cytotoxic activity against four human cancer cell lines, including fibrosarcoma (HT-1080), lung carcinoma (A-549), and breast carcinoma (MCF-7 and MDA-MB-231). The obtained data showed that most of these compounds have moderate anti-proliferative activity with IC50 values between 15.04 ± 0.71 and 42.22 ± 1.20 µM. The mechanism of action of the most active compounds 14e and 14f suggested that they induce apoptosis through caspase-3/7 activation, and the compound 14e elicited S-phase arrest, while compound 14f evoked G2/M phase blockade. The molecular docking confirmed that compounds 14e and 14f were nicely bonded with caspace-3 leading up to stable protein-ligand complexes.
Collapse
Affiliation(s)
- Ali Oubella
- Laboratoire de Synthèse Organique et Physico-Chimie Moléculaire, Département de Chimie, Faculté des Sciences, Semlalia B.P 2390, Marrakech 40001, Morocco.
| | - Az-Eddine El Mansouri
- Laboratoire de Materiaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Universite Hassan II, Casablanca, Morocco; Laboratory of Biomolecular and Medicinal Chemistry, Department of Chemistry, Faculty of Science Semlalia, BP 2390, Marrakech 40001, Morocco
| | - Mourad Fawzi
- Laboratoire de Synthèse Organique et Physico-Chimie Moléculaire, Département de Chimie, Faculté des Sciences, Semlalia B.P 2390, Marrakech 40001, Morocco
| | - Abdoullah Bimoussa
- Laboratoire de Synthèse Organique et Physico-Chimie Moléculaire, Département de Chimie, Faculté des Sciences, Semlalia B.P 2390, Marrakech 40001, Morocco
| | - Yassine Laamari
- Laboratoire de Synthèse Organique et Physico-Chimie Moléculaire, Département de Chimie, Faculté des Sciences, Semlalia B.P 2390, Marrakech 40001, Morocco
| | - Aziz Auhmani
- Laboratoire de Synthèse Organique et Physico-Chimie Moléculaire, Département de Chimie, Faculté des Sciences, Semlalia B.P 2390, Marrakech 40001, Morocco
| | - Hamid Morjani
- BioSpectroscopie Translationnelle, BioSpecT-EA7506, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51 Rue Cognacq Jay, 51096, Reims Cedex, France
| | - Anthony Robert
- Equipe MSO, CNRS UMR 7312 Institut de Chimie Moléculaire Université de Reims Champagne-Ardenne, Bat. Europol'Agro - Moulin de La Housse UFR Sciences B.P., 1039, 51687 REIMS Cédex 2, France
| | - Abdelkhalek Riahi
- Equipe MSO, CNRS UMR 7312 Institut de Chimie Moléculaire Université de Reims Champagne-Ardenne, Bat. Europol'Agro - Moulin de La Housse UFR Sciences B.P., 1039, 51687 REIMS Cédex 2, France
| | - My Youssef Ait Itto
- Laboratoire de Synthèse Organique et Physico-Chimie Moléculaire, Département de Chimie, Faculté des Sciences, Semlalia B.P 2390, Marrakech 40001, Morocco.
| |
Collapse
|
16
|
Negi M, Chawla P, Faruk A, Chawla V. Role of 4-Thiazolidinone Scaffold in Targeting Variable Biomarkers and Pathways Involving Cancer. Anticancer Agents Med Chem 2021; 22:1458-1477. [PMID: 34229596 DOI: 10.2174/1871520621666210706104227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer can be considered as a genetic as well as a metabolic disorder. Current cancer treatment scenario looks like aggravating tumor cell metabolism, causing the disease to progress even with greater intensity. The cancer therapy is restricted to limitations of poor patient compliance due to toxicities to normal tissues and multi-drug resistance development. There is an emerging need for cancer therapy to be more focused on the better understanding of genetic, epigenetic and transcriptional changes resulting in cancer progression and their relationship with treatment sensitivity. OBJECTIVE The 4-thiazolidinone nucleus possesses marked anticancer potential towards different biotargets, thus targeting different cancer types like breast, prostate, lung, colorectal and colon cancers, renal cell adenocarcinomas and gliomas. Therefore, conjugating the 4-thiazolidinone scaffold with other promising moieties or by directing the therapy towards targeted drug delivery systems like the use of nanocarrier systems, can provide the gateway for optimizing the anticancer efficiency and minimizing the adverse effects and drug resistance development, thus providing stimulus for personalized pharmacotherapy. METHODS An exhaustive literature survey has been carried out to give an insight into the anticancer potential of the 4-thiazolidinone nucleus either alone or in conjugation with other active moieties, with the mechanisms involved in preventing proliferation and metastasis of cancer covering a vast range of publications of repute. CONCLUSION This review aims to summarise the work reported on anticancer activity of 4-thiazolidinone derivatives covering various cancer biomarkers and pathways involved, citing the data from 2005 till now, which may be beneficial to the researchers for future development of more efficient 4-thiazolidinone derivatives.
Collapse
Affiliation(s)
- Meenakshi Negi
- Department of Pharmaceutical Sciences, HNB Garhwal University, Srinagar Garhwal, Uttarakhand, India
| | - Pooja Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Abdul Faruk
- Department of Pharmaceutical Sciences, HNB Garhwal University, Srinagar Garhwal, Uttarakhand, India
| | - Viney Chawla
- University Institute of Pharmaceutical Sciences and Research, BFUHS University, Faridkot, India
| |
Collapse
|
17
|
Szychowski KA, Skóra B, Kryshchyshyn-Dylevych A, Kaminskyy D, Tobiasz J, Lesyk RB, Gmiński J. 4-Thiazolidinone-based derivatives do not affect differentiation of mouse embryo fibroblasts (3T3-L1 cell line) into adipocytes. Chem Biol Interact 2021; 345:109538. [PMID: 34097888 DOI: 10.1016/j.cbi.2021.109538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/15/2021] [Accepted: 05/27/2021] [Indexed: 01/02/2023]
Abstract
Nowadays, diabetes mellitus type 2 (T2DM) is a serious problem in western European societies and in the United States. Thiazolidinediones (TZDs) are a broad group of compounds used to decrease insulin resistance in TDM2. To date, it has been believed that TZDs act mainly through activation of peroxisome proliferator-activated receptor gamma (PPARγ). The PPARγ receptor is important in differentiation of preadipocytes into mature adipocytes. Therefore, given the potential of structurally related thiopyrano[2,3-d]thiazoles Les-2194 and Les-3377 and 4-thiazolidinone derivative Les-3640 to interact with the PPARγ receptor, the aim of the present study was to evaluate the impact of the 4-thiazolidinone-based derivatives mentioned above on the process of 3T3-L1 cell line differentiation into adipocytes. In the first part of our study, we prove that Les-2194, Les-3377, and Les-3640 are cytotoxic to 3T3-L1 cells. In the next stage, we determine that Les-2194, Les-3377, and Les-3640 stimulate lipid accumulation (using the ORO staining method) and induce specific gene expression (Dlk1, Fabp4, Vegfa, Pai-1, Resistin, Adiponectin, and Pparγ). Our data show that rosiglitazone, pioglitazone, Les-2194, and Les-3640 at a concentration of 2 μM do not affect 3T3-L1 cell viability and do not activate the apoptotic process. Only Les-3377 decreased the number and metabolism of the cells. Although all the studied compounds influenced the expression of Dlk1, Fabp4, Vegfa, Pai-1, Resistin, Adiponectin, and Pparγ genes, none of them caused gene expression similar to that induced by rosiglitazone or pioglitazone. The ORO staining showed that rosiglitazone and pioglitazone induced lipid accumulation in the 3T3-L1 cell line, which is a marker of mature adipocytes. Only rosiglitazone increased Pparγ protein expression after 14 days of differentiation.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland.
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| | - Anna Kryshchyshyn-Dylevych
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | - Danylo Kaminskyy
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | - Jakub Tobiasz
- Department of Lifestyle Disorders and Regenerative Medicine, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| | - Roman B Lesyk
- Department of Lifestyle Disorders and Regenerative Medicine, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland; Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | - Jan Gmiński
- Department of Lifestyle Disorders and Regenerative Medicine, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| |
Collapse
|
18
|
Szychowski KA, Skóra B, Kryshchyshyn-Dylevych A, Kaminskyy D, Khyluk D, Lesyk R. 4-thiazolidinone-based derivatives rosiglitazone and pioglitazone affect the expression of antioxidant enzymes in different human cell lines. Biomed Pharmacother 2021; 139:111684. [PMID: 34243632 DOI: 10.1016/j.biopha.2021.111684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
PPARγ regulate the expression of genes involved in peripheral insulin sensitivity, adipogenesis, and glucose homeostasis. Moreover, PPARγ agonists, such as pioglitazone and rosiglitazone, are used in the treatment of various diseases, e.g. diabetes (type II), atherosclerosis, inflammatory skin disease, and some types of cancers. PPARγ agonists have also been found to reduce oxidative-stress (OS) and OS-induced apoptosis. Therefore, the aim of the present study was to evaluate the impact of 4-thiazolidinone-based derivatives Les-2194, Les-3377, and Les-3640 on the expression of antioxidant enzymes in human squamous cell carcinoma (SCC-15), lung carcinoma (A549), colon adenocarcinoma (CACO-2), and skin fibroblast (BJ) cell lines. After 24 h of exposure, Les-2194 caused an increase in ROS production in the SCC-15 and CACO-2 cell lines; however, no changes in caspase-3 activity and metabolic activity were observed. Nevertheless, the Ki67 level was significantly decreased. Les-3377 was able to increase ROS production in all tested cell lines, but no impact on metabolic activity and caspase-3 activity were noticed. In turn, Les-3640 was able to induce ROS overproduction in BJ, SCC-15, and CACO-2 and did not affect metabolic activity. However, an increase in caspase-3 activity was observed at the 10 µM concentration in all tested cell lines. All tested compounds were able to influence CAT and SOD1 expression and decreased (Les-2194 in the BJ cells) or increased (Les-3640 in the SCC-15 and CACO-2 cells) PPARγ expression.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Anna Kryshchyshyn-Dylevych
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv 79010, Ukraine
| | - Danylo Kaminskyy
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv 79010, Ukraine
| | - Dmytro Khyluk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv 79010, Ukraine
| | - Roman Lesyk
- Department of Lifestyle Disorders and Regenerative Medicine, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv 79010, Ukraine
| |
Collapse
|
19
|
Synthesis, structure and evaluation of anticancer activity of 4-amino-1,3-thiazolinone/pyrazoline hybrids. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Synthesis of metronidazole based thiazolidinone analogs as promising antiamoebic agents. Bioorg Med Chem Lett 2020; 30:127549. [DOI: 10.1016/j.bmcl.2020.127549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022]
|
21
|
Induction of DNA damage, apoptosis and cell cycle perturbation mediate cytotoxic activity of new 5-aminosalicylate–4-thiazolinone hybrid derivatives. Biomed Pharmacother 2020; 131:110571. [DOI: 10.1016/j.biopha.2020.110571] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/14/2020] [Accepted: 07/26/2020] [Indexed: 11/22/2022] Open
|
22
|
Dorababu A. Pharmacology Profile of Recently Developed Multi‐Functional Azoles; SAR‐Based Predictive Structural Modification. ChemistrySelect 2020. [DOI: 10.1002/slct.202000294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Atukuri Dorababu
- Department of Studies in ChemistrySRMPP Govt. First Grade College Huvinahadagali 583219, Karnataka India
| |
Collapse
|
23
|
Abstract
The aim of the present study was to investigate the antiproliferative and proapoptotic actions of N-(5-benzyl-1,3-thiazol-2-yl)-3,5-dimethyl-1-benzofuran-2-carboxamide derivative (compound 5) in glioma cells in comparison with the actions of temozolomide (TMZ) and doxorubicin (Dox), used as positive controls. The antiproliferative activity of the compound 5, TMZ, and Dox on human glioblastoma U251 and human glioblastoma multiform T98G cells was measured using the MTT test. Western blot analysis, fluorescent microscopy, agarose gel retardation assay, flow cytometric analysis, and the DNA comet assay under alkaline conditions were carried out to study the effect of compound 5 on U251 cells. This compound showed ~20 times higher cytotoxicity toward U251 and T98G cells compared with the effects of TMZ and approximately two times higher activity than that of the Dox. Compound 5 induced apoptosis in U251 cells by PARP1 and caspase 3 cleavage mechanisms, also inducing an increase in the level of Bax and Bim proapoptotic proteins and a decrease in the level of phosho-ERK1/2 kinase. The cytotoxicity of compound 5 was associated with an increase in the production of the hydrogen peroxide and the formation of DNA single-strand breaks. This compound 5 did not intercalate into a DNA molecule. Thus, the novel thiazole derivative (compound 5) proved to be a potential antiglioma drug that showed much higher cytotoxic action on human glioma cells compared with the effects of TMZ and Dox. Its cytotoxicity is associated with apoptosis induction, production of the reactive oxygen species, and formation of DNA single-strand breaks without significant DNA intercalation.
Collapse
|
24
|
Shepeta Y, Lozynskyi A, Sulyma M, Nektegayev I, Grellier P, Lesyk R. Synthesis and biological activity evaluation of new thiazolidinone-diclofenac hybrid molecules. PHOSPHORUS SULFUR 2020. [DOI: 10.1080/10426507.2020.1759060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yulia Shepeta
- Department of Pharmaceutical Сhemistry, National Pirogov Memorial Medical University, Vinnytsya, Ukraine
| | - Andrii Lozynskyi
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Marta Sulyma
- Department of General, Inorganic and Bioinorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Ihor Nektegayev
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Philippe Grellier
- National Museum of Natural History, UMR 7245 CNRS-MNHN, Team BAMEE, Paris, France
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| |
Collapse
|
25
|
Synthesis and anti-leukemic activity of pyrrolidinedione-thiazolidinone hybrids. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.02.108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
26
|
Świętek M, Panchuk R, Skorokhyd N, Černoch P, Finiuk N, Klyuchivska O, Hrubý M, Molčan M, Berger W, Trousil J, Stoika R, Horák D. Magnetic Temperature-Sensitive Solid-Lipid Particles for Targeting and Killing Tumor Cells. Front Chem 2020; 8:205. [PMID: 32328477 PMCID: PMC7161697 DOI: 10.3389/fchem.2020.00205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
Magnetic and temperature-sensitive solid lipid particles (mag. SLPs) were prepared in the presence of oleic acid-coated iron oxide (IO-OA) nanoparticles with 1-tetradecanol and poly(ethylene oxide)-block-poly(ε-caprolactone) as lipid and stabilizing surfactant-like agents, respectively. The particles, typically ~850 nm in hydrodynamic size, showed heat dissipation under the applied alternating magnetic field. Cytotoxic activity of the mag.SLPs, non-magnetic SLPs, and iron oxide nanoparticles was compared concerning the mammalian cancer cell lines and their drug-resistant counterparts using trypan blue exclusion test and MTT assay. The mag.SLPs exhibited dose-dependent cytotoxicity against human leukemia cell lines growing in suspension (Jurkat and HL-60/wt), as well as the doxorubicin (Dox)- and vincristine-resistant HL-60 sublines. The mag.SLPs showed higher cytotoxicity toward drug-resistant sublines as compared to Dox. The human glioblastoma cell line U251 growing in a monolayer culture was also sensitive to mag.SLPs cytotoxicity. Staining of U251 cells with the fluorescent dyes Hoechst 33342 and propidium iodide (PI) revealed that mag.SLPs treatment resulted in an increased number of cells with condensed chromatin and/or fragmented nuclei as well as with blebbing of the plasma membranes. While the Hoechst 33342 staining of cell suggested the pro-apoptotic activity of the particles, the PI staining indicated the pro-necrotic changes in the target cells. These conclusions were confirmed by Western blot analysis of apoptosis-related proteins, study of DNA fragmentation (DNA laddering due to the inter-nucleosomal cleavage and DNA comets due to single strand breaks), as well as by FACS analysis of the patterns of cell cycle distribution (pre-G1 phase) and Annexin V/PI staining of the treated Jurkat cells. The induction of apoptosis or necrosis by the particles used to treat Jurkat cells depended on the dose of the particles. Production of the reactive oxygen species (ROS) was proposed as a potential mechanism of mag.SLPs-induced cytotoxicity. Accordingly, hydrogen peroxide and superoxide radical levels in mag.SLPs-treated Jurkat leukemic cells were increased by ~20–40 and ~70%, respectively. In contrast, the non-magnetic SLPs and neat iron oxides did not influence ROS levels significantly. Thus, the developed mag.SLPs can be used for effective killing of human tumor cells, including drug-resistant ones.
Collapse
Affiliation(s)
- Małgorzata Świętek
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Rostyslav Panchuk
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Science of Ukraine, Lviv, Ukraine
| | - Nadia Skorokhyd
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Science of Ukraine, Lviv, Ukraine
| | - Peter Černoch
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Nataliya Finiuk
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Science of Ukraine, Lviv, Ukraine
| | - Olha Klyuchivska
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Science of Ukraine, Lviv, Ukraine
| | - Martin Hrubý
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Matúš Molčan
- Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
| | - Walter Berger
- Department of Medicine I, Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Vienna, Austria
| | - Jirí Trousil
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Science of Ukraine, Lviv, Ukraine
| | - Daniel Horák
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
27
|
Leite ACL, Espíndola JWP, de Oliveira Cardoso MV, de Oliveira Filho GB. Privileged Structures in the Design of Potential Drug Candidates for Neglected Diseases. Curr Med Chem 2019; 26:4323-4354. [DOI: 10.2174/0929867324666171023163752] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 11/22/2022]
Abstract
Background:
Privileged motifs are recurring in a wide range of biologically
active compounds that reach different pharmaceutical targets and pathways and could represent
a suitable start point to access potential candidates in the neglected diseases field.
The current therapies to treat these diseases are based in drugs that lack of the desired effectiveness,
affordable methods of synthesis and allow a way to emergence of resistant
strains. Due the lack of financial return, only few pharmaceutical companies have been
investing in research for new therapeutics for neglected diseases (ND).
Methods:
Based on the literature search from 2002 to 2016, we discuss how six privileged
motifs, focusing phthalimide, isatin, indole, thiosemicarbazone, thiazole, and thiazolidinone
are particularly recurrent in compounds active against some of neglected diseases.
Results:
It was observed that attention was paid particularly for Chagas disease, malaria,
tuberculosis, schistosomiasis, leishmaniasis, dengue, African sleeping sickness (Human
African Trypanosomiasis - HAT) and toxoplasmosis. It was possible to verify that, among
the ND, antitrypanosomal and antiplasmodial activities were between the most searched.
Besides, thiosemicarbazone moiety seems to be the most versatile and frequently explored
scaffold. As well, phthalimide, isatin, thiazole, and thiazolidone nucleus have been also
explored in the ND field.
Conclusion:
Some described compounds, appear to be promising drug candidates, while
others could represent a valuable inspiration in the research for new lead compounds.
Collapse
Affiliation(s)
- Ana Cristina Lima Leite
- Departamento de Ciencias Farmaceuticas, Centro de Ciencias da Saude, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | - José Wanderlan Pontes Espíndola
- Departamento de Ciencias Farmaceuticas, Centro de Ciencias da Saude, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | | | - Gevanio Bezerra de Oliveira Filho
- Departamento de Ciencias Farmaceuticas, Centro de Ciencias da Saude, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| |
Collapse
|
28
|
da Silveira EF, Ferreira LM, Gehrcke M, Cruz L, Pedra NS, Ramos PT, Bona NP, Soares MSP, Rodrigues R, Spanevello RM, Cunico W, Stefanello FM, Azambuja JH, Horn AP, Braganhol E. 2-(2-Methoxyphenyl)-3-((Piperidin-1-yl)ethyl)thiazolidin-4-One-Loaded Polymeric Nanocapsules: In Vitro Antiglioma Activity and In Vivo Toxicity Evaluation. Cell Mol Neurobiol 2019; 39:783-797. [PMID: 31115733 DOI: 10.1007/s10571-019-00678-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022]
Abstract
Among gliomas types, glioblastoma is considered the most malignant and the worst form of primary brain tumor. It is characterized by high infiltration rate and great angiogenic capacity. The presence of an inflammatory microenvironment contributes to chemo/radioresistance, resulting in poor prognosis for patients. Recent data show that thiazolidinones have a wide range of pharmacological properties, including anti-inflammatory and antiglioma activities. Nanocapsules of biodegradable polymers become an alternative to cancer treatment since they provide targeted drug delivery and could overcome blood-brain barrier. Therefore, here we investigated the in vitro antiglioma activity and the potential in vivo toxicity of 2- (2-methoxyphenyl) -3- ((piperidin-1-yl) ethyl) thiazolidin-4-one-loaded polymeric nanocapsules (4L-N). Nanocapsules were prepared and characterized in terms of particle size, polydispersity index, zeta potential, pH, molecule content and encapsulation efficiency. Treatment with 4L-N selectively decreased human U138MG and rat C6 cell lines viability and proliferation, being even more efficient than the free-form molecule (4L). In addition, 4L-N did not promote toxicity to primary astrocytes. We further demonstrated that the treatment with sub-therapeutic dose of 4L-N did not alter weight, neither resulted in mortality, toxicity or peripheral damage to Wistar rats. Finally, 4L as well as 4L-N did not alter makers of oxidative damage, such as TBARS levels and total sulfhydryl content, and did not change antioxidant enzymes SOD and CAT activity in liver and brain of treated rats. Taken together, these data indicate that the nanoencapsulation of 4L has potentiated its antiglioma effect and does not cause in vivo toxicity.
Collapse
Affiliation(s)
- Elita Ferreira da Silveira
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil.
| | - Luana Mota Ferreira
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Mailine Gehrcke
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Letícia Cruz
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Nathália Stark Pedra
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Priscila Treptow Ramos
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Natália Pontes Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Mayara Sandrielly Pereira Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Rodrigo Rodrigues
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Rosélia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Wilson Cunico
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francieli M Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Juliana Hofstatter Azambuja
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245 - Prédio Principal - sala 304, Porto Alegre, RS, CEP: 90.050-170, Brazil.
| | - Ana Paula Horn
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Elizandra Braganhol
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245 - Prédio Principal - sala 304, Porto Alegre, RS, CEP: 90.050-170, Brazil.
| |
Collapse
|
29
|
Anticancer properties of 5Z-(4-fluorobenzylidene)-2-(4-hydroxyphenylamino)-thiazol-4-one. Sci Rep 2019; 9:10609. [PMID: 31337851 PMCID: PMC6650463 DOI: 10.1038/s41598-019-47177-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/09/2019] [Indexed: 11/09/2022] Open
Abstract
4-thiazolidinones, which are privileged structures in medicinal chemistry, comprise the well-known class of heterocycles and are a source of new drug-like compounds. Undoubtedly, the 5-bulky-substituted-2,4-thiazolidinediones - a class of antihyperglycemic glitazones, which are peroxisome proliferator-activated receptor gamma (PPARγ) agonists, are the most described group among them. As there are various chemically distinct 4-thiazolidinones, different subtypes have been selected for studies; however, their main pharmacological profiles are similar. The aim of this study was to evaluate the anticancer activity of 5Z-(4-fluorobenzylidene)-2-(4-hydroxyphenylamino)-thiazol-4-one (Les-236) in four human cancer cell lines, A549, SCC-15, SH-SY5Y, and CACO-2, and investigate its impact on the production of reactive oxygen species (ROS) and the apoptotic process as well as cytotoxicity and metabolism in these cell lines. The cell lines were exposed to increasing concentrations (1 nM to 100 µM) of the studied compound for 6, 24, and 48 h, and later, ROS production, cell viability, caspase-3 activity, and cell metabolism were examined. The obtained results showed that the studied compound decreased the production of ROS, increased the release of lactate dehydrogenase, and decreased cell metabolism/proliferation in all the five cell lines at micromolar concentrations. Interestingly, over a wide range of concentrations (from 1 nM to 100 µM), Les-236 was able to increase the activity of caspase-3 in BJ (after 6 h of exposure), A549, CACO-2, and SCC-15 (after 48 h of exposure) cell lines which could be an effect of the activation of PPARγ-dependent pathways.
Collapse
|
30
|
Kryshchyshyn A, Kaminskyy D, Karpenko O, Gzella A, Grellier P, Lesyk R. Thiazolidinone/thiazole based hybrids - New class of antitrypanosomal agents. Eur J Med Chem 2019; 174:292-308. [PMID: 31051403 DOI: 10.1016/j.ejmech.2019.04.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 12/22/2022]
Abstract
Different compounds have been investigated as potent drugs for trypanosomiasis treatment, but no new drug has been marketed in the past 3 decades. 4-Thiazolidinone/thiazole as privileged structures and thiosemicarbazides cyclic analogs are well known scaffolds in novel antitrypanosomal agent design. We present here the design and synthesis of new hybrid molecules bearing thiazolidinone/thiazole cores linked by the hydrazone group with various molecular fragments. Structure optimization led to compounds with phenyl-indole or phenyl-imidazo[2,1-b][1,3,4]thiadiazole moieties showing excellent antitrypanosomal activity towards Trypanosoma brucei brucei and Trypanosoma brucei gambiense. Biological study allowed identifying compounds with the submicromolar levels of IC50, good selectivity indexes and relatively low cytotoxicity upon human primary fibroblasts as well as low acute toxicity.
Collapse
Affiliation(s)
- Anna Kryshchyshyn
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | - Danylo Kaminskyy
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | | | - Andrzej Gzella
- Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, Poznan, 60-780, Poland
| | - Philippe Grellier
- National Museum of Natural History, UMR 7245 CNRS-MNHN, Team BAMEE, CP 52, 57 Rue Cuvier, 75005, Paris, France
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine; Department of Public Health, Dietetics and Lifestyle Disorders, Faculty of Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| |
Collapse
|
31
|
Finiuk NS, Ivasechko II, Klyuchivska OY, Ostapiuk YV. Apoptosis induction in human leukemia cells by novel 2-amino-5-benzylthiazole derivatives. UKRAINIAN BIOCHEMICAL JOURNAL 2019. [DOI: 10.15407/ubj91.02.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
32
|
Nirwan S, Chahal V, Kakkar R. Thiazolidinones: Synthesis, Reactivity, and Their Biological Applications. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3514] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sonam Nirwan
- Department of Chemistry University of Delhi Delhi 110007 India
| | - Varun Chahal
- Department of Chemistry University of Delhi Delhi 110007 India
| | - Rita Kakkar
- Department of Chemistry University of Delhi Delhi 110007 India
| |
Collapse
|
33
|
Mirza AZ, Althagafi II, Shamshad H. Role of PPAR receptor in different diseases and their ligands: Physiological importance and clinical implications. Eur J Med Chem 2019; 166:502-513. [DOI: 10.1016/j.ejmech.2019.01.067] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 12/15/2022]
|
34
|
Perspective anti-thyroid drug 2-thioxo-5-(3,4,5-trimethoxybenzylidene) thiazolidin-4-one: X-ray and thermogravimetric characterization of two novel molecular adducts, obtained by interaction with I2. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.12.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Holota S, Kryshchyshyn A, Derkach H, Trufin Y, Demchuk I, Gzella A, Grellier P, Lesyk R. Synthesis of 5-enamine-4-thiazolidinone derivatives with trypanocidal and anticancer activity. Bioorg Chem 2019; 86:126-136. [PMID: 30690336 DOI: 10.1016/j.bioorg.2019.01.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/20/2018] [Accepted: 01/20/2019] [Indexed: 11/29/2022]
Abstract
A series of novel 2-(5-aminomethylene-4-oxo-2-thioxothiazolidin-3-yl)-3-phenylpropionic acid ethyl esters has been synthesized. Target compounds were evaluated for their trypanocidal activity towards Trypanosoma brucei brucei and Trypanosoma brucei gambiense. Several hit-compounds (8, 10, 12) inhibited growth of the parasites at sub-micromolar concentrations (IC50 0.027-1.936 µM) and showed significant selectivity indices (SI = 108-1396.2) being non-toxic towards the human primary fibroblasts. The screening of anticancer activity in vitro within NCI DTP protocol allowed to identify active 2-(5-{[5-(2,4-dichlorobenzyl)-thiazol-2-ylamino]-methylene}-4-oxo-2-thioxothiazolidin-3-yl)-3-phenylpropionic acid ethyl ester 14 that demonstrated inhibition against all 59 human tumor cell lines with the average GI50 value of 2.57 μM. It was established that the activity type (antitrypanosomal or anticancer) as well as its level depends on the character of enamine fragment in the C5 position of thiazolidinone core.
Collapse
Affiliation(s)
- Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv 79010, Ukraine; Department of Organic Chemistry and Pharmacy, Lesya Ukrainka Eastern European National University, Volya Avenue 13, 43025 Lutsk, Ukraine
| | - Anna Kryshchyshyn
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv 79010, Ukraine
| | - Halyna Derkach
- Department of Chemistry, Ivano-Frankivsk National Medical University, 2 Halytska, Ivano-Frankivsk 76018, Ukraine
| | - Yaroslava Trufin
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv 79010, Ukraine
| | - Inna Demchuk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv 79010, Ukraine
| | - Andrzej Gzella
- Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Philippe Grellier
- National Museum of Natural History, UMR 7245 CNRS-MNHN, Team APE, CP 52, 57 Rue Cuvier, Paris 75005, France
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv 79010, Ukraine; Department of Public Health, Dietetics and Lifestyle Disorders, Faculty of Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| |
Collapse
|
36
|
Almatary AM, Elmorsy MA, El Husseiny WM, Selim KB, El-Sayed MAA. Design, synthesis, and molecular modeling of heterocyclic bioisostere as potent PDE4 inhibitors. Arch Pharm (Weinheim) 2018; 351:e1700403. [PMID: 29573453 DOI: 10.1002/ardp.201700403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 11/05/2022]
Abstract
A new hybrid template was designed by combining the structural features of phosphodiesterase 4 (PDE4) inhibitors with several heterocyclic moieties which present an integral part in the skeleton of many apoptotic agents. Thirteen compounds of the synthesized hybrids displayed higher inhibitory activity against PDE4B than the reference drug, roflumilast. Further investigation indicated that compounds 13b and 20 arrested the cell cycle at the G2/M phase and the pre-G1 phase, and induced cell death by apoptosis of A549 cells in a caspase-dependent manner.
Collapse
Affiliation(s)
- Aya M Almatary
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Mansoura University, Mansoura, Egypt.,Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Horus University, New Damietta, Egypt
| | - Mohammad A Elmorsy
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Mansoura University, Mansoura, Egypt
| | - Walaa M El Husseiny
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Mansoura University, Mansoura, Egypt
| | - Khalid B Selim
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Mansoura University, Mansoura, Egypt
| | - Magda A-A El-Sayed
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Mansoura University, Mansoura, Egypt
| |
Collapse
|
37
|
Ansari MF, Idrees D, Hassan MI, Ahmad K, Avecilla F, Azam A. Design, synthesis and biological evaluation of novel pyridine-thiazolidinone derivatives as anticancer agents: Targeting human carbonic anhydrase IX. Eur J Med Chem 2017; 144:544-556. [PMID: 29289880 DOI: 10.1016/j.ejmech.2017.12.049] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/22/2022]
Abstract
In order to obtain novel Human carbonic anhydrase IX (CAIX) inhibitors, a series of pyridine-thiazolidinone derivatives was synthesized and characterized by various spectroscopic techniques. The binding affinity of the compounds was measured by fluorescence binding studies and enzyme inhibition activity using esterase assay of CAIX. It was observed that compound 8 and 11 significantly inhibit the CAIX activity with the IC50 value, 1.61 μM and 1.84 μM, respectively. The binding-affinity of compound 8 and 11 for CAIX was significantly high with their KD values 11.21 μM and 2.32 μM, respectively. Docking studies revealed that compound 8 and 11 efficiently binds in the active site cavity of CA IX by forming sufficient numbers of H-bonds and van der Waals interactions with active side residues. All the compounds were further screened in vitro for anticancer activity and found that compound 8 and 11 exhibit considerable anticancer activity against MCF-7 and HepG-2 cell lines. All these findings suggest that compound 8 and 11 may be further exploited as a novel pharmacophore model for the development of anticancer agents.
Collapse
Affiliation(s)
- Mohammad Fawad Ansari
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, 110 025, New Delhi, India
| | - Danish Idrees
- Centre for Interdisciplinary Research in Basic Science, Jamia Nagar, 110 025, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Science, Jamia Nagar, 110 025, New Delhi, India
| | - Kamal Ahmad
- Centre for Interdisciplinary Research in Basic Science, Jamia Nagar, 110 025, New Delhi, India
| | - Fernando Avecilla
- Grupo Xenomar, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071, A Coruña, Spain
| | - Amir Azam
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, 110 025, New Delhi, India.
| |
Collapse
|
38
|
de Santana TI, Barbosa MDO, Gomes PATDM, da Cruz ACN, da Silva TG, Leite ACL. Synthesis, anticancer activity and mechanism of action of new thiazole derivatives. Eur J Med Chem 2017; 144:874-886. [PMID: 29329071 DOI: 10.1016/j.ejmech.2017.12.040] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 11/26/2022]
Abstract
Thiazole derivatives are recognized to possess various biological activities as antiparasitic, antifungal, antimicrobial and antiproliferative. The present work reports the synthesis of 22 new substances belonging to two classes of compounds: thiosemicarbazones and thiazoles, with the purpose of developing new drugs that present high specificity for tumor cells and low toxicity to the organism. A cytotoxic screening was performed to evaluate the performance of the new derivatives in five tumor cell lines. Eight compounds were shown to be promising in at least three tumor cell lines. These compounds had their IC50 determined within 72 h and the activity structure ratio was assessed. The effect of the best compounds on PBMC and hemolytic activity assay was then evaluated. The compound 1d was considered the most promising among the samples tested and its influence on cell cycle, DNA fragmentation and mitochondrial depolarization was evaluated.
Collapse
Affiliation(s)
- Temístocles Italo de Santana
- Departamento de Antibióticos, Centro de Biociências, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | - Miria de Oliveira Barbosa
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | | | | | - Teresinha Gonçalves da Silva
- Departamento de Antibióticos, Centro de Biociências, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | - Ana Cristina Lima Leite
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil.
| |
Collapse
|
39
|
Szychowski KA, Leja ML, Kaminskyy DV, Kryshchyshyn AP, Binduga UE, Pinyazhko OR, Lesyk RB, Tobiasz J, Gmiński J. Anticancer properties of 4-thiazolidinone derivatives depend on peroxisome proliferator-activated receptor gamma (PPARγ). Eur J Med Chem 2017; 141:162-168. [DOI: 10.1016/j.ejmech.2017.09.071] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/24/2017] [Accepted: 09/29/2017] [Indexed: 10/18/2022]
|
40
|
Kaminskyy D, Kryshchyshyn A, Lesyk R. 5-Ene-4-thiazolidinones - An efficient tool in medicinal chemistry. Eur J Med Chem 2017; 140:542-594. [PMID: 28987611 PMCID: PMC7111298 DOI: 10.1016/j.ejmech.2017.09.031] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 07/14/2017] [Accepted: 09/17/2017] [Indexed: 02/02/2023]
Abstract
The presented review is an attempt to summarize a huge volume of data on 5-ene-4-thiazolidinones being a widely studied class of small molecules used in modern organic and medicinal chemistry. The manuscript covers approaches to the synthesis of 5-ene-4-thiazolidinone derivatives: modification of the C5 position of the basic core; synthesis of the target compounds in the one-pot or multistage reactions or transformation of other related heterocycles. The most prominent pharmacological profiles of 5-ene derivatives of different 4-thiazolidinone subtypes belonging to hit-, lead-compounds, drug-candidates and drugs as well as the most studied targets have been discussed. Currently target compounds (especially 5-en-rhodanines) are assigned as frequent hitters or pan-assay interference compounds (PAINS) within high-throughput screening campaigns. Nevertheless, the crucial impact of the presence/nature of C5 substituent (namely 5-ene) on the pharmacological effects of 5-ene-4-thiazolidinones was confirmed by the numerous listed findings from the original articles. The main directions for active 5-ene-4-thiazolidinones optimization have been shown: i) complication of the fragment in the C5 position; ii) introduction of the substituents in the N3 position (especially fragments with carboxylic group or its derivatives); iii) annealing in complex heterocyclic systems; iv) combination with other pharmacologically attractive fragments within hybrid pharmacophore approach. Moreover, the utilization of 5-ene-4-thiazolidinones in the synthesis of complex compounds with potent pharmacological application is described. The chemical transformations cover mainly the reactions which involve the exocyclic double bond in C5 position of the main core and correspond to the abovementioned direction of the 5-ene-4-thiazolidinone modification.
Collapse
Affiliation(s)
- Danylo Kaminskyy
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv-10, 79010, Ukraine
| | - Anna Kryshchyshyn
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv-10, 79010, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv-10, 79010, Ukraine.
| |
Collapse
|
41
|
El-Sayed S, Metwally K, El-Shanawani AA, Abdel-Aziz LM, Pratsinis H, Kletsas D. Synthesis and anticancer activity of novel quinazolinone-based rhodanines. Chem Cent J 2017; 11:102. [PMID: 29086906 PMCID: PMC5640562 DOI: 10.1186/s13065-017-0333-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/05/2017] [Indexed: 12/14/2022] Open
Abstract
Background Rhodanines and quinazolinones have been reported to possess various pharmacological activities. Results A novel series of twenty quinazolinone-based rhodanines were synthesized via Knoevenagel condensation between 4-[3-(substitutedphenyl)-3,4-dihydro-4-oxoquinazolin-2-yl)methoxy]substituted-benzaldehydes and rhodanine. Elemental and spectral analysis were used to confirm structures of the newly synthesized compounds. The newly synthesized compounds were biologically evaluated for in vitro cytotoxic activity against the human fibrosarcoma cell line HT-1080 as a preliminary screen using the MTT assay. Conclusions All the target compounds were active, displaying IC50 values roughly in the range of 10–60 µM. Structure–activity relationship study revealed that bulky, hydrophobic, and electron withdrawing substituents at the para-position of the quinazolinone 3-phenyl ring as well as methoxy substitution on the central benzene ring, enhance cytotoxic activity. The four most cytotoxic compounds namely, 45, 43, 47, and 37 were further tested against two human leukemia cell lines namely, HL-60 and K-562 and showed cytotoxic activity in the low micromolar range with compound 45 being the most active, having IC50 values of 1.2 and 1.5 μM, respectively. Interestingly, all four compounds were devoid of cytotoxicity against normal human fibroblasts strain AG01523, indicating that the synthesized rhodanines may be selectively toxic against cancer cells. Mechanistic studies revealed that the most cytotoxic target compounds exhibit pro-apoptotic activity and trigger oxidative stress in cancer cells.![]()
Collapse
Affiliation(s)
- Sherihan El-Sayed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Kamel Metwally
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Abdalla A El-Shanawani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Lobna M Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Harris Pratsinis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre of Scientific Research "Demokritos", Athens, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre of Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|
42
|
Kaminskyy D, Kryshchyshyn A, Lesyk R. Recent developments with rhodanine as a scaffold for drug discovery. Expert Opin Drug Discov 2017; 12:1233-1252. [PMID: 29019278 DOI: 10.1080/17460441.2017.1388370] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Rhodanines, as one of the 4-thiazolidinones subtypes, are recognized as privileged heterocycles in medicinal chemistry. The main achievements include the development of drug-like molecules with numerous biological activities as well as approved drugs. Among rhodanines, 5-ene-rhodanines are of special interest, and are often claimed as pan assay interference compounds due to Michael acceptor functionality. Areas covered: Herein, the synthetic protocols for rhodanines and their transformation are reviewed. Biological activity is briefly discussed as well as biotargets, mode of actions and optimization directions. Furthermore, the utilization of 5-ene-rhodanines in Michael additions are discussed while both pro and contra arguments have been outlined within medicinal chemistry application. Expert opinion: Rhodanines remain privileged heterocycles in drug discovery. They are accessible building blocks for optimization and transformation into related heterocycles, simplified analogues and fused heterocycles with a thiazolidine framework. Michael acceptor functionality, as well as the thesis about low selectivity towards biotargets of rhodanines, must be confirmed experimentally and it cannot be based on just the presence of conjugated α,β-unsaturated carbonyl. Moreover, the positive aspects of Michael acceptors must be considered as well as their multitarget properties. New criteria for target affinity must be found. In conclusion, rhodanines are generally not problematic per se.
Collapse
Affiliation(s)
- Danylo Kaminskyy
- a Department of Pharmaceutical, Organic and Bioorganic Chemistry , Danylo Halytsky Lviv National Medical University , Lviv-10 , Ukraine
| | - Anna Kryshchyshyn
- a Department of Pharmaceutical, Organic and Bioorganic Chemistry , Danylo Halytsky Lviv National Medical University , Lviv-10 , Ukraine
| | - Roman Lesyk
- a Department of Pharmaceutical, Organic and Bioorganic Chemistry , Danylo Halytsky Lviv National Medical University , Lviv-10 , Ukraine
| |
Collapse
|
43
|
Synthesis of piperazine-based thiazolidinones as VEGFR2 tyrosine kinase inhibitors inducing apoptosis. Future Med Chem 2017; 9:1709-1729. [DOI: 10.4155/fmc-2017-0072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: VEGFR2 tyrosine kinase is a main target in suppressing cancer growth and metastasis. Materials & methods: Piperazine-based thiazolidinones were synthesized and screened for their anticancer and VEGFR2 tyrosine kinase inhibitory activity. Results: Compounds 11, 13 and 16 displayed potent anticancer activity against HepG-2 with IC50 values 0.03–0.06 μM. They were safe on normal human fibroblasts with selectivity indices 8.09, 11.40 and 4.37, respectively. Also, these compounds showed VEGFR2 tyrosine kinase inhibitory activities more than the reference staurosporine with IC50 values <0.3 μM. Lineweaver–Burk plot revealed that these compounds behaved as uncompetitive VEGFR2 tyrosine kinase inhibitors. They also induced caspase-dependent apoptosis in HepG-2. In addition, these compounds revealed good binding within VEGFR2 tyrosine kinase enzyme in comparison with sorafenib reference. Conclusion: Compounds 11, 13 and 16 comprise a new promising scaffold of selective VEGFR2 tyrosine kinase inhibitors with caspase-dependent apoptotic activities.
Collapse
|
44
|
Egea J, Fabregat I, Frapart YM, Ghezzi P, Görlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG, Olaso-Gonzalez G, Petry A, Schulz R, Vina J, Winyard P, Abbas K, Ademowo OS, Afonso CB, Andreadou I, Antelmann H, Antunes F, Aslan M, Bachschmid MM, Barbosa RM, Belousov V, Berndt C, Bernlohr D, Bertrán E, Bindoli A, Bottari SP, Brito PM, Carrara G, Casas AI, Chatzi A, Chondrogianni N, Conrad M, Cooke MS, Costa JG, Cuadrado A, My-Chan Dang P, De Smet B, Debelec-Butuner B, Dias IHK, Dunn JD, Edson AJ, El Assar M, El-Benna J, Ferdinandy P, Fernandes AS, Fladmark KE, Förstermann U, Giniatullin R, Giricz Z, Görbe A, Griffiths H, Hampl V, Hanf A, Herget J, Hernansanz-Agustín P, Hillion M, Huang J, Ilikay S, Jansen-Dürr P, Jaquet V, Joles JA, Kalyanaraman B, Kaminskyy D, Karbaschi M, Kleanthous M, Klotz LO, Korac B, Korkmaz KS, Koziel R, Kračun D, Krause KH, Křen V, Krieg T, Laranjinha J, Lazou A, Li H, Martínez-Ruiz A, Matsui R, McBean GJ, Meredith SP, Messens J, Miguel V, Mikhed Y, Milisav I, Milković L, Miranda-Vizuete A, Mojović M, Monsalve M, Mouthuy PA, Mulvey J, Münzel T, Muzykantov V, Nguyen ITN, Oelze M, Oliveira NG, Palmeira CM, Papaevgeniou N, Pavićević A, Pedre B, Peyrot F, Phylactides M, Pircalabioru GG, Pitt AR, Poulsen HE, Prieto I, Rigobello MP, Robledinos-Antón N, Rodríguez-Mañas L, Rolo AP, Rousset F, Ruskovska T, Saraiva N, Sasson S, Schröder K, Semen K, Seredenina T, Shakirzyanova A, Smith GL, Soldati T, Sousa BC, Spickett CM, Stancic A, Stasia MJ, Steinbrenner H, Stepanić V, Steven S, Tokatlidis K, Tuncay E, Turan B, Ursini F, Vacek J, Vajnerova O, Valentová K, Van Breusegem F, Varisli L, Veal EA, Yalçın AS, Yelisyeyeva O, Žarković N, Zatloukalová M, Zielonka J, Touyz RM, Papapetropoulos A, Grune T, Lamas S, Schmidt HHHW, Di Lisa F, Daiber A. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol 2017; 13:94-162. [PMID: 28577489 PMCID: PMC5458069 DOI: 10.1016/j.redox.2017.05.007] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022] Open
Abstract
The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed.
Collapse
Affiliation(s)
- Javier Egea
- Institute Teofilo Hernando, Department of Pharmacology, School of Medicine. Univerisdad Autonoma de Madrid, Spain
| | - Isabel Fabregat
- Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona (UB), L'Hospitalet, Barcelona, Spain
| | - Yves M Frapart
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | | | - Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Kateryna Kubaichuk
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Manuela G Lopez
- Institute Teofilo Hernando, Department of Pharmacology, School of Medicine. Univerisdad Autonoma de Madrid, Spain
| | | | - Andreas Petry
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Rainer Schulz
- Institute of Physiology, JLU Giessen, Giessen, Germany
| | - Jose Vina
- Department of Physiology, University of Valencia, Spain
| | - Paul Winyard
- University of Exeter Medical School, St Luke's Campus, Exeter EX1 2LU, UK
| | - Kahina Abbas
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Opeyemi S Ademowo
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Catarina B Afonso
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Haike Antelmann
- Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Fernando Antunes
- Departamento de Química e Bioquímica and Centro de Química e Bioquímica, Faculdade de Ciências, Portugal
| | - Mutay Aslan
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Markus M Bachschmid
- Vascular Biology Section & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Rui M Barbosa
- Center for Neurosciences and Cell Biology, University of Coimbra and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Vsevolod Belousov
- Molecular technologies laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - David Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota - Twin Cities, USA
| | - Esther Bertrán
- Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona (UB), L'Hospitalet, Barcelona, Spain
| | | | - Serge P Bottari
- GETI, Institute for Advanced Biosciences, INSERM U1029, CNRS UMR 5309, Grenoble-Alpes University and Radio-analysis Laboratory, CHU de Grenoble, Grenoble, France
| | - Paula M Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Guia Carrara
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ana I Casas
- Department of Pharmacology & Personalized Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Afroditi Chatzi
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK
| | - Niki Chondrogianni
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Marcus Conrad
- Helmholtz Center Munich, Institute of Developmental Genetics, Neuherberg, Germany
| | - Marcus S Cooke
- Oxidative Stress Group, Dept. Environmental & Occupational Health, Florida International University, Miami, FL 33199, USA
| | - João G Costa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Pham My-Chan Dang
- Université Paris Diderot, Sorbonne Paris Cité, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| | - Barbara De Smet
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Padova, Italy; Pharmahungary Group, Szeged, Hungary
| | - Bilge Debelec-Butuner
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Bornova, Izmir 35100, Turkey
| | - Irundika H K Dias
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Joe Dan Dunn
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva-4, Switzerland
| | - Amanda J Edson
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain
| | - Jamel El-Benna
- Université Paris Diderot, Sorbonne Paris Cité, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Ana S Fernandes
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Kari E Fladmark
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Ulrich Förstermann
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Helen Griffiths
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK; Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Vaclav Hampl
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alina Hanf
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Jan Herget
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pablo Hernansanz-Agustín
- Servicio de Immunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
| | - Melanie Hillion
- Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Jingjing Huang
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Serap Ilikay
- Harran University, Arts and Science Faculty, Department of Biology, Cancer Biology Lab, Osmanbey Campus, Sanliurfa, Turkey
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Vincent Jaquet
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Jaap A Joles
- Department of Nephrology & Hypertension, University Medical Center Utrecht, The Netherlands
| | | | | | - Mahsa Karbaschi
- Oxidative Stress Group, Dept. Environmental & Occupational Health, Florida International University, Miami, FL 33199, USA
| | - Marina Kleanthous
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Lars-Oliver Klotz
- Institute of Nutrition, Department of Nutrigenomics, Friedrich Schiller University, Jena, Germany
| | - Bato Korac
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic" and Faculty of Biology, Belgrade, Serbia
| | - Kemal Sami Korkmaz
- Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Turkey
| | - Rafal Koziel
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Damir Kračun
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Karl-Heinz Krause
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Vladimír Křen
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Videnska 1083, CZ-142 20 Prague, Czech Republic
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, UK
| | - João Laranjinha
- Center for Neurosciences and Cell Biology, University of Coimbra and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Antonio Martínez-Ruiz
- Servicio de Immunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Reiko Matsui
- Vascular Biology Section & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Gethin J McBean
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Stuart P Meredith
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Joris Messens
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Verónica Miguel
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Yuliya Mikhed
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Irina Milisav
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology and Faculty of Health Sciences, Ljubljana, Slovenia
| | - Lidija Milković
- Ruđer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Miloš Mojović
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - María Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Pierre-Alexis Mouthuy
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - John Mulvey
- Department of Medicine, University of Cambridge, UK
| | - Thomas Münzel
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Vladimir Muzykantov
- Department of Pharmacology, Center for Targeted Therapeutics & Translational Nanomedicine, ITMAT/CTSA Translational Research Center University of Pennsylvania The Perelman School of Medicine, Philadelphia, PA, USA
| | - Isabel T N Nguyen
- Department of Nephrology & Hypertension, University Medical Center Utrecht, The Netherlands
| | - Matthias Oelze
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Nuno G Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Carlos M Palmeira
- Center for Neurosciences & Cell Biology of the University of Coimbra, Coimbra, Portugal; Department of Life Sciences of the Faculty of Sciences & Technology of the University of Coimbra, Coimbra, Portugal
| | - Nikoletta Papaevgeniou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Aleksandra Pavićević
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Brandán Pedre
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Fabienne Peyrot
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France; ESPE of Paris, Paris Sorbonne University, Paris, France
| | - Marios Phylactides
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | - Andrew R Pitt
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Henrik E Poulsen
- Laboratory of Clinical Pharmacology, Rigshospitalet, University Hospital Copenhagen, Denmark; Department of Clinical Pharmacology, Bispebjerg Frederiksberg Hospital, University Hospital Copenhagen, Denmark; Department Q7642, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Ignacio Prieto
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Natalia Robledinos-Antón
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain; Servicio de Geriatría, Hospital Universitario de Getafe, Getafe, Spain
| | - Anabela P Rolo
- Center for Neurosciences & Cell Biology of the University of Coimbra, Coimbra, Portugal; Department of Life Sciences of the Faculty of Sciences & Technology of the University of Coimbra, Coimbra, Portugal
| | - Francis Rousset
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, Republic of Macedonia
| | - Nuno Saraiva
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Shlomo Sasson
- Institute for Drug Research, Section of Pharmacology, Diabetes Research Unit, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany; DZHK (German Centre for Cardiovascular Research), partner site Rhine-Main, Mainz, Germany
| | - Khrystyna Semen
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Tamara Seredenina
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Anastasia Shakirzyanova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Thierry Soldati
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva-4, Switzerland
| | - Bebiana C Sousa
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Corinne M Spickett
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Ana Stancic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic" and Faculty of Biology, Belgrade, Serbia
| | - Marie José Stasia
- Université Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, F38000 Grenoble, France; CDiReC, Pôle Biologie, CHU de Grenoble, Grenoble, F-38043, France
| | - Holger Steinbrenner
- Institute of Nutrition, Department of Nutrigenomics, Friedrich Schiller University, Jena, Germany
| | - Višnja Stepanić
- Ruđer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia
| | - Sebastian Steven
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK
| | - Erkan Tuncay
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hnevotinska 3, Olomouc 77515, Czech Republic
| | - Olga Vajnerova
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Videnska 1083, CZ-142 20 Prague, Czech Republic
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Lokman Varisli
- Harran University, Arts and Science Faculty, Department of Biology, Cancer Biology Lab, Osmanbey Campus, Sanliurfa, Turkey
| | - Elizabeth A Veal
- Institute for Cell and Molecular Biosciences, and Institute for Ageing, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| | - A Suha Yalçın
- Department of Biochemistry, School of Medicine, Marmara University, İstanbul, Turkey
| | | | - Neven Žarković
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Martina Zatloukalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hnevotinska 3, Olomouc 77515, Czech Republic
| | | | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Andreas Papapetropoulos
- Laboratoty of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Tilman Grune
- German Institute of Human Nutrition, Department of Toxicology, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Santiago Lamas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Harald H H W Schmidt
- Department of Pharmacology & Personalized Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Fabio Di Lisa
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Padova, Italy.
| | - Andreas Daiber
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany; DZHK (German Centre for Cardiovascular Research), partner site Rhine-Main, Mainz, Germany.
| |
Collapse
|
45
|
Kryshchyshyn AP, Atamanyuk DV, Kaminskyy DV, Grellier P, Lesyk RB. Investigation of anticancer and anti-parasitic activity of thiopyrano[2,3-d]thiazoles bearing norbornane moiety. ACTA ACUST UNITED AC 2017. [DOI: 10.7124/bc.00094f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - Ph. Grellier
- National Museum of Natural History, UMR 7245 CNRS MCAM, Sorbonne UniversitГ©s
| | - R. B. Lesyk
- Danylo Halytsky Lviv National Medical University
| |
Collapse
|
46
|
Pogaku V, Eslavath RK, Dayakar G, Singh SS, Basavoju S. Synthesis and biological evaluation of novel triazole substituted pyrazolyl-methylenehydrazinyl-5-arylidene thiazolidinone derivatives as antibacterial and cytotoxic agents. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-2978-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Finiuk N, Boiko N, Klyuchivska O, Коbylinska L, Kril I, Zimenkovsky B, Lesyk R, Stoika R. 4-Thiazolidinone derivative Les-3833 effectively inhibits viability of human melanoma cells through activating apoptotic mechanisms. Croat Med J 2017; 58:129-139. [PMID: 28409496 PMCID: PMC5410740 DOI: 10.3325/cmj.2017.58.129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Aim To evaluate cytotoxic action of 4-thiazolidinone derivative Les-3833 and study the mechanisms of its pro-apoptotic action toward human melanoma cells and human tumor cell lines of other tissue origin. Methods The effect of Les-3833 or doxorubicin on the viability of 9 cell lines was studied using MTT assay, while human melanoma cells of WM793 line were additionally examined using light and fluorescent microscopies for evaluating cytomorphological changes. The Western-blot and flow cytometric analyses were carried out to study signaling pathways of melanoma cell cycling and death. Results Les-3833 was the most efficient against melanoma cells. Its half maximal inhibitory concentration (IC50) was 0.22 μg/mL for WM793 cells and 0.3 μg/mL for SK-Mel-28 melanoma cells. For human lung A549, breast MCF-7, colon HCT116, and ovarian SKOV3 carcinoma cell lines IC50 was in between 2.5 to >5.0 μg/mL. Les-3833 was relatively not toxic (IC50 ˃ 5 μg/mL) for human embryonic kidney HEK293 cells. Results of Annexin V/PI staining of melanoma cells and activation of caspase 3, PARP, MAPK, and EndoG protein suggest apoptosis in Les-3833-treated cells. Les-3833 also induced ROS production in melanoma cells and their arrest in G0/G1 phase of cell cycle. Conclusion Novel 4-thiazolidinone derivative Les-3833 is effective against human melanoma cells in vitro, and such effect is tumor specific since it is much less pronounced in human carcinoma and leukemia cells. In melanoma cells Les-3833 induces apoptosis (morphological changes and increased pro-apoptotic proteins), ROS production, and arrest in G0/G1 phase of cell cycle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rostyslav Stoika
- Rostyslav Stoika, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street 14/16, 79005, Lviv, Ukraine,
| |
Collapse
|
48
|
Коbylinska LI, Klyuchivska OY, Grytsyna II, Finiuk N, Panchuk RR, Starykovych MO, Lehka L, Lesyk RB, Zіmenkovsky BS, Stoika RS. Differential pro-apoptotic effects of synthetic 4-thiazolidinone derivative Les-3288, doxorubicin and temozolomide in human glioma U251 cells. Croat Med J 2017; 58:150-159. [PMID: 28409498 PMCID: PMC5410732 DOI: 10.3325/cmj.2017.58.150] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM To compare various pro-apoptotic effects of synthetic 4-thiazolidinone derivative (Les-3288), doxorubicin (Dox) and temozolomide (TMZ) in the treatment of human glioma U251 cells to improve treatment outcomes of glioblastoma and avoid anticancer drug resistance. METHODS The cytotoxic effects of drugs used in human glioma U251 cells were measured by cell viability and proliferation assay (MTT), Trypan blue exclusion test, and Western-blot analysis of the apoptosis-related proteins. In addition, flow cytometry study of reactive oxygen species (ROS) level in glioma cells was carried out. Cytomorphological changes in treated cells were monitored by fluorescent microscopy after cell staining with Hoechst 33342 and ethydium bromide. RESULTS Half-maximal inhibitory concentration (IC50) of Les-3288, Dox, and TMZ was calculated for human glioblastoma U251 cells. The rating of the values of this indicator of cellular vitality was assessed. The results of MTT assay proved the superiority of Les-3288 vs Les-3288>Dox>TMZ, which is in agreement with the results of Trypan blue testing showing Les-3288≈Dox>TMZ. In general, such ranking corresponded to a scale of pro-apoptotic impairments in the morphology of glioma U251 cells and the results of Western-blot analysis of cleaved Caspase 3. Contrary to Dox, Les-3288 and TMZ did not affect significantly ROS levels in the treated cells. CONCLUSION The effect of the synthetic 4-thiazolidinone derivative Les-3288 is realized via apoptosis mechanisms and does not involve ROS. In comparison with Dox and TMZ, it is more effective in destroying human glioblastoma U251 cells. Les-3288 compound has a potential as an anticancer drug for glioblastoma. Nevertheless, further preclinical studies of the blood-brain barrier are needed.
Collapse
|
49
|
Malysheva KV, Finiuk NS, Pavlenko OK, Havrylyuk DY, Lesyk RB, Stoika RS, Korchynsky OG. 4-Thiazolidinone-based derivatives rescue TNAα-inhibited osteoblast differentiation in mouse mesenchymal precursor cells. UKRAINIAN BIOCHEMICAL JOURNAL 2017. [DOI: 10.15407/ubj89.si01.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
50
|
Lozynskyi A, Zasidko V, Atamanyuk D, Kaminskyy D, Derkach H, Karpenko O, Ogurtsov V, Kutsyk R, Lesyk R. Synthesis, antioxidant and antimicrobial activities of novel thiopyrano[2,3-d]thiazoles based on aroylacrylic acids. Mol Divers 2017; 21:427-436. [PMID: 28424934 DOI: 10.1007/s11030-017-9737-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 04/04/2017] [Indexed: 10/19/2022]
Abstract
Here it is described the synthesis, antioxidant and antimicrobial activity determination of novel rel-([Formula: see text])-6-benzoyl-7-phenyl-2-oxo-3,5,6,7-tetrahydro-2H-thiopyrano[2,3-d]thiazole-5-carboxylic acids. The target compounds were obtained in good yields from 5-arylidene-4-thioxo-2-thiazolidinones and [Formula: see text]-aroylacrylic acids via regio- and diastereoselective hetero-Diels-Alder reaction. The stereochemistry of the cycloaddition was confirmed by NMR spectra. The antioxidant and antimicrobial activity screening identified 7 compounds (3c, 3e, 3f, 3g, 3k, 3l, 3p) with a high level of free radical scavenging (43-77% DPPH assay), and compounds with significant influence on Staphylococcus aureus, Bacillus subtilis and Candida albicans (MIC 3.13-6.25 [Formula: see text]), but slight effect on Escherichia coli.
Collapse
Affiliation(s)
- Andrii Lozynskyi
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv, 79010, Ukraine
| | - Viktoria Zasidko
- Department of Microbiology, Virology and Immunology, Ivano-Frankivsk National Medical University, 2 Halytska, Ivano-Frankivsk, 76018, Ukraine
| | - Dmytro Atamanyuk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv, 79010, Ukraine
| | - Danylo Kaminskyy
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv, 79010, Ukraine
| | - Halyna Derkach
- Department of Chemistry, Ivano-Frankivsk National Medical University, 2 Halytska, Ivano-Frankivsk, 76018, Ukraine
| | | | - Volodymyr Ogurtsov
- Department of General, Bioinorganic, Physical and Colloidal Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv, 79010, Ukraine
| | - Roman Kutsyk
- Department of Microbiology, Virology and Immunology, Ivano-Frankivsk National Medical University, 2 Halytska, Ivano-Frankivsk, 76018, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv, 79010, Ukraine.
| |
Collapse
|