1
|
Mach L, Omran A, Bouma J, Radetzki S, Sykes DA, Guba W, Li X, Höffelmeyer C, Hentsch A, Gazzi T, Mostinski Y, Wasinska-Kalwa M, de Molnier F, van der Horst C, von Kries JP, Vendrell M, Hua T, Veprintsev DB, Heitman LH, Grether U, Nazare M. Highly Selective Drug-Derived Fluorescent Probes for the Cannabinoid Receptor Type 1 (CB 1R). J Med Chem 2024; 67:11841-11867. [PMID: 38990855 DOI: 10.1021/acs.jmedchem.4c00465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The cannabinoid receptor type 1 (CB1R) is pivotal within the endocannabinoid system regulating various signaling cascades with effects in appetite regulation, pain perception, memory formation, and thermoregulation. Still, understanding of CB1R's cellular signaling, distribution, and expression dynamics is very fragmentary. Real-time visualization of CB1R is crucial for addressing these questions. Selective drug-like CB1R ligands with a defined pharmacological profile were investigated for the construction of CB1R fluorescent probes using a reverse design-approach. A modular design concept with a diethyl glycine-based building block as the centerpiece allowed for the straightforward synthesis of novel probe candidates. Validated by computational docking studies, radioligand binding, and cAMP assay, this systematic approach allowed for the identification of novel pyrrole-based CB1R fluorescent probes. Application in fluorescence-based target-engagement studies and live cell imaging exemplify the great versatility of the tailored CB1R probes for investigating CB1R localization, trafficking, pharmacology, and its pathological implications.
Collapse
Affiliation(s)
- Leonard Mach
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Anahid Omran
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Jara Bouma
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University and Oncode Institute, 2333 CC Leiden, The Netherlands
| | - Silke Radetzki
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - David A Sykes
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, NG7 2UH Nottingham, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Edgbaston, B15 2TT Birmingham, Midlands, U.K
| | - Wolfgang Guba
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Xiaoting Li
- iHuman Institute, ShanghaiTech University, 201210 Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Calvin Höffelmeyer
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Axel Hentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Thais Gazzi
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Yelena Mostinski
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | | | - Fabio de Molnier
- IRR Chemistry Hub and Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, EH16 4UU Edinburgh, U.K
| | - Cas van der Horst
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University and Oncode Institute, 2333 CC Leiden, The Netherlands
| | - Jens Peter von Kries
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Marc Vendrell
- IRR Chemistry Hub and Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, EH16 4UU Edinburgh, U.K
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, 201210 Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Dmitry B Veprintsev
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, NG7 2UH Nottingham, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Edgbaston, B15 2TT Birmingham, Midlands, U.K
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University and Oncode Institute, 2333 CC Leiden, The Netherlands
| | - Uwe Grether
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Marc Nazare
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| |
Collapse
|
2
|
Li H, Cheng W, Lv J, Wang C. Synthesis of Fully Substituted Pyrazoles with a Dicyanomethyl Group via DBU/Lewis Acid-Mediated Annulation of D-A Cyclopropanes with Arylhydrazines. J Org Chem 2024; 89:10355-10362. [PMID: 38959522 DOI: 10.1021/acs.joc.4c00919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The efficient synthesis of fully substituted pyrazoles with a dicyanomethyl group was developed via an annulation reaction of 2-aroyl D-A cyclopropanes with arylhydrazines in the presence of DBU/AlCl3 reaction systems. This synthetic approach featured a wide range of readily available aroyl-substituted D-A cyclopropanes with diverse functional groups and a diversity of substituents on pyrazole products and had operationally simple and mild reaction conditions.
Collapse
Affiliation(s)
- Haiwen Li
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. China
| | - Wenzhe Cheng
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. China
| | - Jiaman Lv
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. China
| | - Cunde Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. China
| |
Collapse
|
3
|
Wang N, Qiao Y, Du Y, Mei H, Han J. Assembly of trifluoromethylated fused tricyclic pyrazoles via cyclization of β-amino cyclic ketones. Org Biomol Chem 2022; 20:7467-7471. [PMID: 36102007 DOI: 10.1039/d2ob01391f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fused polycyclic pyrazoles are an important class of heterocyclic compounds; thus, the development of efficient methods for their preparation becomes highly urgent. Herein, we reported an efficient method for the synthesis of trifluoromethylated fused tricyclic pyrazoles via intramolecular cyclization of cyclic ketone-derived amines. Mechanistic studies provide evidence for the in situ generation of trifluoromethylated β-diazo ketones as intermediates via diazotization with the use of tert-butyl nitrite. The synthetic utility of this method is highlighted by scale-up synthesis and the derivatization of the obtained fused tricyclic pyrazole products.
Collapse
Affiliation(s)
- Nana Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yiming Qiao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Youlong Du
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
5
|
Tricyclic Pyrazole-Based Compounds as Useful Scaffolds for Cannabinoid CB 1/CB 2 Receptor Interaction. Molecules 2021; 26:molecules26082126. [PMID: 33917187 PMCID: PMC8068016 DOI: 10.3390/molecules26082126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022] Open
Abstract
Cannabinoids comprise different classes of compounds, which aroused interest in recent years because of their several pharmacological properties. Such properties include analgesic activity, bodyweight reduction, the antiemetic effect, the reduction of intraocular pressure and many others, which appear correlated to the affinity of cannabinoids towards CB1 and/or CB2 receptors. Within the search aiming to identify novel chemical scaffolds for cannabinoid receptor interaction, the CB1 antagonist/inverse agonist pyrazole-based derivative rimonabant has been modified, giving rise to several tricyclic pyrazole-based compounds, most of which endowed of high affinity and selectivity for CB1 or CB2 receptors. The aim of this review is to present the synthesis and summarize the SAR study of such tricyclic pyrazole-based compounds, evidencing, for some derivatives, their potential in the treatment of neuropathic pain, obesity or in the management of glaucoma.
Collapse
|
6
|
Murineddu G, Deligia F, Ragusa G, García-Toscano L, Gómez-Cañas M, Asproni B, Satta V, Cichero E, Pazos R, Fossa P, Loriga G, Fernández-Ruiz J, Pinna GA. Novel sulfenamides and sulfonamides based on pyridazinone and pyridazine scaffolds as CB 1 receptor ligand antagonists. Bioorg Med Chem 2018; 26:295-307. [DOI: 10.1016/j.bmc.2017.11.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/24/2017] [Accepted: 11/30/2017] [Indexed: 01/08/2023]
|
7
|
Affiliation(s)
- Haider Behbehani
- Department of Chemistry, Faculty of Science, Kuwait University, Safat, Kuwait
| | - Kamal M. Dawood
- Department of Chemistry, Faculty of Science, Kuwait University, Safat, Kuwait
| | - Thoraya A. Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
| |
Collapse
|
8
|
Asproni B, Manca I, Pinna G, Cichero E, Fossa P, Murineddu G, Lazzari P, Loriga G, Pinna GA. Novel pyrrolocycloalkylpyrazole analogues as CB 1 ligands. Chem Biol Drug Des 2017; 91:181-193. [PMID: 28675787 DOI: 10.1111/cbdd.13069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/16/2017] [Accepted: 06/24/2017] [Indexed: 12/16/2022]
Abstract
Novel 1,4-dihydropyrazolo[3,4-a]pyrrolizine-, 4,5-dihydro-1H-pyrazolo[4,3-g]indolizine- and 1,4,5,6-tetrahydropyrazolo[3,4-c]pyrrolo[1,2-a]azepine-3-carboxamide-based compounds were designed and synthesized for cannabinoid CB1 and CB2 receptor interactions. Any of the new synthesized compounds showed high affinity for CB2 receptor with Ki values superior to 314 nm, whereas some of them showed moderate affinity for CB1 receptor with Ki values inferior to 400 nm. 7-Chloro-1-(2,4-dichlorophenyl)-N-(homopiperidin-1-yl)-4,5-dihydro-1H-pyrazolo[4,3-g]indolizine-3-carboxamide (2j) exhibited good affinity for CB1 receptor (Ki CB1 = 81 nm) and the highest CB2 /CB1 selectively ratio (>12). Docking studies carried out on such compounds were performed using the hCB1 X-ray in complex with the close pyrazole analogue AM6538 and disclosed specific pattern of interactions related to the tricyclic pyrrolopyrazole scaffolds as CB1 ligands.
Collapse
Affiliation(s)
- Battistina Asproni
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Sassari, Italy
| | | | - Giansalvo Pinna
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Sassari, Italy
| | - Elena Cichero
- Dipartimento di Farmacia, Università di Genova, Genova, Italy
| | - Paola Fossa
- Dipartimento di Farmacia, Università di Genova, Genova, Italy
| | - Gabriele Murineddu
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Sassari, Italy
| | | | - Giovanni Loriga
- Consiglio Nazionale delle Ricerche, Istituto di Farmacologia Traslazionale, UOS Cagliari, Pula, CA, Italy
| | - Gérard A Pinna
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Sassari, Italy
| |
Collapse
|