1
|
Han Z, Li J, Xu Z, Su Y, Wang Y, Zhuo L, Du J, Zhu C, Hao X. Design and synthesis of novel quinazolin-4(1H)-one derivatives as potent and selective inhibitors targeting AKR1B1. Arch Pharm (Weinheim) 2023; 356:e2200577. [PMID: 36707406 DOI: 10.1002/ardp.202200577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/09/2022] [Accepted: 12/30/2022] [Indexed: 01/29/2023]
Abstract
Inhibition of aldose reductase (AKR1B1) is a promising option for the treatment of diabetic complications. However, most of the developed small molecule inhibitors lack selectivity or suffer from low bioactivity. To address this limitation, a novel series of quinazolin-4(1H)-one derivatives as potent and selective inhibitors of AKR1B1 were designed and synthesized. Aldose reductase inhibitory activities of the novel compounds were characterized by IC50 values ranging from 0.015 to 31.497 μM. Markedly enhanced selectivity of these derivatives was also recorded, which was further supported by docking studies. Of these inhibitors, compound 5g exhibited the highest inhibition activity with selectivity indices reaching 1190.8. The structure-activity relationship highlighted the importance of N1-acetic acid and N3-benzyl groups with electron-withdrawing substituents on the quinazolin-4(1H)-one scaffold for the construction of efficient and selective AKR1B1 inhibitors.
Collapse
Affiliation(s)
- Zhongfei Han
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Jiahui Li
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Zilu Xu
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Yu Su
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Yihan Wang
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Lili Zhuo
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Jiaming Du
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Changjin Zhu
- Department of Applied Chemistry, Beijing Institute of Technology, Beijing, China
| | - Xin Hao
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| |
Collapse
|
2
|
Tassopoulou VP, Tzara A, Kourounakis AP. Design of Improved Antidiabetic Drugs: A Journey from Single to Multitarget Agents. ChemMedChem 2022; 17:e202200320. [PMID: 36184571 DOI: 10.1002/cmdc.202200320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/27/2022] [Indexed: 01/14/2023]
Abstract
Multifactorial diseases exhibit a complex pathophysiology with several factors contributing to their pathogenesis and development. Examples of such disorders are neurodegenerative (e. g. Alzheimer's, Parkinson's) and cardiovascular diseases (e. g. atherosclerosis, metabolic syndrome, diabetes II). Traditional therapeutic approaches with single-target drugs have been proven, in many cases, unsatisfactory for the treatment of multifactorial diseases such as diabetes II. The well-established by now strategy of multitarget drugs is constantly gaining interest and momentum, as a more effective approach. The development of pharmacomolecules able to simultaneously modulate multiple relevant-to-the-disease targets has already several successful examples in various fields and has, as such, inspired the design of multitarget antidiabetic agents; this review highlights the design aspect and efficacy of this approach for improved antidiabetics by presenting several examples of successful pharmacophore combinations in (multitarget) agents that modulate two or more molecular targets involved in diabetes II, resulting in a superior antihyperglycemic profile.
Collapse
Affiliation(s)
- Vassiliki-Panagiota Tassopoulou
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Ariadni Tzara
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Angeliki P Kourounakis
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| |
Collapse
|
3
|
Yahya S, Haider K, Pathak A, Choudhary A, Hooda P, Shafeeq M, Shahar Yar M. Strategies in synthetic design and structure-activity relationship studies of novel heterocyclic scaffolds as aldose reductase-2 inhibitors. Arch Pharm (Weinheim) 2022; 355:e2200167. [PMID: 36125217 DOI: 10.1002/ardp.202200167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/10/2022]
Abstract
Heterocyclic scaffolds of natural as well as synthetic origin provide almost all categories of drugs exhibiting a wide range of pharmacological activities, such as antibiotics, antidiabetic and anticancer agents, and so on. Under normal homeostasis, aldose reductase 2 (ALR2) regulates vital metabolic functions; however, in pathological conditions like diabetes, ALR2 is unable to function and leads to secondary diabetic complications. ALR2 inhibitors are a novel target for the treatment of retinopathy (cataract) influenced by diabetes. Epalrestat (stat), an ALR2 inhibitor, is the only drug candidate that was approved in the last four decades; the other drugs from the stat class were retracted after clinical trial studies due to untoward iatrogenic effects. The present study summarizes the recent development (2014 and onwards) of this pharmacologically active ALR2 heterocyclic scaffold and illustrates the rationale behind the design, structure-activity relationships, and biological studies performed on these molecules. The aim of the current review is to pave a straight path for medicinal chemists and chemical biologists, and, in general, to the drug discovery scientists to facilitate the synthesis and development of novel ALR2 inhibitors that may serve as lead molecules for the treatment of diseases related to the ALR2 enzyme.
Collapse
Affiliation(s)
- Shaikh Yahya
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Ankita Pathak
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Akram Choudhary
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Pooja Hooda
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohd Shafeeq
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| |
Collapse
|
4
|
Yang Y, He J, Jiang Z, Du X, Chen F, Wang J, Ni H. Characterization of the inhibition of aldose reductase with
p
‐coumaric acid ethyl ester. J Food Biochem 2022; 46:e14370. [DOI: 10.1111/jfbc.14370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/14/2022] [Accepted: 07/22/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Yuanfan Yang
- College of Ocean Food and Biological Engineering Jimei University Xiamen China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Xiamen China
- Research Center of Food Biotechnology of Xiamen City Xiamen China
| | - Junzhu He
- College of Ocean Food and Biological Engineering Jimei University Xiamen China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering Jimei University Xiamen China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Xiamen China
- Research Center of Food Biotechnology of Xiamen City Xiamen China
| | - Xiping Du
- College of Ocean Food and Biological Engineering Jimei University Xiamen China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Xiamen China
- Research Center of Food Biotechnology of Xiamen City Xiamen China
| | - Feng Chen
- Department of Food, Nutrition and Packaging Sciences Clemson University Clemson South Carolina USA
| | - Jinling Wang
- School of Forestry Northeast Forestry University Harbin China
| | - Hui Ni
- College of Ocean Food and Biological Engineering Jimei University Xiamen China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Xiamen China
- Research Center of Food Biotechnology of Xiamen City Xiamen China
| |
Collapse
|
5
|
Zhang X, Xu L, Chen H, Zhang X, Lei Y, Liu W, Xu H, Ma B, Zhu C. Novel Hydroxychalcone-Based Dual Inhibitors of Aldose Reductase and α-Glucosidase as Potential Therapeutic Agents against Diabetes Mellitus and Its Complications. J Med Chem 2022; 65:9174-9192. [PMID: 35749671 DOI: 10.1021/acs.jmedchem.2c00380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We designed a novel series of bifunctional inhibitors of α-glucosidase and aldose reductase (ALR2) based on the structure of hydroxychalcone. The two enzymes relate to blood glucose level and anomalously elevated polyol pathway of glucose metabolism under hyperglycemia, respectively. Most compounds in the series exhibited a potent inhibitory activity for both enzymes, and a significant antioxidant property was shown. Further in vivo studies of 11j and 14d using streptozotocin (STZ)-induced diabetic rats as a model found that 11j achieved not only good antihyperglycemic and glucose tolerance effect in a dose-dependent manner (p < 0.01) but also showed effective inhibition of polyol pathway. 14d significantly suppressed the maltose-induced postprandial glucose elevation. Additionally, they effectively improved lipid metabolisms and restored an antioxidant ability. Therefore, the two compounds may be promising agents for the prevention and treatment of diabetic complications.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Long Xu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Huan Chen
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xin Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yanqi Lei
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wenchao Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hulin Xu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Bing Ma
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Changjin Zhu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
6
|
Zhu J, Qi G, Kuang Y, Zhao Y, Sun X, Zhu C, Hao X, Han Z. Identification of 9H-purin-6-amine derivatives as novel aldose reductase inhibitors for the treatment of diabetic complications. Arch Pharm (Weinheim) 2022; 355:e2200043. [PMID: 35466439 DOI: 10.1002/ardp.202200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/09/2022]
Abstract
A series of 9H-purin-6-amine derivatives as aldose reductase (ALR) inhibitors were designed and synthesized. Most of these derivatives, having a C6-substituted benzylamine side chain and N9 carboxylic acid on the core structure, were found to be potent and selective ALR inhibitors, with submicromolar IC50 values against ALR2. Particularly, compound 4e was the most active with an IC50 value of 0.038 μM, and it was also proved to be endowed with excellent inhibitory selectivity. The structure-activity relationship and molecular docking studies highlighted the importance of the carboxylic acid head group along with different halogen substituents on the C6 benzylamine side chain of the 9H-purin-6-amine scaffold for the construction of strong and selective ALR inhibitors.
Collapse
Affiliation(s)
- Junkai Zhu
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Gang Qi
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Yan Kuang
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Yating Zhao
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Xinjie Sun
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Changjin Zhu
- Department of Applied Chemistry, Beijing Institute of Technology, Beijing, China
| | - Xin Hao
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Zhongfei Han
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China.,Department of Applied Chemistry, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
7
|
Bhurta D, Bharate SB. Styryl Group, a Friend or Foe in Medicinal Chemistry. ChemMedChem 2022; 17:e202100706. [PMID: 35166041 DOI: 10.1002/cmdc.202100706] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/12/2022] [Indexed: 11/10/2022]
Abstract
The styryl (Ph-CH=CH-R) group is widely represented in medicinally important compounds, including drugs, clinical candidates, and molecular probes as it positively impacts the lipophilicity, oral absorption, and biological activity. The analysis of matched molecular pairs (styryl vs. phenethyl, phenyl, methyl, H) for the biological activity indicates the superiority aspect of styryl compounds. However, the Michael acceptor site in the styryl group makes it amenable to the nucleophilic attack by biological nucleophiles and transformation to the toxic metabolites. One of the downsides of styryl compounds is isomerization that impacts the molecular conformation and directly affects biological activity. The impact of cis-trans isomerism and isosteric replacements on biological activity is exemplified. We also discuss the styryl group-bearing drugs, clinical candidates, and fluorescent probes. Overall, the present review reveals the utility of the styryl group in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Deendyal Bhurta
- Council of Scientific & Industrial Research Indian Institute of Integrative Medicine, Natural Products and medicinal chemistry, 180001, Jammu, INDIA
| | - Sandip Bibishan Bharate
- Indian Institute of Integrative Medicine CSIR, Natural Products & Medicinal Chemistry, Canal Road, 180001, Jammu, INDIA
| |
Collapse
|
8
|
Novel thioether linked 4-hydroxycoumarin derivatives: Synthesis, characterization, in vitro pharmacological investigation and molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131642] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Liu W, Chen H, Zhang X, Zhang X, Xu L, Lei Y, Zhu C, Ma B. Isatin derivatives as a new class of aldose reductase inhibitors with antioxidant activity. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02751-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Zhang X, Chen H, Lei Y, Zhang X, Xu L, Liu W, Fan Z, Ma Z, Yin Z, Li L, Zhu C, Ma B. Multifunctional agents based on benzoxazolone as promising therapeutic drugs for diabetic nephropathy. Eur J Med Chem 2021; 215:113269. [PMID: 33588177 DOI: 10.1016/j.ejmech.2021.113269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy (DN) is resulted from activations of polyol pathway and oxidative stress by abnormal metabolism of glucose, and no specific medication is available. We designed a novel class of benzoxazolone derivatives, and a number of individuals were found to have significant antioxidant activity and inhibition of aldose reductase of the key enzyme in the polyol pathway. The outstanding compound (E)-2-(7-(4-hydroxy-3-methoxystyryl)-2-oxobenzo[d]oxazol-3(2H)-yl)acetic acid was identified to reduce urinary proteins in diabetic mice suggesting an alleviation in the diabetic nephropathy, and this was confirmed by kidney hematoxylin-eosin staining. Further investigations showed blood glucose normalization, declined in the polyol pathway and lipid peroxides, and raised glutathione and superoxide dismutase activity. Thus, we suggest a therapeutic function of the compound for DN which could be attributed to the combination of hypoglycemic, aldose reductase inhibition and antioxidant.
Collapse
Affiliation(s)
- Xin Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081, Beijing, China.
| | - Huan Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081, Beijing, China.
| | - Yanqi Lei
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081, Beijing, China.
| | - Xiaonan Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081, Beijing, China.
| | - Long Xu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081, Beijing, China.
| | - Wenchao Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081, Beijing, China.
| | - Zhenya Fan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081, Beijing, China.
| | - Zequn Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081, Beijing, China.
| | - Zhechang Yin
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081, Beijing, China.
| | - Lingyun Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081, Beijing, China.
| | - Changjin Zhu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081, Beijing, China.
| | - Bing Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081, Beijing, China.
| |
Collapse
|
11
|
Han Z, Qi G, Zhu J, Zhang Y, Xu Y, Yan K, Zhu C, Hao X. Novel 3,4-dihydroquinolin-2(1H)-one derivatives as dual inhibitor targeting AKR1B1/ROS for treatment of diabetic complications: Design, synthesis and biological evaluation. Bioorg Chem 2020; 105:104428. [PMID: 33161249 DOI: 10.1016/j.bioorg.2020.104428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/02/2020] [Accepted: 10/22/2020] [Indexed: 11/27/2022]
Abstract
AKR1B1 (Aldose reductase) has been used as therapeutic intervention target for treatment of diabetic complications over 50 years, and more recently for inflammation and cancer. However, most developed small molecule inhibitors have the defect of low bioactivity. To address this limitation, novel series of 3,4-dihydroquinolin-2(1H)-one derivatives as dual inhibitor targeting AKR1B1/ROS (Reactive Oxygen Species) were designed and synthesized. Most of these derivatives were found to be potent and selective against AKR1B1, and compound 8a was the most active with an IC50 value of 0.035 μM. Moreover, some prepared derivatives showed strong anti-ROS activity, and among them the phenolic 3,5-dihydroxyl compound 8b was proved to be the most potent, even comparable to that of the well-known antioxidant Trolox at a concentration of 100 μM. Thus the results suggested a success in the construction of potent dual inhibitor for the therapeutic intervention target of AKR1B1/ROS.
Collapse
Affiliation(s)
- Zhongfei Han
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China; Department of Applied Chemistry, Beijing Institute of Technology, Beijing, China
| | - Gang Qi
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Junkai Zhu
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Yundong Zhang
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Yin Xu
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Kang Yan
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Changjin Zhu
- Department of Applied Chemistry, Beijing Institute of Technology, Beijing, China
| | - Xin Hao
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China.
| |
Collapse
|
12
|
Kousaxidis A, Petrou A, Lavrentaki V, Fesatidou M, Nicolaou I, Geronikaki A. Aldose reductase and protein tyrosine phosphatase 1B inhibitors as a promising therapeutic approach for diabetes mellitus. Eur J Med Chem 2020; 207:112742. [PMID: 32871344 DOI: 10.1016/j.ejmech.2020.112742] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is a metabolic disease characterized by high blood glucose levels and usually associated with several chronic pathologies. Aldose reductase and protein tyrosine phosphatase 1B enzymes have identified as two novel molecular targets associated with the onset and progression of type II diabetes and related comorbidities. Although many inhibitors against these enzymes have already found in the field of diabetic mellitus, the research for discovering more effective and selective agents with optimal pharmacokinetic properties continues. In addition, dual inhibition of these target proteins has proved as a promising therapeutic approach. A variety of diverse scaffolds are presented in this review for the future design of potent and selective inhibitors of aldose reductase and protein tyrosine phosphatase 1B based on the most important structural features of both enzymes. The discovery of novel dual aldose reductase and protein tyrosine phosphatase 1B inhibitors could be effective therapeutic molecules for the treatment of insulin-resistant type II diabetes mellitus. The methods used comprise a literature survey and X-ray crystal structures derived from Protein Databank (PDB). Despite the available therapeutic options for type II diabetes mellitus, the inhibitors of aldose reductase and protein tyrosine phosphatase 1B could be two promising approaches for the effective treatment of hyperglycemia and diabetes-associated pathologies. Due to the poor pharmacokinetic profile and low in vivo efficacy of existing inhibitors of both targets, the research turned to more selective and cell-permeable agents as well as multi-target molecules.
Collapse
Affiliation(s)
- Antonios Kousaxidis
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Anthi Petrou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Vasiliki Lavrentaki
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Maria Fesatidou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Ioannis Nicolaou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Athina Geronikaki
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece.
| |
Collapse
|
13
|
Sever B, Altıntop MD, Demir Y, Akalın Çiftçi G, Beydemir Ş, Özdemir A. Design, synthesis, in vitro and in silico investigation of aldose reductase inhibitory effects of new thiazole-based compounds. Bioorg Chem 2020; 102:104110. [PMID: 32739480 DOI: 10.1016/j.bioorg.2020.104110] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022]
Abstract
Aldose reductase (AR) catalyzes the NADPH-dependent reduction of glucose to sorbitol in the polyol pathway, which plays an important role in the development of diabetic complications including cataract, retinopathy, nephropathy, and neuropathy. AR has been considered as an important target to heal these long-term diabetic complications and for this reason the development of new AR inhibitors is an important approach in modern medicinal chemistry. In the current study, new 4-aryl-2-[2-((3,4-dihydro-2H-1,5-benzodioxepine-7-yl)methylene)hydrazinyl]thiazole derivatives (1-12) were synthesized and screened for their inhibitory effects on AR which was purified by diverse chromatographic methods with a yield of 1.40% and a specific activity of 2.00 EU/mg. All compounds were determined as promising AR inhibitors with the Ki values in the range of 0.018 ± 0.005 μM-3.746 ± 1.321 μM compared to the quercetin (Ki = 7.025 ± 1.780 μM). In particular, 4-(4-cyanophenyl)-2-[2-((3,4-dihydro-2H-1,5-benzodioxepin-7-yl)methylene)hydrazinyl]thiazole (3) was detected as the most potential AR inhibitor in this series with the Ki value of 0.018 ± 0.005 µM and the compound showed competitive AR inhibition. The cytotoxic effects of compounds 1-12 were investigated on L929 mouse fibroblast (healthy) cells using MTT assay and all these compounds were defined as non-cytotoxic agents against L929 cells. Molecular docking studies, which were employed to determine the affinity of compounds 1-12 into the active site of AR, highlighted that the thiazole scaffold of all these compounds presented π-π stacking interactions with Trp20 and Phe122. According to both in vitro and in silico assays, these potential AR inhibitors may have great importance in the prevention of diabetic microvascular conditions.
Collapse
Affiliation(s)
- Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Mehlika Dilek Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Gole Vocational High School, Ardahan University, 75700 Ardahan, Turkey
| | - Gülşen Akalın Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey; The Rectorate of Bilecik Şeyh Edebali University, 11230 Bilecik, Turkey
| | - Ahmet Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| |
Collapse
|
14
|
Addressing selectivity issues of aldose reductase 2 inhibitors for the management of diabetic complications. Future Med Chem 2020; 12:1327-1358. [PMID: 32602375 DOI: 10.4155/fmc-2020-0032] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aldose Reductase 2 (ALR2), the rate-limiting enzyme of the polyol pathway, plays an important role in detoxification of some toxic aldehydes. Under hyperglycemia, this enzyme overactivates and causes diabetic complications (DC). Therefore, ALR2 inhibition has been established as a potential approach to manage these complications. Several ALR2 inhibitors have been reported, but none of them could reach US FDA approval. One of the main reasons is their poor selectivity over ALR1, which leads to the toxicity. The current review underlines the molecular connectivity of ALR2 with DC and comparative analysis of the catalytic domains of ALR2 and ALR1, to better understand the selectivity issues. This report also discusses the key features required for ALR2 inhibition and to limit toxicity due to off-target activity.
Collapse
|
15
|
Novel quinolin-4(1H)-one derivatives as multi-effective aldose reductase inhibitors for treatment of diabetic complications: Synthesis, biological evaluation, and molecular modeling studies. Bioorg Med Chem Lett 2020; 30:127101. [PMID: 32192796 DOI: 10.1016/j.bmcl.2020.127101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 10/24/2022]
|
16
|
Özil M, Tacal G, Baltaş N, Emirik M. Synthesis and Molecular Docking Studies of Novel Triazole Derivatives as Antioxidant Agents. LETT ORG CHEM 2020. [DOI: 10.2174/1570178616666190828200207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A series of 1,2,4-triazole and 1,2,4- thiadiazole derivatives were prepared starting from ethyl
4-(3-methyl-5-oxo-1,5-dihydro-4H-1,2,4-triazol-4-yl)benzoate. Firstly, both ethyl ester groups were
simultaneously transformed into hydrazide groups, then into thiosemicarbazide groups using both microwave-
assisted and conventional methods. The latter products were interacted with NaOH and
H2SO4 to form ring assemblies containing two 1,2,4-triazole and 1,3,4-thiadiazole fragments, respectively.
Antioxidant activities of the synthesized compounds were determined with CUPRAC, ABTS,
and DPPH assays. Most of the compounds showed significant antioxidant activity and especially, compound
3 exhibited very good SC50 value for DPPH method and compound 3, 4a, 5a exhibited very high
scavenging activity to the ABTS method. In addition, the in silico analysis was carried out with the
synthesized derivatives to understand the mode of interaction with superoxide dismutase (SOD) and
human tyrosine kinase using docking protocols in order to find out the most active antioxidant drug
having high inhibitory activity in cancer.
Collapse
Affiliation(s)
- Musa Özil
- Department of Chemistry, Faculty of Art and Sciences, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Güven Tacal
- Department of Chemistry, Faculty of Art and Sciences, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Nimet Baltaş
- Department of Chemistry, Faculty of Art and Sciences, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Mustafa Emirik
- Department of Chemistry, Faculty of Art and Sciences, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| |
Collapse
|
17
|
Hao X, Qi G, Ma H, Zhu C, Han Z. Novel 2-phenoxypyrido[3,2- b]pyrazin-3(4 H)-one derivatives as potent and selective aldose reductase inhibitors with antioxidant activity. J Enzyme Inhib Med Chem 2019; 34:1368-1372. [PMID: 31347930 PMCID: PMC6711126 DOI: 10.1080/14756366.2019.1643336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 11/15/2022] Open
Abstract
To develop multifunctional aldose reductase (AKR1B1) inhibitors for anti-diabetic complications, a novel series of 2-phenoxypyrido[3,2-b]pyrazin-3(4H)-one derivatives were designed and synthesised. Most of the derivatives were found to be potent and selective against AKR1B1, and 2-(7-chloro-2-(3,5-dihydroxyphenoxy)-3-oxopyrido[3,2-b]pyrazin-4(3H)-yl) acetic acid (4k) was the most active with an IC50 value of 0.023 µM. Moreover, it was encouraging to find that some derivatives showed strong antioxidant activity, and among them, the phenolic 3,5-dihydroxyl compound 4l with 7-bromo in the core structure was proved to be the most potent, even comparable to that of the well-known antioxidant Trolox. Thus the results suggested success in the construction of potent and selective AKR1B1 inhibitors with antioxidant activity.
Collapse
Affiliation(s)
- Xin Hao
- The State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, PR China
- Department of Applied Chemistry, Beijing Institute of Technology, Beijing, PR China
| | - Gang Qi
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, PR China
| | - Hongxing Ma
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, PR China
| | - Changjin Zhu
- Department of Applied Chemistry, Beijing Institute of Technology, Beijing, PR China
| | - Zhongfei Han
- Department of Applied Chemistry, Beijing Institute of Technology, Beijing, PR China
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, PR China
| |
Collapse
|
18
|
Identification of quinoxalin-2(1H)-one derivatives as a novel class of multifunctional aldose reductase inhibitors. Future Med Chem 2019; 11:2989-3004. [DOI: 10.4155/fmc-2019-0194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: Targeting aldose reductase and oxidative stress with quinoxalin-2(1 H)-one derivatives having a 1-hydroxypyrazole head as the bioisosteric replacement of carboxylic acid. Methodology & results: Aldose reductase inhibition, selectivity and antioxidant potency of all the synthesized compounds were evaluated, and binding modes were studied by molecular docking. Most of the derivatives showed potent and selective aldose reductase inhibition, and among them 13d was the most active (IC50 = 0.107 μM), suggesting success of the bioisosteric strategy. Phenolic 3,4-dihydroxyl compound 13f showed strong antioxidant ability even comparable to that of the well-known antioxidant Trolox. Conclusion: The present study identified the excellent bioisostere of the 1-hydroxypyrazole head group along with phenolic hydroxyl and vinyl spacer in C3 side chain on constructing quinoxalinone-based multifunctional aldose reductase inhibitors.
Collapse
|
19
|
Stephen Kumar Celestina, Sundaram K, Ravi S. Novel Derivatives of Rhodanine-3-Hippuric Acid as Active Inhibitors of Aldose Reductase: Synthesis, Biological Evaluation, and Molecular Docking Analysis. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019050066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Ji Y, Chen X, Chen H, Zhang X, Fan Z, Xie L, Ma B, Zhu C. Designing of acyl sulphonamide based quinoxalinones as multifunctional aldose reductase inhibitors. Bioorg Med Chem 2019; 27:1658-1669. [PMID: 30858026 DOI: 10.1016/j.bmc.2019.03.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 02/07/2023]
Abstract
A series of quinoxalinone scaffold-based acyl sulfonamides were designed as aldose reductase inhibitors and evaluated for aldose reductase (ALR2)/aldehyde reductase (ALR1) inhibition and antioxidation. Compounds 9b-g containing styryl side chains at C3-side exhibited good ALR2 inhibitory activity and selectivity. Of them, 9g demonstrated the most potent inhibitory activity with an IC50 value of 0.100 μM, and also exhibited excellent antioxidant activity, even comparable to the typical antioxidant Trolox. Compounds 9 had higher lipid-water partition coefficients relative to the carboxylic acid compounds 8, indicating that they may have better lipophilicity and membrane permeability. Structure-activity relationship (SAR) studies found that acyl trifluoromethanesulfonamide group at N1 and the C3-dihydroxystyryl side chain were the key structure for improving the aldose reductase inhibitory activity and antioxidant activity.
Collapse
Affiliation(s)
- Yunpeng Ji
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081 Beijing, China
| | - Xin Chen
- ME Genomics Inc., Software Industry Base, Shenzhen 518061, China
| | - Huan Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081 Beijing, China
| | - Xin Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081 Beijing, China
| | - Zhenya Fan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081 Beijing, China
| | - Lina Xie
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081 Beijing, China
| | - Bing Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081 Beijing, China.
| | - Changjin Zhu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081 Beijing, China.
| |
Collapse
|
21
|
Kerru N, Singh-Pillay A, Awolade P, Singh P. Current anti-diabetic agents and their molecular targets: A review. Eur J Med Chem 2018; 152:436-488. [PMID: 29751237 DOI: 10.1016/j.ejmech.2018.04.061] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/17/2018] [Accepted: 04/30/2018] [Indexed: 12/22/2022]
Abstract
Diabetes mellitus is a medical condition characterized by the body's loss of control over blood sugar. The frequency of diagnosed cases and consequential increases in medical costs makes it a rapidly growing chronic disease that threatens human health worldwide. In addition, its unnerving statistical projections are perilous to both the economy of the nation and man's life expectancy. Type-I and type-II diabetes are the two clinical forms of diabetes mellitus. Type-II diabetes mellitus (T2DM) is illustrated by the abnormality of glucose homeostasis in the body, resulting in hyperglycemia. Although significant research attention has been devoted to the development of diabetes regimens, which demonstrates success in lowering blood glucose levels, their efficacies are unsustainable due to undesirable side effects such as weight gain and hypoglycemia. Over the years, heterocyclic scaffolds have been the basis of anti-diabetic chemotherapies; hence, in this review we consolidate the use of bioactive scaffolds, which have been evaluated for their biological response as inhibitors against their respective anti-diabetic molecular targets over the past five years (2012-2017). Our investigation reveals a diverse target set which includes; protein tyrosine phosphatase 1 B (PTP1B), dipeptidly peptidase-4 (DPP-4), free fatty acid receptors 1 (FFAR1), G protein-coupled receptors (GPCR), peroxisome proliferator activated receptor-γ (PPARγ), sodium glucose co-transporter-2 (SGLT2), α-glucosidase, aldose reductase, glycogen phosphorylase (GP), fructose-1,6-bisphosphatase (FBPase), glucagon receptor (GCGr) and phosphoenolpyruvate carboxykinase (PEPCK). This review offers a medium on which future drug design and development toward diabetes management may be modelled (i.e. optimization via structural derivatization), as many of the drug candidates highlighted show promise as an effective anti-diabetic chemotherapy.
Collapse
Affiliation(s)
- Nagaraju Kerru
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Ashona Singh-Pillay
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa.
| | - Paul Awolade
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa.
| |
Collapse
|
22
|
Abstract
In diabetes mellitus, the polyol pathway is highly active and consumes approximately 30% glucose in the body. This pathway contains 2 reactions catalyzed by aldose reductase (AR) and sorbitol dehydrogenase, respectively. AR reduces glucose to sorbitol at the expense of NADPH, while sorbitol dehydrogenase converts sorbitol to fructose at the expense of NAD+, leading to NADH production. Consumption of NADPH, accumulation of sorbitol, and generation of fructose and NADH have all been implicated in the pathogenesis of diabetes and its complications. In this review, the roles of this pathway in NADH/NAD+ redox imbalance stress and oxidative stress in diabetes are highlighted. A potential intervention using nicotinamide riboside to restore redox balance as an approach to fighting diabetes is also discussed.
Collapse
Affiliation(s)
- Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
23
|
Papastavrou N, Chatzopoulou M, Ballekova J, Cappiello M, Moschini R, Balestri F, Patsilinakos A, Ragno R, Stefek M, Nicolaou I. Enhancing activity and selectivity in a series of pyrrol-1-yl-1-hydroxypyrazole-based aldose reductase inhibitors: The case of trifluoroacetylation. Eur J Med Chem 2017; 130:328-335. [DOI: 10.1016/j.ejmech.2017.02.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/25/2017] [Accepted: 02/20/2017] [Indexed: 11/25/2022]
|
24
|
Hao X, Han Z, Li Y, Li C, Wang X, Zhang X, Yang Q, Ma B, Zhu C. Synthesis and structure–activity relationship studies of phenolic hydroxyl derivatives based on quinoxalinone as aldose reductase inhibitors with antioxidant activity. Bioorg Med Chem Lett 2017; 27:887-892. [DOI: 10.1016/j.bmcl.2017.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/28/2016] [Accepted: 01/05/2017] [Indexed: 12/17/2022]
|