1
|
Herrera-Arozamena C, Estrada-Valencia M, García-Díez G, Pérez C, León R, Infantes L, Morales-García JA, Pérez-Castillo A, Del Sastre E, López MG, Rodríguez-Franco MI. Discovery of a potent melatonin-based inhibitor of quinone reductase-2 with neuroprotective and neurogenic properties. Eur J Med Chem 2024; 277:116763. [PMID: 39146834 DOI: 10.1016/j.ejmech.2024.116763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
5-Methoxy-3-(5-methoxyindolin-2-yl)-1H-indole (3), whose structure was unambiguously elucidated by X-ray analysis, was identified as a multi-target compound with potential application in neurodegenerative diseases. It is a low nanomolar inhibitor of QR2 (IC50 = 7.7 nM), with greater potency than melatonin and comparable efficacy to the most potent QR2 inhibitors described to date. Molecular docking studies revealed the potential binding mode of 3 to QR2, which explains its superior potency compared to melatonin. Furthermore, compound 3 inhibits hMAO-A, hMAO-B and hLOX-5 in the low micromolar range and is an excellent ROS scavenger. In phenotypic assays, compound 3 showed neuroprotective activity in a cellular model of oxidative stress damage, it was non-toxic, and was able to activate neurogenesis from neural stem-cell niches of adult mice. These excellent biological properties, together with its both good in silico and in vitro drug-like profile, highlight compound 3 as a promising drug candidate for neurodegenerative diseases.
Collapse
Affiliation(s)
- Clara Herrera-Arozamena
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006, Madrid, Spain
| | - Martín Estrada-Valencia
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006, Madrid, Spain
| | - Guillermo García-Díez
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006, Madrid, Spain
| | - Concepción Pérez
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006, Madrid, Spain
| | - Rafael León
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006, Madrid, Spain
| | - Lourdes Infantes
- Instituto de Química Física Blas Cabrera, Consejo Superior de Investigaciones Científicas (IQF-CSIC), C/ Serrano 119, E-28006, Madrid, Spain
| | - José A Morales-García
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Avda. Complutense s/n, E-28040, Madrid, Spain
| | - Ana Pérez-Castillo
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), C/ Arturo Duperier 4, E-28029, Madrid, Spain
| | - Eric Del Sastre
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), C/ Arzobispo Morcillo 4, E-28029, Madrid, Spain
| | - Manuela G López
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), C/ Arzobispo Morcillo 4, E-28029, Madrid, Spain
| | - María Isabel Rodríguez-Franco
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006, Madrid, Spain.
| |
Collapse
|
2
|
Sharma A, Sharma M, Bharate SB. N-Benzyl piperidine Fragment in Drug Discovery. ChemMedChem 2024; 19:e202400384. [PMID: 38924676 DOI: 10.1002/cmdc.202400384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
The N-benzyl piperidine (N-BP) structural motif is commonly employed in drug discovery due to its structural flexibility and three-dimensional nature. Medicinal chemists frequently utilize the N-BP motif as a versatile tool to fine-tune both efficacy and physicochemical properties in drug development. It provides crucial cation-π interactions with the target protein and also serves as a platform for optimizing stereochemical aspects of potency and toxicity. This motif is found in numerous approved drugs and clinical/preclinical candidates. This review focuses on the applications of the N-BP motif in drug discovery campaigns, emphasizing its role in imparting medicinally relevant properties. The review also provides an overview of approved drugs, the clinical and preclinical pipeline, and discusses its utility for specific therapeutic targets and indications, along with potential challenges.
Collapse
Affiliation(s)
- Ankita Sharma
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohit Sharma
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sandip B Bharate
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, India
| |
Collapse
|
3
|
Dhiman P, Malik N. Curcumin Derivatives Linked to a Reduction of Oxidative Stress in Mental Dysfunctions and Inflammatory Disorders. Curr Med Chem 2024; 31:6826-6841. [PMID: 37605400 DOI: 10.2174/0929867331666230821102431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 08/23/2023]
Abstract
Stress is a critical factor in the etiology of inflammation and neurodegeneration. The risk factor for the majority of psychiatric disorders is oxidative stress-induced depression. Mitochondrial damage and oxidative stress are associated with the development of neurodegenerative disorders. During aging, the brain and associated regions become more susceptible due to oxidative stress. The leading cause of oxidative stress is the continuous generation of ROS (reactive oxygen species) and RNS (Reactive nitrogen species) endogenously or exogenously. In this review, discussion on a potent antioxidant natural constituent "curcumin" has been made to alleviate many pathological and neurological disorders. A focused compilation of vast and informative research on the potential of curcumin as a magical moiety used therapeutically has been done in search of its role in controlling the neurological and similar disorders induced by oxidative stress.
Collapse
Affiliation(s)
- Priyanka Dhiman
- Department of Pharmaceutical Sciences, Chandigarh Group of Colleges (CGC), Landran, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140307, India
| | - Neelam Malik
- Department of Pharmaceutical Sciences, Panipat Institute of Engineering & Technology (PIET), Samalkha, Haryana 132102, India
| |
Collapse
|
4
|
Drakontaeidi A, Pontiki E. Multi-Target-Directed Cinnamic Acid Hybrids Targeting Alzheimer's Disease. Int J Mol Sci 2024; 25:582. [PMID: 38203753 PMCID: PMC10778916 DOI: 10.3390/ijms25010582] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Progressive cognitive decline in Alzheimer's disease (AD) is a growing challenge. Present therapies are based on acetylcholinesterase inhibition providing only temporary relief. Promising alternatives include butyrylcholinesterase (BuChE) inhibitors, multi-target ligands (MTDLs) that address the multi-factorial nature of AD, and compounds that target oxidative stress and inflammation. Cinnamate derivatives, known for their neuroprotective properties, show potential when combined with established AD agents, demonstrating improved efficacy. They are being positioned as potential AD therapeutic leads due to their ability to inhibit Aβ accumulation and provide neuroprotection. This article highlights the remarkable potential of cinnamic acid as a basic structure that is easily adaptable and combinable to different active groups in the struggle against Alzheimer's disease. Compounds with a methoxy substitution at the para-position of cinnamic acid display increased efficacy, whereas electron-withdrawing groups are generally more effective. The effect of the molecular volume is worthy of further investigation.
Collapse
Affiliation(s)
| | - Eleni Pontiki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
5
|
Astrain-Redin N, Raza A, Encío I, Sharma AK, Plano D, Sanmartín C. Novel Acylselenourea Derivatives: Dual Molecules with Anticancer and Radical Scavenging Activity. Antioxidants (Basel) 2023; 12:1331. [PMID: 37507871 PMCID: PMC10376326 DOI: 10.3390/antiox12071331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidative stress surrounding cancer cells provides them with certain growth and survival advantages necessary for disease progression. In this context, Se-containing molecules have gained attention due to their anticancer and antioxidant activity. In our previous work, we synthesized a library of 39 selenoesters containing functional groups commonly present in natural products (NP), which showed potent anticancer activity, but did not demonstrate high radical scavenger activity. Thus, 20 novel Se derivatives resembling NP have been synthesized presenting acylselenourea functionality in their structures. Radical scavenger activity was tested using DPPH assay and in vitro protective effects against ROS-induced cell death caused by H2O2. Additionally, antiproliferative activity was evaluated in prostate, colon, lung, and breast cancer cell lines, along with their ability to induce apoptosis. Compounds 1.I and 5.I showed potent cytotoxicity against the tested cancer cell lines, along with high selectivity indexes and induction of caspase-mediated apoptosis. These compounds exhibited potent and concentration-dependent radical scavenging activity achieving DPPH inhibition similar to ascorbic acid and trolox. To conclude, we have demonstrated that the introduction of Se in the form of acylselenourea into small molecules provides strong radical scavengers in vitro and antiproliferative activity, which may lead to the development of promising dual compounds.
Collapse
Affiliation(s)
- Nora Astrain-Redin
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Asif Raza
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Ignacio Encío
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain
- Departamento de Ciencias de la Salud, Universidad Pública de Navarra, Avda. Barañain s/n, 31008 Pamplona, Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Daniel Plano
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain
| | - Carmen Sanmartín
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain
| |
Collapse
|
6
|
(R)-N-Benzyl-N-(1-phenylethyl)cyclohexanamine. MOLBANK 2023. [DOI: 10.3390/m1561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The preparation and characterization of a new chiral tertiary dibenzylamine are described. These molecules are well known in the literature for their high neuropharmacological potential. The general synthetic pathway is based on asymmetric Aza–Michael addition of chiral (R)-N-benzyl-N-(α-methylbenzyl)amide to methyl cyclohex-1-en-carboxilate obtaining the β-amino ester, followed by carboxylic acid hydrolysis and subsequent Barton descarboxylation. Interestingly, it is a general synthetic procedure of a wide range of chiral amines by careful choice of insaturated esters and alkylation of the chiral enolate in the initial reaction. The new tertiary dibenzylamine molecule is fully characterized by NMR Spectroscopy (1H and 13C), as well by High-Resolution Mass Spectrometry and Infrared Spectroscopy.
Collapse
|
7
|
Liu P, Cheng M, Guo J, Cao D, Luo J, Wan Y, Fang Y, Jin Y, Xie SS, Liu J. Dual functional antioxidant and butyrylcholinesterase inhibitors for the treatment of Alzheimer's disease: Design, synthesis and evaluation of novel melatonin-alkylbenzylamine hybrids. Bioorg Med Chem 2023; 78:117146. [PMID: 36580744 DOI: 10.1016/j.bmc.2022.117146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Here, we have designed and synthesized a series of melatonin-alkylbenzylamine hybrids as multitarget agents for the treatment of Alzheimer's disease (AD). Most of them exhibited a potent multifunctional profile involving cholinesterase inhibition and antioxidant effects. Among these compounds, compound 5 was most the potent antioxidant (ORAC = 5.13) and also an excellent selective inhibitor of BuChE (huBuChE IC50 = 1.20 μM, huAChE IC50 = 177.49 μM, SI = 147.91). Moreover, kinetic study indicated compound 5 was a mixed-type inhibitor for huBuChE. Furthermore, it could induce expression of the Nrf2 as well as its downstream markers at the protein level in cells. More importantly, compound 5 display no acute toxicity in mice at doses up to 2500 mg/kg. And we found compound 5 could improve memory function of scopolamine-induced amnesia mice. These results highlighted compound 5 as a possible hit molecule for further investigation of new anti-AD drugs.
Collapse
Affiliation(s)
- Peng Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China; National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Maojun Cheng
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China; National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Jie Guo
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Duanyuan Cao
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Jinchong Luo
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Yang Wan
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Yuanying Fang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Sai-Sai Xie
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China.
| | - Jing Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China.
| |
Collapse
|
8
|
Lamie PF, Abdel-Fattah MM, Philoppes JN. Design and synthesis of new indole drug candidates to treat Alzheimer's disease and targeting neuro-inflammation using a multi-target-directed ligand (MTDL) strategy. J Enzyme Inhib Med Chem 2022; 37:2660-2678. [PMID: 36146947 PMCID: PMC9518246 DOI: 10.1080/14756366.2022.2126464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A novel series of indole-based compounds was designed, synthesised, and evaluated as anti-Alzheimer’s and anti-neuroinflammatory agents. The designed compounds were in vitro evaluated for their AChE and BuChE inhibitory activities. The obtained results revealed that compound 3c had higher selectivity for AChE than BuChE, while, 4a, 4b, and 4d showed selectivity for BuChE over AChE. Compounds 5b, 6b, 7c, and 10b exerted dual AChE/BuChE inhibitory activities at nanomolar range. Compounds 5b and 6b had the ability to inhibit the self-induced Aβ amyloid aggregation. Different anti-inflammatory mediators (NO, COX-2, IL-1β, and TNF-α) were assessed for compounds 5b and 6b. Cytotoxic effect of 5b and 6b against human neuroblastoma (SH-SY5Y) and normal hepatic (THLE2) cell lines was screened in vitro. Molecular docking study inside rhAChE and hBuChE active sites, drug-likeness, and ADMET prediction were performed.
Collapse
Affiliation(s)
- Phoebe F Lamie
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - John N Philoppes
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
9
|
Viña D. Meet the Editorial Board Member. Curr Med Chem 2022. [DOI: 10.2174/092986732917220420105717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Dolores Viña
- Universidade de Santiago de Compostela
Galicia
Spain
| |
Collapse
|
10
|
Polumackanycz M, Konieczynski P, Orhan IE, Abaci N, Viapiana A. Chemical Composition, Antioxidant and Anti-Enzymatic Activity of Golden Root (Rhodiola rosea L.) Commercial Samples. Antioxidants (Basel) 2022; 11:antiox11050919. [PMID: 35624783 PMCID: PMC9137987 DOI: 10.3390/antiox11050919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 12/17/2022] Open
Abstract
The aim of the study was to compare the chemical composition of the water and hydromethanolic extracts of R. rosea commercial samples in relation to their biological activity. For this purpose, the HPLC method was used for the determination of eleven phenolic compounds and AAS/AES was used for determination of five essential elements. Moreover, the contents of total phenolic, total flavonoid, total phenolic acids, and L(+)-ascorbic acid were determined. The antioxidant activity was assessed by DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS radical scavenging activity, ferric-reducing/antioxidant power (FRAP), and cupric-reducing antioxidant capacity (CUPRAC) assays, while the inhibitory activity against AChE and BChE enzymes was determined using Ellman’s method. The results showed that the hydromethanolic extracts of R. rosea were richer in phenolic compounds and showed higher antioxidant and neurobiological activity than the water extracts. However, the water extracts gave higher contents of determined elements. Among the individual phenolic compounds gallic acid (2.33 mg/g DW) and sinapic acid (386.44 µg/g DW) had the highest concentrations in the hydromethanolic and water extracts, respectively. Moreover, the most extracts were observed to be more efficient on BChE. Moreover, the correlation analysis indicated a high positive relationship between chemical composition and biological activity in both extracts of R. rosea.
Collapse
Affiliation(s)
- Milena Polumackanycz
- Department of Analytical Chemistry, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdansk, Poland; (M.P.); (P.K.)
| | - Pawel Konieczynski
- Department of Analytical Chemistry, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdansk, Poland; (M.P.); (P.K.)
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Turkey; (I.E.O.); (N.A.)
- Principal Member of Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No. 112, Ankara 06670, Turkey
| | - Nurten Abaci
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Turkey; (I.E.O.); (N.A.)
| | - Agnieszka Viapiana
- Department of Analytical Chemistry, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdansk, Poland; (M.P.); (P.K.)
- Correspondence:
| |
Collapse
|
11
|
Herrera-Arozamena C, Estrada-Valencia M, López-Caballero P, Pérez C, Morales-García JA, Pérez-Castillo A, Sastre ED, Fernández-Mendívil C, Duarte P, Michalska P, Lombardía J, Senar S, León R, López MG, Rodríguez-Franco MI. Resveratrol-Based MTDLs to Stimulate Defensive and Regenerative Pathways and Block Early Events in Neurodegenerative Cascades. J Med Chem 2022; 65:4727-4751. [PMID: 35245051 PMCID: PMC8958504 DOI: 10.1021/acs.jmedchem.1c01883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
By replacing a phenolic
ring of (E)-resveratrol
with an 1,3,4-oxadiazol-2(3H)-one heterocycle, new
resveratrol-based multitarget-directed ligands (MTDLs) were obtained.
They were evaluated in several assays related to oxidative stress
and inflammation (monoamine oxidases, nuclear erythroid 2-related
factor, quinone reductase-2, and oxygen radical trapping) and then
in experiments of increasing complexity (neurogenic properties and
neuroprotection vs okadaic acid). 5-[(E)-2-(4-Methoxyphenyl)ethenyl]-3-(prop-2-yn-1-yl)-1,3,4-oxadiazol-2(3H)-one (4e) showed a well-balanced MTDL profile:
cellular activation of the NRF2-ARE pathway (CD = 9.83 μM),
selective inhibition of both hMAO-B and QR2 (IC50s = 8.05
and 0.57 μM), and the best ability to promote hippocampal neurogenesis.
It showed a good drug-like profile (positive in vitro central nervous
system permeability, good physiological solubility, no glutathione
conjugation, and lack of PAINS or Lipinski alerts) and exerted neuroprotective
and antioxidant actions in both acute and chronic Alzheimer models
using hippocampal tissues. Thus, 4e is an interesting
MTDL that could stimulate defensive and regenerative pathways and
block early events in neurodegenerative cascades.
Collapse
Affiliation(s)
- Clara Herrera-Arozamena
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006 Madrid, Spain.,Programa de Doctorado en Química Orgánica, Facultad de Química, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid, Spain
| | - Martín Estrada-Valencia
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Patricia López-Caballero
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Concepción Pérez
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006 Madrid, Spain
| | - José A Morales-García
- Instituto de Investigaciones Biomédicas (CSIC-UAM), C/Arturo Duperier, 4, E-28029 Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/Valderrebollo 5, E-28031 Madrid, Spain.,Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid, Spain
| | - Ana Pérez-Castillo
- Instituto de Investigaciones Biomédicas (CSIC-UAM), C/Arturo Duperier, 4, E-28029 Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/Valderrebollo 5, E-28031 Madrid, Spain
| | - Eric Del Sastre
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain
| | - Cristina Fernández-Mendívil
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain
| | - Pablo Duarte
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain
| | - Patrycja Michalska
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain
| | - José Lombardía
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain
| | - Sergio Senar
- DrTarget Machine Learning, C/Alejo Carpentier 13, E-28806 Alcalá de Henares, Madrid, Spain
| | - Rafael León
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006 Madrid, Spain.,Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain
| | - Manuela G López
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de la Princesa (IIS-IP), C/Diego de León 62, E-28006 Madrid, Spain
| | - María Isabel Rodríguez-Franco
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006 Madrid, Spain
| |
Collapse
|
12
|
Dorababu A. Promising heterocycle-based scaffolds in recent (2019-2021) anti-Alzheimer's drug design and discovery. Eur J Pharmacol 2022; 920:174847. [PMID: 35218718 DOI: 10.1016/j.ejphar.2022.174847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/06/2022] [Accepted: 02/18/2022] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is one of the neurodegenerative diseases that led to morbidity and mortality world-wide. It is a complex disease whose etiology is not completely known that leads to difficulty in prevent or cure of the AD. Also, there are only few approved drugs for AD treatment. Apart from deaths due to AD, expenditure of treatment and care of AD patients is higher than that of treatment of HIV and cancer diseases combined. Hence, it leads to an economic burden also. Although research is being carried out on designing drugs for AD, most of them have ended up in poor inhibitors with high toxicity. Hence, researchers should shoulder a great responsibility of discovery of efficient drugs for AD treatment. In the field of drug discovery, heterocycles played an important role. Also, most of the heterocyclic scaffolds have been used in design of potent anti-AD agents. In view of this, heterocyclic molecules reported recently are compiled and evaluated comprehensively. Especially, the molecules which exhibited pronounced activity are emphasized and described with respect to structure-activity relationship (SAR) in brief.
Collapse
Affiliation(s)
- Atukuri Dorababu
- SRMPP Government First Grade College, Huvinahadagali, 583219, India.
| |
Collapse
|
13
|
Acetylcholinesterase inhibition, molecular docking and ADME prediction studies of new dihydrofuran-piperazine hybrid compounds. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02788-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Viña D. Meet Our Editorial Board Member. Curr Med Chem 2021. [DOI: 10.2174/092986732817210602095116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Dolores Viña
- Universidade de Santiago de Compostela Galicia,Spain
| |
Collapse
|
15
|
Bacci A, Runfola M, Sestito S, Rapposelli S. Beyond Antioxidant Effects: Nature-Based Templates Unveil New Strategies for Neurodegenerative Diseases. Antioxidants (Basel) 2021; 10:antiox10030367. [PMID: 33671015 PMCID: PMC7997428 DOI: 10.3390/antiox10030367] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/11/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
The complex network of malfunctioning pathways occurring in the pathogenesis of neurodegenerative diseases (NDDs) represents a huge hurdle in the development of new effective drugs to be used in therapy. In this context, redox reactions act as crucial regulators in the maintenance of neuronal microenvironment homeostasis. Particularly, their imbalance results in the severe compromising of organism’s natural defense systems and subsequently, in the instauration of deleterious OS, that plays a fundamental role in the insurgence and progress of NDDs. Despite the huge efforts in drug discovery programs, the identification process of new therapeutic agents able to counteract the relentless progress of neurodegenerative processes has produced low or no effective therapies. Consequently, a paradigm-shift in the drug discovery approach for these diseases is gradually occurring, paving the way for innovative therapeutical approaches, such as polypharmacology. The aim of this review is to provide an overview of the main pharmacological features of most promising nature-based scaffolds for a possible application in drug discovery, especially for NDDs, highlighting their multifaceted effects against OS and neuronal disorders.
Collapse
Affiliation(s)
- Andrea Bacci
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (A.B.); (M.R.)
| | - Massimiliano Runfola
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (A.B.); (M.R.)
| | - Simona Sestito
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
| | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (A.B.); (M.R.)
- Correspondence:
| |
Collapse
|
16
|
Singh YP, Rai H, Singh G, Singh GK, Mishra S, Kumar S, Srikrishna S, Modi G. A review on ferulic acid and analogs based scaffolds for the management of Alzheimer's disease. Eur J Med Chem 2021; 215:113278. [PMID: 33662757 DOI: 10.1016/j.ejmech.2021.113278] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/30/2021] [Accepted: 01/30/2021] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is an age-related multifactorial neurodegenerative disorder characterized by severe central cholinergic neuronal loss, gradually contributing to cognitive dysfunction and impaired motor activity, resulting in the brain's cell death at the later stages of AD. Although the etiology of AD is not well understood, however, several factors such as oxidative stress, deposition of amyloid-β (Aβ) peptides to form Aβ plaques, intraneuronal accumulation of hyperphosphorylated tau protein, and low level of acetylcholine are thought to play a major role in the pathogenesis of AD. There is practically no drug for AD treatment that can address the basic factors responsible for the neurodegeneration and slow down the disease progression. The currently available therapies for AD in the market focus on providing only symptomatic relief without addressing the aforesaid basic factors responsible for the neurodegeneration. Ferulic acid (FA) is a phenol derivative from natural sources and serves as a potential pharmacophore that exerts multiple pharmacological properties such as antioxidant, neuroprotection, Aβ aggregation modulation, and anti-inflammatory. Several FA based hybrid analogs are under investigation as a multi-target directed ligand (MTDLs) to develop novel hybrid compounds for the treatment of AD. In the present review article, we are focused on the critical pathogenic factors responsible for the onset of AD followed by the developments of FA pharmacophore-based hybrids compounds as a novel multifunctional therapeutic agent to address the limitations associated with available treatment for AD. The rationale behind the development of these compounds and their pharmacological activities in particular to their ChE inhibition (ChEI), neuroprotection, antioxidant property, Aβ aggregation modulation, and metal chelation ability, are discussed in detail. We have also discussed the discovery of caffeic and cinnamic acids based MTDLs for AD. This review paper provides an in-depth insight into the research progress and current status of these novel therapeutics in AD and prospects for developing a druggable molecule with desired pharmacological affinity and reduced toxicity for the management of AD.
Collapse
Affiliation(s)
- Yash Pal Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Himanshu Rai
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Gourav Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Gireesh Kumar Singh
- Department of Pharmacy, School of Health Science, Central University of South Bihar Gaya, 824236, India
| | - Sunil Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - S Srikrishna
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
17
|
Kareem RT, Abedinifar F, Mahmood EA, Ebadi AG, Rajabi F, Vessally E. The recent development of donepezil structure-based hybrids as potential multifunctional anti-Alzheimer's agents: highlights from 2010 to 2020. RSC Adv 2021; 11:30781-30797. [PMID: 35498922 PMCID: PMC9041380 DOI: 10.1039/d1ra03718h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/14/2021] [Indexed: 11/21/2022] Open
Abstract
Dementia is a term used to define different brain disorders that affect memory, thinking, behavior, and emotion. Alzheimer's disease (AD) is the second cause of dementia that is generated by the death of cholinergic neurons (especially acetylcholine (ACh)), which have a vital role in cognition. Acetylcholinesterase inhibitors (AChEI) affect acetylcholine levels in the brain and are broadly used to treat Alzheimer's. Donepezil, rivastigmine, and galantamine, which are FDA-approved drugs for AD, are cholinesterase inhibitors. In addition, scientists are attempting to develop hybrid molecules and multi-target-directed ligands (MTDLs) that can simultaneously modulate multiple biological targets. This review highlights recent examples of MTDLs and fragment-based strategy in the rational design of new potential AD medications from 2010 onwards. This review highlights recent examples of multi-target-directed ligands (MTDLs) based on donepezil structure modification from 2010 onwards.![]()
Collapse
Affiliation(s)
- Rzgar Tawfeeq Kareem
- Department of Chemistry, College of Science, University of Bu Ali Sina, Hamadan, Iran
| | - Fahimeh Abedinifar
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Evan Abdolkareem Mahmood
- College of Health Sciences, University of Human Development, Sulaimaniyah, Kurdistan region of Iraq
| | - Abdol Ghaffar Ebadi
- Department of Agriculture, Jouybar Branch, Islamic Azad University, Jouybar, Iran
| | - Fatemeh Rajabi
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
| |
Collapse
|
18
|
Ghafary S, Ghobadian R, Mahdavi M, Nadri H, Moradi A, Akbarzadeh T, Najafi Z, Sharifzadeh M, Edraki N, Moghadam FH, Amini M. Design, synthesis, and evaluation of novel cinnamic acid-tryptamine hybrid for inhibition of acetylcholinesterase and butyrylcholinesterase. Daru 2020; 28:463-477. [PMID: 32372339 PMCID: PMC7704987 DOI: 10.1007/s40199-020-00346-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 04/03/2020] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Acetylcholine deficiencies in hippocampus and cortex, aggregation of β-amyloid, and β-secretase over activity have been introduced as main reasons in pathogenesis of Alzheimer's disease. METHODS Colorimetric Ellman's method was used for determination of IC50 value in AChE and BChE inhibitory activity. The kinetic studies, neuroprotective and β-secretase inhibitory activities, evaluation of inhibitory potency on β-amyloid (Aβ) aggregations induced by AChE, and docking study were performed for prediction of the mechanism of action. RESULT AND DISCUSSION A new series of cinnamic acids-tryptamine hybrid was designed, synthesized, and evaluated as dual cholinesterase inhibitors. These compounds demonstrated in-vitro inhibitory activities against acetyl cholinesterase (AChE) and butyryl cholinesterase (BChE). Among of these synthesized compounds, (E)-N-(2-(1H-indol-3-yl)ethyl)-3-(3,4-dimethoxyphenyl)acrylamide (5q) demonstrated the most potent AChE inhibitory activity (IC50 = 11.51 μM) and (E)-N-(2-(1H-indol-3-yl)ethyl)-3-(2-chlorophenyl)acrylamide (5b) were the best anti-BChE (IC50 = 1.95 μM) compounds. In addition, the molecular modeling and kinetic studies depicted 5q and 5b were mixed type inhibitor and bound with both the peripheral anionic site (PAS) and catalytic sites (CAS) of AChE and BChE. Moreover, compound 5q showed mild neuroprotective in PC12 cell line and weak β-secretase inhibitory activities. This compound also inhibited aggregation of β-amyloid (Aβ) in self-induced peptide aggregation test at concentration of 10 μM. CONCLUSION It is worth noting that both the kinetic study and the molecular modeling of 5q and 5b depicted that these compounds simultaneously interacted with both the catalytic active site and the peripheral anionic site of AChE and BChE. These findings match with those resulted data from the enzyme inhibition assay. Graphical abstract A new series of cinnamic-derived acids-tryptamine hybrid derivatives were designed, synthesized and evaluated as butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) inhibitors and neuroprotective agents. Compound 5b and 5q, as the more potent compounds, interacted with both the peripheral site and the choline binding site having mixed type inhibition. Results suggested that derivatives have a therapeutic potential for the treatment of AD.
Collapse
Affiliation(s)
- Shahrzad Ghafary
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design & Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Roshanak Ghobadian
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design & Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Nadri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Moradi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Tahmineh Akbarzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design & Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Najafi
- Department of Medicinal Chemistry, School of Pharmacy, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Farshad Homayouni Moghadam
- Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design & Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Optical control of muscular nicotinic channels with azocuroniums, photoswitchable azobenzenes bearing two N-methyl-N-carbocyclic quaternary ammonium groups. Eur J Med Chem 2020; 200:112403. [DOI: 10.1016/j.ejmech.2020.112403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 12/19/2022]
|
20
|
Zagórska A, Jaromin A. Perspectives for New and More Efficient Multifunctional Ligands for Alzheimer's Disease Therapy. Molecules 2020; 25:E3337. [PMID: 32717806 PMCID: PMC7435667 DOI: 10.3390/molecules25153337] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/23/2022] Open
Abstract
Despite tremendous research efforts at every level, globally, there is still a lack of effective drugs for the treatment of Alzheimer's disease (AD). The biochemical mechanisms of this devastating neurodegenerative disease are not yet clearly understood. This review analyses the relevance of multiple ligands in drug discovery for AD as a versatile toolbox for a polypharmacological approach to AD. Herein, we highlight major targets associated with AD, ranging from acetylcholine esterase (AChE), beta-site amyloid precursor protein cleaving enzyme 1 (BACE-1), glycogen synthase kinase 3 beta (GSK-3β), N-methyl-d-aspartate (NMDA) receptor, monoamine oxidases (MAOs), metal ions in the brain, 5-hydroxytryptamine (5-HT) receptors, the third subtype of histamine receptor (H3 receptor), to phosphodiesterases (PDEs), along with a summary of their respective relationship to the disease network. In addition, a multitarget strategy for AD is presented, based on reported milestones in this area and the recent progress that has been achieved with multitargeted-directed ligands (MTDLs). Finally, the latest publications referencing the enlarged panel of new biological targets for AD related to the microglia are highlighted. However, the question of how to find meaningful combinations of targets for an MTDLs approach remains unanswered.
Collapse
Affiliation(s)
- Agnieszka Zagórska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383 Wrocław, Poland;
| |
Collapse
|
21
|
Haider K, Haider MR, Neha K, Yar MS. Free radical scavengers: An overview on heterocyclic advances and medicinal prospects. Eur J Med Chem 2020; 204:112607. [PMID: 32721784 DOI: 10.1016/j.ejmech.2020.112607] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/08/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022]
Abstract
In the present scenario, there has been a lot of consideration toward the field of free radical chemistry. Free radicals responsive oxygen species are produced by different endogenous frameworks, exposure to various physicochemical conditions, radiation, toxins, metabolized drug by-product, and pathological states. On the off chance that free radical overpowers the body's capacity, it generates a condition known as oxidative stress, which can alter physiological conditions of the body and results in several diseases. For appropriate physiological function, it is necessary to have a proper balance between free radicals and antioxidants. Antioxidants chemically inhibit the oxidation process; they are also known as free radical scavengers. For tackling the problem of oxidative stress application of an external source of antioxidant is helpful. A lot of antioxidants of natural, semi-synthetic and synthetic origin are in use, with time search of more effective, nontoxic, safe antioxidant is intensified. The present review, discuss different synthetic derivatives bearing various heterocyclic scaffolds as radical scavengers.
Collapse
Affiliation(s)
- Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Md Rafi Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kumari Neha
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - M Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
22
|
Suwanttananuruk P, Jiaranaikulwanitch J, Waiwut P, Vajragupta O. Lead discovery of a guanidinyl tryptophan derivative on amyloid cascade inhibition. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AbstractAmyloid cascade, one of pathogenic pathways of Alzheimer’s disease (AD), was focused as one of drug discovery targets. In this study, β-secretase (BACE1) inhibitors were designed aiming at the development of multifunctional compounds targeting amyloid pathogenic cascade. Tryptophan was used as a core structure due to its properties of the central nervous system (CNS) penetration and BACE1 inhibition activity. Three amino acid residues and guanidine were selected as linkers to connect the tryptophan core structure and the extended aromatic moieties. The distance between the aromatic systems of the core structure and the extended moieties was kept at the optimal length for amyloid-β (Aβ) peptide binding to inhibit its fibrillation and aggregation. Sixteen designed compounds were evaluated in silico. Eight hit compounds of TSR and TGN series containing serine and guanidine linkers, respectively, were identified and synthesized based on docking results. TSR2 and TGN2 were found to exert strong actions as BACE1 (IC50 24.18 µM and 22.35 µM) and amyloid aggregation inhibitors (IC50 37.06 µM and 36.12 µM). Only TGN2 demonstrated a neuroprotective effect in SH-SY5Y cells by significantly reducing Aβ-induced cell death at a concentration of 2.62 µM. These results support the validity of multifunctional approaches to inhibition of the β-amyloid cascade.
Collapse
Affiliation(s)
- Piyapan Suwanttananuruk
- Center of Excellence for Innovation in Drug Design and Discovery and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Jutamas Jiaranaikulwanitch
- Center of Excellence for Innovation in Drug Design and Discovery and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornthip Waiwut
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Opa Vajragupta
- Center of Excellence for Innovation in Drug Design and Discovery and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
23
|
Singh YP, Tej GNVC, Pandey A, Priya K, Pandey P, Shankar G, Nayak PK, Rai G, Chittiboyina AG, Doerksen RJ, Vishwakarma S, Modi G. Design, synthesis and biological evaluation of novel naturally-inspired multifunctional molecules for the management of Alzheimer's disease. Eur J Med Chem 2020; 198:112257. [PMID: 32375073 DOI: 10.1016/j.ejmech.2020.112257] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 11/17/2022]
Abstract
In our overall goal to overcome the limitations associated with natural products for the management of Alzheimer's disease and to develop in-vivo active multifunctional cholinergic inhibitors, we embarked on the development of ferulic acid analogs. A systematic SAR study to improve upon the cholinesterase inhibition of ferulic acid with analogs that also had lower logP was carried out. Enzyme inhibition and kinetic studies identified compound 7a as a lead molecule with preferential acetylcholinesterase inhibition (AChE IC50 = 5.74 ± 0.13 μM; BChE IC50 = 14.05 ± 0.10 μM) compared to the parent molecule ferulic acid (% inhibition of AChE and BChE at 20 μM, 15.19 ± 0.59 and 19.73 ± 0.91, respectively). Molecular docking and dynamics studies revealed that 7a fits well into the active sites of AChE and BChE, forming stable and strong interactions with key residues Asp74, Trp286, and Tyr337 in AChE and with Tyr128, Trp231, Leu286, Ala328, Phe329, and Tyr341 in BChE. Compound 7a was found to be an efficacious antioxidant in a DPPH assay (IC50 = 57.35 ± 0.27 μM), and it also was able to chelate iron. Data from atomic force microscopy images demonstrated that 7a was able to modulate aggregation of amyloid β1-42. Upon oral administration, 7a exhibited promising in-vivo activity in the scopolamine-induced AD animal model and was able to improve spatial memory in cognitive deficit mice in the Y-maze model. Analog 7a could effectively reverse the increased levels of AChE and BChE in scopolamine-treated animals and exhibited potent ex-vivo antioxidant properties. These findings suggest that 7a can act as a lead molecule for the development of naturally-inspired multifunctional molecules for the management of Alzheimer's and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yash Pal Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Gullanki Naga Venkata Charan Tej
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Amruta Pandey
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Khushbu Priya
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Pankaj Pandey
- National Center for Natural Products Research, University of Mississippi, University, MS, 38677, United States
| | - Gauri Shankar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Prasanta Kumar Nayak
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Geeta Rai
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Amar G Chittiboyina
- National Center for Natural Products Research, University of Mississippi, University, MS, 38677, United States
| | - Robert J Doerksen
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, United States
| | - Swati Vishwakarma
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
24
|
Herrera-Arozamena C, Estrada-Valencia M, Pérez C, Lagartera L, Morales-García JA, Pérez-Castillo A, Franco-Gonzalez JF, Michalska P, Duarte P, León R, López MG, Mills A, Gago F, García-Yagüe ÁJ, Fernández-Ginés R, Cuadrado A, Rodríguez-Franco MI. Tuning melatonin receptor subtype selectivity in oxadiazolone-based analogues: Discovery of QR2 ligands and NRF2 activators with neurogenic properties. Eur J Med Chem 2020; 190:112090. [DOI: 10.1016/j.ejmech.2020.112090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/18/2022]
|
25
|
Molecular docking utilising the OliveNet™ library reveals novel phenolic compounds which may potentially target key proteins associated with major depressive disorder. Comput Biol Chem 2020; 86:107234. [PMID: 32220809 DOI: 10.1016/j.compbiolchem.2020.107234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/31/2020] [Accepted: 02/10/2020] [Indexed: 11/21/2022]
Abstract
The antidepressant medications that are currently prescribed to patients suffering from major depressive disorder (MDD) have limitations and as a result, there is an urgent need to increase the options that are available. A number of studies have found that natural polyphenols have neuroprotective properties and there is evidence to suggest that they modulate neurotransmitter systems. There are more than 200 phenolic compounds that have been identified in Olea europaea, many of which have not yet been investigated for their potential biological effects. In this study, in silico methods were used to screen the phenolic library from the OliveNet™ database and identify novel lead compounds for proteins implicated in the pathophysiology of MDD. The molecular docking results revealed that the monoamine oxidase enzyme isoforms (MAO-A/MAO-B) had binding specificities for certain phenolic subclasses. The lead ligands that were identified from these subclasses were positioned near the flavin adenine dinucleotide (FAD) cofactor, interacting in a similar manner as known inhibitors. In addition to the MAO enzymes, several phenolic compounds were docked to neurotransmitter transporters and postsynaptic receptors, as well as proteins involved in neuroinflammation, oxidative stress and the endocannabinoid system. Based on the binding affinity, position, orientation and interactions of the lead phenolic compounds identified in this study, it is predicted that they may have antidepressant properties. The results should be validated further using molecular dynamics (MD) simulations, as well as in vivo and in vitro techniques.
Collapse
|
26
|
Multi-target design strategies for the improved treatment of Alzheimer's disease. Eur J Med Chem 2019; 176:228-247. [DOI: 10.1016/j.ejmech.2019.05.020] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022]
|
27
|
Gaikwad N, Nanduri S, Madhavi YV. Cinnamamide: An insight into the pharmacological advances and structure-activity relationships. Eur J Med Chem 2019; 181:111561. [PMID: 31376564 DOI: 10.1016/j.ejmech.2019.07.064] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/11/2019] [Accepted: 07/23/2019] [Indexed: 01/07/2023]
Abstract
The cinnamamide (cinnamic acid amide and cinnamide) is a privileged scaffold present widely in a number of natural products. The scaffold acts as a useful template for designing and arriving at newly drug-like molecules with potential pharmacological activity. An attempt has been made to review the extensive occurrence of cinnamamide scaffold in many lead compounds reported for treating various diseases, their binding interactions with the therapeutic targets as well as mechanism of action and their structure-activity relationships. The discoveries of cinnamamide systems and some examples of unusual cinnamamides having an aromatic, aliphatic, and heterocyclic or other rings condensed to the basic cinnamamide structure also have been extensively covered in this review.
Collapse
Affiliation(s)
- Nikhil Gaikwad
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), 40, Dilip Rd, Jinkalwada, Balanagar, Hyderabad, Telangana, 500037, India
| | - Srinivas Nanduri
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), 40, Dilip Rd, Jinkalwada, Balanagar, Hyderabad, Telangana, 500037, India
| | - Y V Madhavi
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), 40, Dilip Rd, Jinkalwada, Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
28
|
Zhu J, Wang LN, Cai R, Geng SQ, Dong YF, Liu YM. Design, synthesis, evaluation and molecular modeling study of 4-N-phenylaminoquinolines for Alzheimer disease treatment. Bioorg Med Chem Lett 2019; 29:1325-1329. [DOI: 10.1016/j.bmcl.2019.03.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/22/2019] [Accepted: 03/30/2019] [Indexed: 12/12/2022]
|
29
|
Synthesis, mitochondrial localization of fluorescent derivatives of cinnamamide as anticancer agents. Eur J Med Chem 2019; 170:45-54. [DOI: 10.1016/j.ejmech.2019.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/21/2019] [Accepted: 03/01/2019] [Indexed: 11/21/2022]
|
30
|
Zengin Kurt B, Durdagi S, Celebi G, Ekhteiari Salmas R, Sonmez F. Synthesis, anticholinesterase activity and molecular modeling studies of novel carvacrol-substituted amide derivatives. J Biomol Struct Dyn 2019; 38:841-859. [PMID: 30836858 DOI: 10.1080/07391102.2019.1590243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the present study, 23 novel carvacrol derivatives involving the amide moiety as a linker between the alkyl chains and/or the heterocycle nucleus were synthesized and tested in vitro as acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitors. 2-(5-Isopropyl-2-methylphenoxy)-N-(quinolin-8-yl)acetamide (5v) revealed the highest inhibition properties against AChE and BuChE with the IC50 values of 1.93 and 0.05 µM, respectively. The blood-brain barrier (BBB) permeability of the potent inhibitor (5v) was also assessed by the widely used parallel artificial membrane permeability assay (PAMPA-BBB). The results showed that 5v is capable of crossing the BBB. Pharmacokinetic and toxicity profiles of the studied molecule predictions were investigated by MetaCore/MetaDrug comprehensive systems biology analysis suite. Bioactive conformations of the synthesized molecules, their predicted binding energies as well as structural and dynamical profiles of molecules at the binding pockets of AChE and BuChE targets were also investigated using different docking algorithms and molecular dynamics (MD) simulations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Belma Zengin Kurt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Gulsen Celebi
- Department of Pharmacology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Ramin Ekhteiari Salmas
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Fatih Sonmez
- Pamukova Vocational High School, Sakarya University of Applied Sciences, Sakarya, Turkey
| |
Collapse
|
31
|
Gao XH, Tang JJ, Liu HR, Liu LB, Liu YZ. Structure-activity study of fluorine or chlorine-substituted cinnamic acid derivatives with tertiary amine side chain in acetylcholinesterase and butyrylcholinesterase inhibition. Drug Dev Res 2019; 80:438-445. [PMID: 30680760 DOI: 10.1002/ddr.21515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/28/2018] [Accepted: 01/05/2019] [Indexed: 11/10/2022]
Abstract
In this study, a series of new fluorine or chlorine-substituted cinnamic acid derivatives that contain tertiary amine side chain were designed, synthesized, and evaluated in acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition. The results show that almost all the derivatives containing tertiary amine side chain (compounds 4a-9d) exhibit moderate or potent activity in AChE inhibition. By contrast, their parent compounds (compounds 3a-3f) in the absence of tertiary amine moitery exhibit poor inhibitory activity against AChE. For the compounds containing pyrroline or piperidine side chain, the bioactivity in AChE inhibition is much intense than those containing N,N-diethylamino side chain. The chlorine or fluorine substituted position produces a significant effect on the bioactivity and selectivity in AChE inhibition. Most of the compounds that contain para-substituted fluorine or chlorine exhibit potent activity against AChE and poor activity against BChE, while ortho-substituted analogs show the opposite effect. It is worth noticing that the compounds containing N,N-diethylamino side chain are exceptions to this pattern. Among the newly synthesized compounds, compounds 6d are the most potent in AChE inhibition (IC50 = 1.11 ± 0.08 μmol/L) with high selectivity for AChE over BChE (selectivity ratio: 46.58). An enzyme kinetic study of compounds 6d suggests it produces a mixed-type inhibitory effect in AChE.
Collapse
Affiliation(s)
- Xiao-Hui Gao
- Hu'nan Key Laboratory Cultivation Base of the Research and Development of Novel Pharmaceutical Preparations, College of Pharmacy, Changsha Medical University, Changsha, China
| | - Jing-Jing Tang
- College of Chemistry and Chemical Engineering, Hu'nan University, Changsha, China
| | - Hao-Ran Liu
- College of Chemistry and Chemical Engineering, Hu'nan University, Changsha, China
| | - Lin-Bo Liu
- College of Chemistry and Chemical Engineering, Hu'nan University, Changsha, China
| | - Ying-Zi Liu
- College of Medicine, Hu'nan Normal University, Changsha, China
| |
Collapse
|
32
|
Ghafary S, Najafi Z, Mohammadi-Khanaposhtani M, Nadri H, Edraki N, Ayashi N, Larijani B, Amini M, Mahdavi M. Novel cinnamic acid-tryptamine hybrids as potent butyrylcholinesterase inhibitors: Synthesis, biological evaluation, and docking study. Arch Pharm (Weinheim) 2018; 351:e1800115. [PMID: 30284339 DOI: 10.1002/ardp.201800115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/28/2018] [Accepted: 09/01/2018] [Indexed: 11/11/2022]
Abstract
A novel series of cinnamic acid-tryptamine hybrids was designed, synthesized, and evaluated as cholinesterase inhibitors. Anticholinesterase assays showed that all of the synthesized compounds displayed a clearly selective inhibition of butyrylcholinesterase (BChE), but only a moderate inhibitory effect toward acetylcholinesterase (AChE) was detected. Among these cinnamic acid-tryptamine hybrids, compound 7d was found to be the most potent inhibitor of BChE with an IC50 value of 0.55 ± 0.04 μM. This compound showed a 14-fold higher inhibitory potency than the standard drug donepezil (IC50 = 7.79 ± 0.81 μM) and inhibited BChE through a mixed-type inhibition mode. Moreover, a docking study revealed that compound 7d binds to both the catalytic anionic site (CAS) and the peripheral anionic site (PAS) of BChE. Also, compound 7d was evaluated against β-secretase, which exhibited low activity (inhibition percentage: 38%).
Collapse
Affiliation(s)
- Shahrzad Ghafary
- Faculty of Pharmacy, Department of Medicinal Chemistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Najafi
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.,Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hamid Nadri
- Faculty of Pharmacy, Department of Medicinal Chemistry, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Ayashi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amini
- Faculty of Pharmacy, Department of Medicinal Chemistry, Tehran University of Medical Sciences, Tehran, Iran.,Drug Design and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Li H, Wang X, Yu H, Zhu J, Jin H, Wang A, Yang Z. Combining in vitro and in silico Approaches to Find New Candidate Drugs Targeting the Pathological Proteins Related to the Alzheimer's Disease. Curr Neuropharmacol 2018; 16:758-768. [PMID: 29086699 PMCID: PMC6080099 DOI: 10.2174/1570159x15666171030142108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 09/24/2017] [Accepted: 10/10/2017] [Indexed: 01/10/2023] Open
Abstract
Background: Alzheimer’s disease (AD) as the most common cause of dementia among older people has aroused the universal concern of the whole world. However, until now there is still none effective treatments. Consequently, the development of new drugs targeting this complicated brain disorder is urgent and needs more efforts. In this review, we detailed the current state of knowledge about new candidate drugs targeting the pathological proteins especially the drugs which are employed using the combined methods of in vitro and in silico. Methods: We looked up and reviewed online papers related to the pathogenesis and new drugs development of AD. Then, articles up to the requirements were respectively analyzed and summaried to provide the latest knowledge about the pathogenic effect and the new candidate drugs targeting Aβ and Tau proteins. Results: New candidate drugs targeting the Aβ include decreasing the production, promoting the clearence and preventing aggregation. However these drugs have mostly failed in Phase III clinical trial stage due to the unsuccessful of reversing cognition symptoms. As to tau protein, the prevention of tau aggregation and propagation is a promising strategy to synthesize/design mechanism-based drugs against tauopathies. Some candidate drugs are under research. Moreover, because of the complex pathogenesis of AD, multi-target drugs have also shed light on the treatment of AD. Conclusion: Given to the consecutive failure of Aβ-directed drugs and the feasibilities of tau-targeted therapy, more and more researchers suggested that the AD treatment should be moved from Aβ to tau or focused on considering the soluble form of Aβ and tau as a whole. Moreover, the novel in silico methods also have great potential in drug discovery, drug repositioning, virtual screening of chemical libraries. No matter how many difficulties and challenges in prevention and treatment of AD, we firmly believe that the effective and safe drugs will be found using the combined methods in the immediate future with the global effort.
Collapse
Affiliation(s)
- Hui Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaobing Wang
- Tumor Marker Research Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hongmei Yu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jing Zhu
- College of Pharmacy, The Ohio State University, Columbus, Ohio, 43210, United States
| | - Hongtao Jin
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Aiping Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhaogang Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, 43210, United States
| |
Collapse
|
34
|
Neuroprotective Effects of dl-3-n-Butylphthalide against Doxorubicin-Induced Neuroinflammation, Oxidative Stress, Endoplasmic Reticulum Stress, and Behavioral Changes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9125601. [PMID: 30186550 PMCID: PMC6116408 DOI: 10.1155/2018/9125601] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/16/2018] [Accepted: 06/06/2018] [Indexed: 11/24/2022]
Abstract
Doxorubicin (DOX) is a broad-spectrum antitumor drug while its use is limited due to its neurobiological side effects associated with depression. We investigated the neuroprotective efficacy of dl-3-n-butylphthalide (dl-NBP) against DOX-induced anxiety- and depression-like behaviors in rats. dl-NBP was given (30 mg/kg) daily by gavage over three weeks starting seven days before DOX administration. Elevated plus maze (EPM) test, forced swimming test (FST), and sucrose preference test (SPT) were performed to assess anxiety- and depression-like behaviors. Our study showed that the supplementation of dl-NBP significantly mitigated the behavioral changes induced by DOX. To further explore the mechanism of neuroprotection induced by dl-NBP, several biomarkers including oxidative stress markers, endoplasmic reticulum (ER) stress markers, and neuroinflammatory cytokines in the hippocampus were quantified. The results showed that dl-NBP treatment alleviated DOX-induced neural apoptosis. Meanwhile, DOX-induced oxidative stress and ER stress in the hippocampus were significantly ameliorated in dl-NBP pretreatment group. Our study found that dl-NBP alleviated the upregulation of malondialdehyde (MDA), nitric oxide (NO), CHOP, glucose-regulated protein 78 kD (GRP-78), and caspase-12 and increased the levels of reduced glutathione (GSH) and activities of catalase (CAT), glutathione reductase (GR), and glutathione peroxidase (GPx) in the hippocampus of rats exposed to DOX. Additionally, the gene expression of interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-alpha (TNF-α) and protein levels of inducible nitric oxide synthase (iNOS) were significantly increased in DOX-treated group, whereas DOX-induced neuroinflammation was significantly attenuated in dl-NBP supplementation group. In conclusion, dl-NBP could alleviate DOX-induced anxiety- and depression-like behaviors via attenuating oxidative stress, ER stress, inflammatory reaction, and neural apoptosis, providing a basis as a therapeutic potential against DOX-induced neurotoxicity.
Collapse
|
35
|
Estrada Valencia M, Herrera-Arozamena C, de Andrés L, Pérez C, Morales-García JA, Pérez-Castillo A, Ramos E, Romero A, Viña D, Yáñez M, Laurini E, Pricl S, Rodríguez-Franco MI. Neurogenic and neuroprotective donepezil-flavonoid hybrids with sigma-1 affinity and inhibition of key enzymes in Alzheimer's disease. Eur J Med Chem 2018; 156:534-553. [PMID: 30025348 DOI: 10.1016/j.ejmech.2018.07.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/18/2018] [Accepted: 07/09/2018] [Indexed: 12/01/2022]
Abstract
In this work we describe neurogenic and neuroprotective donepezil-flavonoid hybrids (DFHs), exhibiting nanomolar affinities for the sigma-1 receptor (σ1R) and inhibition of key enzymes in Alzheimer's disease (AD), such as acetylcholinesterase (AChE), 5-lipoxygenase (5-LOX), and monoamine oxidases (MAOs). In general, new compounds scavenge free radical species, are predicted to be brain-permeable, and protect neuronal cells against mitochondrial oxidative stress. N-(2-(1-Benzylpiperidin-4-yl)ethyl)-6,7-dimethoxy-4-oxo-4H-chromene-2-carboxamide (18) is highlighted due to its interesting biological profile in σ1R, AChE, 5-LOX, MAO-A and MAO-B. In phenotypic assays, it protects a neuronal cell line against mitochondrial oxidative stress and promotes maturation of neural stem cells into a neuronal phenotype, which could contribute to the reparation of neuronal tissues. Molecular modelling studies of 18 in AChE, 5-LOX and σ1R revealed the main interactions with these proteins, which will be further exploited in the optimization of new, more efficient DFHs.
Collapse
Affiliation(s)
- Martín Estrada Valencia
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, 28006, Madrid, Spain
| | - Clara Herrera-Arozamena
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, 28006, Madrid, Spain
| | - Lucía de Andrés
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, 28006, Madrid, Spain
| | - Concepción Pérez
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, 28006, Madrid, Spain
| | - José A Morales-García
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (IIB-CSIC), C/Arturo Duperier 4, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), C/ Valderrebollo 5, 28031, Madrid, Spain; Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Ana Pérez-Castillo
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (IIB-CSIC), C/Arturo Duperier 4, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), C/ Valderrebollo 5, 28031, Madrid, Spain
| | - Eva Ramos
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Alejandro Romero
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Dolores Viña
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Matilde Yáñez
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Erik Laurini
- Molecular Simulation Engineering (MOSE) Laboratory, Department of Engineering and Architecture (DEA), University of Trieste, 34127 Trieste, Italy
| | - Sabrina Pricl
- Molecular Simulation Engineering (MOSE) Laboratory, Department of Engineering and Architecture (DEA), University of Trieste, 34127 Trieste, Italy
| | - María Isabel Rodríguez-Franco
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, 28006, Madrid, Spain.
| |
Collapse
|
36
|
Zhang X, He X, Chen Q, Lu J, Rapposelli S, Pi R. A review on the hybrids of hydroxycinnamic acid as multi-target-directed ligands against Alzheimer’s disease. Bioorg Med Chem 2018; 26:543-550. [DOI: 10.1016/j.bmc.2017.12.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/14/2017] [Accepted: 12/24/2017] [Indexed: 01/31/2023]
|
37
|
Lan JS, Hou JW, Liu Y, Ding Y, Zhang Y, Li L, Zhang T. Design, synthesis and evaluation of novel cinnamic acid derivatives bearing N-benzyl pyridinium moiety as multifunctional cholinesterase inhibitors for Alzheimer's disease. J Enzyme Inhib Med Chem 2017; 32:776-788. [PMID: 28585866 PMCID: PMC6009898 DOI: 10.1080/14756366.2016.1256883] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A novel family of cinnamic acid derivatives has been developed to be multifunctional cholinesterase inhibitors against AD by fusing N-benzyl pyridinium moiety and different substituted cinnamic acids. In vitro studies showed that most compounds were endowed with a noteworthy ability to inhibit cholinesterase, self-induced Aβ (1–42) aggregation, and to chelate metal ions. Especially, compound 5l showed potent cholinesterase inhibitory activity (IC50, 12.1 nM for eeAChE, 8.6 nM for hAChE, 2.6 μM for eqBuChE and 4.4 μM for hBuChE) and the highest selectivity toward AChE over BuChE. It also showed good inhibition of Aβ (1–42) aggregation (64.7% at 20 μM) and good neuroprotection on PC12 cells against amyloid-induced cell toxicity. Finally, compound 5l could penetrate the BBB, as forecasted by the PAMPA-BBB assay and proved in OF1 mice by ex vivo experiments. Overall, compound 5l seems to be a promising lead compound for the treatment of Alzheimer’s diseases.
Collapse
Affiliation(s)
- Jin-Shuai Lan
- a Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Wei Hou
- a Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun Liu
- a Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Ding
- a Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong Zhang
- a Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Li
- a Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- b School of Pharmacy , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| |
Collapse
|
38
|
Chierrito TPC, Pedersoli-Mantoani S, Roca C, Requena C, Sebastian-Perez V, Castillo WO, Moreira NCS, Pérez C, Sakamoto-Hojo ET, Takahashi CS, Jiménez-Barbero J, Cañada FJ, Campillo NE, Martinez A, Carvalho I. From dual binding site acetylcholinesterase inhibitors to allosteric modulators: A new avenue for disease-modifying drugs in Alzheimer's disease. Eur J Med Chem 2017; 139:773-791. [PMID: 28863358 DOI: 10.1016/j.ejmech.2017.08.051] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 12/31/2022]
Abstract
The lack of an effective treatment for Alzheimer' disease (AD), an increasing prevalence and severe neurodegenerative pathology boost medicinal chemists to look for new drugs. Currently, only acethylcholinesterase (AChE) inhibitors and glutamate antagonist have been approved to the palliative treatment of AD. Although they have a short-term symptomatic benefits, their clinical use have revealed important non-cholinergic functions for AChE such its chaperone role in beta-amyloid toxicity. We propose here the design, synthesis and evaluation of non-toxic dual binding site AChEIs by hybridization of indanone and quinoline heterocyclic scaffolds. Unexpectely, we have found a potent allosteric modulator of AChE able to target cholinergic and non-cholinergic functions by fixing a specific AChE conformation, confirmed by STD-NMR and molecular modeling studies. Furthermore the promising biological data obtained on human neuroblastoma SH-SY5Y cell assays for the new allosteric hybrid 14, led us to propose it as a valuable pharmacological tool for the study of non-cholinergic functions of AChE, and as a new important lead for novel disease modifying agents against AD.
Collapse
Affiliation(s)
- Talita P C Chierrito
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Susimaire Pedersoli-Mantoani
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Carlos Roca
- IPSBB Unit, Centro de Investigaciones Biologicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Carlos Requena
- IPSBB Unit, Centro de Investigaciones Biologicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Victor Sebastian-Perez
- IPSBB Unit, Centro de Investigaciones Biologicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Willian O Castillo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Natalia C S Moreira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Concepción Pérez
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Elza T Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirão Preto, SP, Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900, 14040-900, Ribeirão Preto, SP, Brazil
| | - Catarina S Takahashi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirão Preto, SP, Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900, 14040-900, Ribeirão Preto, SP, Brazil
| | - Jesús Jiménez-Barbero
- IPSBB Unit, Centro de Investigaciones Biologicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; CIC BioGUNE, Parque Tecnologico de Bizkaia, Edif. 801A, 48160, Derio-Bizkaia, Bilbao, Spain
| | - F Javier Cañada
- IPSBB Unit, Centro de Investigaciones Biologicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Nuria E Campillo
- IPSBB Unit, Centro de Investigaciones Biologicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ana Martinez
- IPSBB Unit, Centro de Investigaciones Biologicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
39
|
Bitam S, Hamadache M, Hanini S. QSAR model for prediction of the therapeutic potency of N-benzylpiperidine derivatives as AChE inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2017; 28:471-489. [PMID: 28610432 DOI: 10.1080/1062936x.2017.1331467] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/14/2017] [Indexed: 06/07/2023]
Abstract
A new family of AChE inhibitors, N-benzylpiperidines, showed exceptional efficacy in vitro and in vivo, minimal side effects and high selectivity for acetylcholinesterase (AChE). Three regression methods were chosen in this work to develop robust predictive models, namely multiple linear regression (MLR), genetic function approximation (GFA) and multilayer perceptron network (MLP). Ten descriptors were selected for a dataset of 99 molecules, using a genetic algorithm. The best results were obtained for MLP with a 10-6-1 artificial neural network model trained with the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. Statistical prediction for MLR and GFA were r2 = 0.882 and r2 = 0.875, respectively. Because internal and external validation strategies play an important role, we adopted all available validation strategies to check the robustness of the models. All criteria used to validate these models revealed the superiority of the GFA model. Therefore, the models developed in this study provide an excellent prediction of the inhibitory concentration of a new family of AChE inhibitors.
Collapse
Affiliation(s)
- S Bitam
- a Department of Process Engineering and Environment , Université Dr Yahia Fares de Médéa , Médéa , Algeria
| | - M Hamadache
- a Department of Process Engineering and Environment , Université Dr Yahia Fares de Médéa , Médéa , Algeria
| | - S Hanini
- a Department of Process Engineering and Environment , Université Dr Yahia Fares de Médéa , Médéa , Algeria
| |
Collapse
|
40
|
Monjas L, Arce MP, León R, Egea J, Pérez C, Villarroya M, López MG, Gil C, Conde S, Rodríguez-Franco MI. Enzymatic and solid-phase synthesis of new donepezil-based L- and d -glutamic acid derivatives and their pharmacological evaluation in models related to Alzheimer's disease and cerebral ischemia. Eur J Med Chem 2017; 130:60-72. [DOI: 10.1016/j.ejmech.2017.02.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/09/2017] [Accepted: 02/12/2017] [Indexed: 12/25/2022]
|
41
|
Jouha J, Loubidi M, Bouali J, Hamri S, Hafid A, Suzenet F, Guillaumet G, Dagcı T, Khouili M, Aydın F, Saso L, Armagan G. Synthesis of new heterocyclic compounds based on pyrazolopyridine scaffold and evaluation of their neuroprotective potential in MPP + -induced neurodegeneration. Eur J Med Chem 2017; 129:41-52. [DOI: 10.1016/j.ejmech.2017.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/05/2017] [Accepted: 02/07/2017] [Indexed: 12/17/2022]
|
42
|
Sonar VP, Corona A, Distinto S, Maccioni E, Meleddu R, Fois B, Floris C, Malpure NV, Alcaro S, Tramontano E, Cottiglia F. Natural product-inspired esters and amides of ferulic and caffeic acid as dual inhibitors of HIV-1 reverse transcriptase. Eur J Med Chem 2017; 130:248-260. [PMID: 28254698 DOI: 10.1016/j.ejmech.2017.02.054] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 11/24/2022]
Abstract
Using an HIV-1 Reverse Transcriptase (RT)-associated RNase H inhibition assay as lead, bioguided fractionation of the dichloromethane extract of the Ocimum sanctum leaves led to the isolation of five triterpenes (1-5) along with three 3-methoxy-4-hydroxy phenyl derivatives (6-8). The structure of this isolates were determined by 1D and 2D NMR experiments as well as ESI-MS. Tetradecyl ferulate (8) showed an interesting RNase H IC50 value of 12.4 μM and due to the synthetic accessibility of this secondary metabolite, a structure-activity relationship study was carried out. A series of esters and amides of ferulic and caffeic acids were synthesized and, among all, the most active was N-oleylcaffeamide displaying a strong inhibitory activity towards both RT-associated functions, ribonuclease H and DNA polymerase. Molecular modeling studies together with Yonetani-Theorell analysis, demonstrated that N-oleylcaffeamide is able to bind both two allosteric site located one close to the NNRTI binding pocket and the other close to RNase H catalytic site.
Collapse
Affiliation(s)
- Vijay P Sonar
- Department of Life and Environmental Sciences, Drug Sciences Section, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella di Monserrato SS554, 09042, Monserrato, Cagliari, Italy
| | - Simona Distinto
- Department of Life and Environmental Sciences, Drug Sciences Section, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy
| | - Elias Maccioni
- Department of Life and Environmental Sciences, Drug Sciences Section, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy
| | - Rita Meleddu
- Department of Life and Environmental Sciences, Drug Sciences Section, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy
| | - Benedetta Fois
- Department of Life and Environmental Sciences, Drug Sciences Section, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy
| | - Costantino Floris
- Dipartimento di Scienze Chimiche, University of Cagliari, Cittadella di Monserrato, 09042, Monserrato, Cagliari, Italy
| | - Nilesh V Malpure
- Department of Botany, S. S. G. M. College, IN-423601 Kopargaon, District Ahmednagar, MS, India
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università"Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella di Monserrato SS554, 09042, Monserrato, Cagliari, Italy
| | - Filippo Cottiglia
- Department of Life and Environmental Sciences, Drug Sciences Section, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy.
| |
Collapse
|
43
|
Tacrine-resveratrol fused hybrids as multi-target-directed ligands against Alzheimer's disease. Eur J Med Chem 2017; 127:250-262. [DOI: 10.1016/j.ejmech.2016.12.048] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 11/20/2022]
|
44
|
Discovery of novel rivastigmine-hydroxycinnamic acid hybrids as multi-targeted agents for Alzheimer's disease. Eur J Med Chem 2017; 125:784-792. [DOI: 10.1016/j.ejmech.2016.09.052] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/15/2016] [Accepted: 09/17/2016] [Indexed: 01/04/2023]
|