1
|
Zhong Y, Liu H, Chen F, He Q, Zhang X, Lan L, Yang C. Design, synthesis and biological evaluation of thiazolyl-halogenated pyrroles or pyrazoles as novel antibacterial and antibiofilm agents. Eur J Med Chem 2024; 268:116221. [PMID: 38382392 DOI: 10.1016/j.ejmech.2024.116221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
The formation of biofilm is one of the important factors for bacteria to develop drug-resistant. A series of halogenated-pyrroles or pyrazoles containing thiazole groups as antibacterial agents were designed and synthesized to target biofilms. Among them, compound 8c showed antibacterial activity against various Gram-positive bacteria, particularly against vancomycin-resistant Enterococcus faecalis (MIC ≤0.125 μg/mL). Additionally, this compound significantly inhibited biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa at sub-MIC doses. Furthermore, compound 8c exhibited significantly lower mammalian cell toxicity compared to pyrrolomycin C and its hepatic microsomal metabolic stability in various species was also evaluated. Further experiment on the infection model of Galleria mellonella proved that the compound was effective in vivo.
Collapse
Affiliation(s)
- Yuanchen Zhong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Huan Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Feifei Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Qian He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Xiaofei Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| | - Lefu Lan
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| | - Chunhao Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
2
|
Coulter DW, Chhonker YS, Kumar D, Kesherwani V, Aldhafiri WN, McIntyre EM, Alexander G, Ray S, Joshi SS, Li R, Murry DJ, Chaturvedi NK. Marinopyrrole derivative MP1 as a novel anti-cancer agent in group 3 MYC-amplified Medulloblastoma. J Exp Clin Cancer Res 2024; 43:18. [PMID: 38200580 PMCID: PMC10782703 DOI: 10.1186/s13046-024-02944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Medulloblastoma (MB) patients with MYC oncogene amplification or overexpression exhibit extremely poor prognoses and therapy resistance. However, MYC itself has been one of the most challenging targets for cancer treatment. Here, we identify a novel marinopyrrole natural derivative, MP1, that shows desirable anti-MYC and anti-cancer activities in MB. METHODS In this study, using MYC-amplified (Group 3) and non-MYC amplified MB cell lines in vitro and in vivo, we evaluated anti-cancer efficacies and molecular mechanism(s) of MP1. RESULTS MP1 significantly suppressed MB cell growth and sphere counts and induced G2 cell cycle arrest and apoptosis in a MYC-dependent manner. Mechanistically, MP1 strongly downregulated the expression of MYC protein. Our results with RNA-seq revealed that MP1 significantly modulated global gene expression and inhibited MYC-associated transcriptional targets including translation/mTOR targets. In addition, MP1 inhibited MYC-target metabolism, leading to declined energy levels. The combination of MP1 with an FDA-approved mTOR inhibitor temsirolimus synergistically inhibited MB cell growth/survival by downregulating the expression of MYC and mTOR signaling components. Our results further showed that as single agents, both MP1 and temsirolimus, were able to significantly inhibit tumor growth and MYC expression in subcutaneously or orthotopically MYC-amplified MB bearing mice. In combination, there were further anti-MB effects on the tumor growth and MYC expression in mice. CONCLUSION These preclinical findings highlight the promise of marinopyrrole MP1 as a novel MYC inhibition approach for MYC-amplified MB.
Collapse
Affiliation(s)
- Don W Coulter
- Department of Pediatrics, Hematology/Oncology Division, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yashpal S Chhonker
- Department of Pharmacy Practice & Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Devendra Kumar
- Department of Pediatrics, Hematology/Oncology Division, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Varun Kesherwani
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Wafaa N Aldhafiri
- Department of Pharmacy Practice & Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Erin M McIntyre
- Department of Pediatrics, Hematology/Oncology Division, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Gracey Alexander
- Department of Pediatrics, Hematology/Oncology Division, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sutapa Ray
- Department of Pediatrics, Hematology/Oncology Division, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shantaram S Joshi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rongshi Li
- Department of Pharmacy Practice & Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Daryl J Murry
- Department of Pharmacy Practice & Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Nagendra K Chaturvedi
- Department of Pediatrics, Hematology/Oncology Division, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Pediatrics, Hematology and Oncology Division, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
3
|
Hourtoule M, Miesch L. Silver-Catalyzed Domino Reaction of CF 3-Substituted N-Allenamides with Primary Amines for the Construction of 2-Amido-5-fluoropyrroles. Org Lett 2023; 25:1727-1731. [PMID: 36877000 DOI: 10.1021/acs.orglett.3c00401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
We report herein a domino reaction to construct 2-amido-5-fluoropyrroles from CF3-substituted N-allenamides. The in situ generated gem-difluorinated ene-ynamides derived from CF3-substituted N-allenamides, when subjected to silver catalysis with a primary amine, undergo simultaneous hydroamination of the ynamide moiety followed by a 5-endo-trig addition/β-fluoride elimination sequence, enabling the construction of 2-amido-5-fluoropyrroles. This transformation features excellent functional group compatibility. By employing 2-aminophenols, functionalized benzo-oxazoles were produced.
Collapse
Affiliation(s)
- Maxime Hourtoule
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS, UMR 7177, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| | - Laurence Miesch
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS, UMR 7177, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| |
Collapse
|
4
|
Huan X, Wang Y, Peng X, Xie S, He Q, Zhang X, Lan L, Yang C. Design, synthesis, and biological evaluations of substituted pyrazoles as pyrrolomycin analogues against staphylococcal biofilm. Eur J Med Chem 2022; 236:114309. [DOI: 10.1016/j.ejmech.2022.114309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/20/2022] [Accepted: 03/18/2022] [Indexed: 11/03/2022]
|
5
|
Analogs of marinopyrrole A show enhancement to observed in vitro potency against acute Toxoplasma gondii infection. Antimicrob Agents Chemother 2021; 66:e0079421. [PMID: 34662196 DOI: 10.1128/aac.00794-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The apicomplexan parasite Toxoplasma gondii is the causative agent of toxoplasmosis, a globally distributed infection with severe clinical consequences for immunocompromised individuals and developing fetuses. There are few available treatments, and these are associated with potentially severe adverse effects. Marinopyrrole A, a compound discovered in a marine Streptomyces species, has previously been found to exhibit potent antimicrobial activity, prompting our interest in exploring efficacy against Toxoplasma gondii. We found that marinopyrrole A was a highly potent anti-Toxoplasma molecule, with an in vitro 50% maximal inhibitory concentration (IC50) of 0.31 μM corresponding to a higher potency than that of the current standard of care (pyrimethamine); however, addition of 20% serum led to abrogation of potency, and toxicity to human cell lines was observed. Yet, application of marinopyrrole A to an in vivo lethal acute infection model facilitated significantly enhanced survival at doses of 5, 10, and 20 mg/kg. We then tested a series of marinopyrrole A analogs-RL002, RL003, and RL125-demonstrating significantly increased potency in vitro, with IC50 values ranging from 0.09-0.17 μM (3.6-6.8X increase relative to pyrimethamine). No detectable cytotoxicity was observed up to 50 μM in human foreskin fibroblasts, with cytotoxicity in HepG2 cells ranging from ∼28-50 μM, corresponding to >200X selectivity for parasites over host cells. All analogs additionally showed reduced sensitivity to serum. Further, RL003 potently inhibited in vitro-generated bradyzoites at 0.245 μM. Taken together, these data support further development of marinopyrrole A analogs as promising anti-Toxoplasma molecules to further combat this prevalent infection.
Collapse
|
6
|
New Synthetic Nitro-Pyrrolomycins as Promising Antibacterial and Anticancer Agents. Antibiotics (Basel) 2020; 9:antibiotics9060292. [PMID: 32486200 PMCID: PMC7345095 DOI: 10.3390/antibiotics9060292] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Pyrrolomycins (PMs) are polyhalogenated antibiotics known as powerful biologically active compounds, yet featuring high cytotoxicity. The present study reports the antibacterial and antitumoral properties of new chemically synthesized PMs, where the three positions of the pyrrolic nucleus were replaced by nitro groups, aiming to reduce their cytotoxicity while maintaining or even enhancing the biological activity. Indeed, the presence of the nitro substituent in diverse positions of the pyrrole determined an improvement of the minimal bactericidal concentration (MBC) against Gram-positive (i.e., Staphylococcus aureus) or -negative (i.e., Pseudomonas aeruginosa) pathogen strains as compared to the natural PM-C. Moreover, some new nitro-PMs were as active as or more than PM-C in inhibiting the proliferation of colon (HCT116) and breast (MCF 7) cancer cell lines and were less toxic towards normal epithelial (hTERT RPE-1) cells. Altogether, our findings contribute to increase the knowledge of the mode of action of these promising molecules and provide a basis for their rationale chemical or biological manipulation.
Collapse
|
7
|
Walsh DJ, Livinghouse T, Goeres DM, Mettler M, Stewart PS. Antimicrobial Activity of Naturally Occurring Phenols and Derivatives Against Biofilm and Planktonic Bacteria. Front Chem 2019; 7:653. [PMID: 31632948 PMCID: PMC6779693 DOI: 10.3389/fchem.2019.00653] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/11/2019] [Indexed: 12/28/2022] Open
Abstract
Biofilm-forming bacteria present formidable challenges across diverse settings, and there is a need for new antimicrobial agents that are both environmentally acceptable and relatively potent against microorganisms in the biofilm state. The antimicrobial activity of three naturally occurring, low molecular weight, phenols, and their derivatives were evaluated against planktonic and biofilm Staphylococcus epidermidis and Pseudomonas aeruginosa. The structure activity relationships of eugenol, thymol, carvacrol, and their corresponding 2- and 4-allyl, 2-methallyl, and 2- and 4-n-propyl derivatives were evaluated. Allyl derivatives showed a consistent increased potency with both killing and inhibiting planktonic cells but they exhibited a decrease in potency against biofilms. This result underscores the importance of using biofilm assays to develop structure-activity relationships when the end target is biofilm.
Collapse
Affiliation(s)
- Danica J. Walsh
- Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Tom Livinghouse
- Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Darla M. Goeres
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Madelyn Mettler
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Philip S. Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| |
Collapse
|
8
|
Pyrrolomycins Are Potent Natural Protonophores. Antimicrob Agents Chemother 2019; 63:AAC.01450-19. [PMID: 31405863 DOI: 10.1128/aac.01450-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 07/31/2019] [Indexed: 01/01/2023] Open
Abstract
The escalating burden of antibiotic drug resistance necessitates research into novel classes of antibiotics and their mechanism of action. Pyrrolomycins are a family of potent natural product antibiotics with nanomolar activity against Gram-positive bacteria, yet with an elusive mechanism of action. In this work, we dissect the apparent Gram-positive specific activity of pyrrolomycins and show that Gram-negative bacteria are equally sensitive to pyrrolomycins when drug efflux transporters are removed and that albumin in medium plays a large role in pyrrolomycin activity. The selection of resistant mutants allowed for the characterization and validation of a number of mechanisms of resistance to pyrrolomycins in both Staphylococcus aureus and an Escherichia coli ΔtolC mutant, all of which appear to affect compound penetration rather than being target associated. Imaging of the impact of pyrrolomycin on the E. coli ΔtolC mutant using scanning electron microscopy showed blebbing of the bacterial cell wall often at the site of bacterial division. Using potentiometric probes and an electrophysiological technique with an artificial bilayer lipid membrane, it was demonstrated that pyrrolomycins C and D are very potent membrane-depolarizing agents, an order of magnitude more active than conventional carbonyl cyanide m-chlorophenylhydrazone (CCCP), specifically disturbing the proton gradient and uncoupling oxidative phosphorylation via protonophoric action. This work clearly unveils the until-now-elusive mechanism of action of pyrrolomycins and explains their antibiotic activity as well as mechanisms of innate and acquired drug resistance in bacteria.
Collapse
|
9
|
Stewart PS, Parker AE. Measuring Antimicrobial Efficacy against Biofilms: a Meta-analysis. Antimicrob Agents Chemother 2019; 63:e00020-19. [PMID: 30803974 PMCID: PMC6496104 DOI: 10.1128/aac.00020-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/21/2019] [Indexed: 12/12/2022] Open
Abstract
Through a statistical meta-analysis of published data on antimicrobial efficacy against biofilms formed by two common bacterial species, it was concluded that the particular experimental method used is the most important factor determining the outcome of the test. An expected dose-response relationship (greater killing with higher doses or longer treatment times) was observed for data sets derived from a single method but was not observed when data from multiple studies using diverse methods were pooled. Method-specific properties such as the surface area/volume ratio, areal biofilm cell density, and microbial species were shown to influence quantitative measurements of biofilm killing. A better appreciation of the method characteristics that affect antibiofilm efficacy tests could aid decision-making related to investment in research and development and regulatory approvals for biofilm control strategies. The following recommendations are offered to those working in research and development related to biofilm control: (i) report the log reduction, surface area/volume ratio, and biofilm areal cell density; (ii) include data for a benchmark agent, making sure that this agent performs competitively at the dose tested; (iii) measure the dose-response relationship, i.e., make measurements at multiple treatment concentrations or dose durations; and (iv) use a standardized method in addition to research methods.
Collapse
Affiliation(s)
- Philip S Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Chemical and Biological Engineering, Montana State University, Bozeman, Montana, USA
| | - Albert E Parker
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Mathematical Sciences, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
10
|
Krasniqi B, Geerts K, Dehaen W. General Transition Metal-Free Synthesis of NH-Pyrroles from Secondary Alcohols and 2-Aminoalcohols. J Org Chem 2019; 84:5027-5034. [DOI: 10.1021/acs.joc.8b03215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Besir Krasniqi
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3000, Belgium
| | - Kayle Geerts
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3000, Belgium
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3000, Belgium
| |
Collapse
|
11
|
Peng X, Zhang X, Li S, Lu Y, Lan L, Yang C. Silver-mediated synthesis of novel 3-CF3/CN/phosphonate-substituted pyrazoles as pyrrolomycin analogues from 3-formylchromones and diazo compounds. Org Chem Front 2019. [DOI: 10.1039/c9qo00324j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a simple and regioselective synthesis of (2-hydroxyphenyl)(3-(trifluoromethyl/cyano/phosphonate)-1H-pyrazol-5-yl)methanones as pyrrolomycin analogues was reported.
Collapse
Affiliation(s)
- Xiaofeng Peng
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Xiaofei Zhang
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Shunyao Li
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Yunfu Lu
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Lefu Lan
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Chunhao Yang
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| |
Collapse
|
12
|
Synthetic small molecules as anti-biofilm agents in the struggle against antibiotic resistance. Eur J Med Chem 2018; 161:154-178. [PMID: 30347328 DOI: 10.1016/j.ejmech.2018.10.036] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 01/24/2023]
Abstract
Biofilm formation significantly contributes to microbial survival in hostile environments and it is currently considered a key virulence factor for pathogens responsible for serious chronic infections. In the last decade many efforts have been made to identify new agents able to modulate bacterial biofilm life cycle, and many compounds have shown interesting activities in inhibiting biofilm formation or in dispersing pre-formed biofilms. However, only a few of these compounds were tested using in vivo models for their clinical significance. Contrary to conventional antibiotics, most of the anti-biofilm compounds act as anti-virulence agents as they do not affect bacterial growth. In this review we selected the most relevant literature of the last decade, focusing on the development of synthetic small molecules able to prevent bacterial biofilm formation or to eradicate pre-existing biofilms of clinically relevant Gram-positive and Gram-negative pathogens. In addition, we provide a comprehensive list of the possible targets to counteract biofilm formation and development, as well as a detailed discussion the advantages and disadvantages of the different current biofilm-targeting strategies.
Collapse
|
13
|
Development and Validation of a Phenotypic High-Content Imaging Assay for Assessing the Antiviral Activity of Small-Molecule Inhibitors Targeting Zika Virus. Antimicrob Agents Chemother 2018; 62:AAC.00725-18. [PMID: 30061280 DOI: 10.1128/aac.00725-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/30/2018] [Indexed: 02/07/2023] Open
Abstract
Zika virus (ZIKV) has been linked to the development of microcephaly in newborns, as well as Guillain-Barré syndrome. There are currently no drugs available to treat ZIKV infection, and accordingly, there is an unmet medical need for the discovery of new therapies. High-throughput drug screening efforts focusing on indirect readouts of cell viability are prone to a higher frequency of false positives in cases where the virus is viable in the cell but the cytopathic effect (CPE) is reduced or delayed. Here, we describe a fast and label-free phenotypic high-content imaging assay to detect cells affected by the virus-induced CPE using automated imaging and analysis. Protection from the CPE correlates with a decrease in viral antigen production, as observed by immunofluorescence. We trained our assay using a collection of nucleoside analogues with activity against ZIKV; the previously reported antiviral activities of 2'-C-methylribonucleosides and ribavirin against the Zika virus in Vero cells were confirmed using our developed method. To validate the ability of our assay to reveal new anti-ZIKV compounds, we profiled a novel library of 24 natural product derivatives and found compound 1 to be an inhibitor of the ZIKV-induced cytopathic effect; the activity of the compound was confirmed in human fetal neural stem cells (NSCs). The described technique can be easily leveraged as a primary screening assay for profiling of the activities of large compound libraries against ZIKV and can be expanded to other ZIKV strains and other cell lines displaying morphological changes upon ZIKV infection.
Collapse
|
14
|
Synthesis of Quinone-BasedN-Sulfonyl-1,2,3-triazoles: Chemical Reactivity of Rh(II) Azavinyl Carbenes and Antitumor Activity. ChemistrySelect 2017. [DOI: 10.1002/slct.201700885] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Synthesis and Bioactivity Evaluation of Novel 2-Salicyloylbenzofurans as Antibacterial Agents. Molecules 2017; 22:molecules22050687. [PMID: 28441350 PMCID: PMC6154660 DOI: 10.3390/molecules22050687] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/16/2017] [Accepted: 04/21/2017] [Indexed: 01/01/2023] Open
Abstract
In order to discover new antibacterial agents, series of 2-salicyloylbenzofuran derivatives were designed, synthesized and evaluated for their antibacterial activities against three Gram-(+) strains (methicillin-sensitive Staphylococcus aureus (MSSA) ATCC 29213, methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, and Streptococcus faecalis (S. faecalis) ATCC 29212) and one Gram-(-) strain (Escherichia coli (E. coli) ATCC 25922). The 2-salicyloylbenzofuran heterocycles were generated by Rap-Stoermer condensation of salicylaldehydes with phenacyl bromides and then converted to diverse O-ether derivatives by Williamson synthesis. The targeted products were screened for in vitro qualitative (zone of inhibition) and quantitative (MIC) antibacterial activities by agar well diffusion assay and agar dilution method. Amongst the compounds, those bearing carboxylic acid functional group were found to exhibit reasonable activity against Gram-(+) bacterial strains including S. faecalis, MSSA and MRSA with the most potent antibacterial agent 8h (MICs = 0.06-0.12 mM). Besides, the 2-salicyloylbenzofurans partly displayed inhibitory activity against MRSA with the best MICs = 0.14 mM (8f) and 0.12 mM (8h). Finally, the antibacterial results preliminarily suggested that the substituent bearing carboxylic acid group at salicyloyl-C2 and the bromine atoms on the benzofuran moiety seem to be the functionality necessary for antibacterial activities.
Collapse
|