1
|
Nagargoje AA, Deshmukh TR, Shaikh MH, Khedkar VM, Shingate BB. Anticancer perspectives of monocarbonyl analogs of curcumin: A decade (2014-2024) review. Arch Pharm (Weinheim) 2024; 357:e2400197. [PMID: 38895952 DOI: 10.1002/ardp.202400197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/13/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024]
Abstract
Monocarbonyl analogs of curcumin (MACs) represent structurally modified versions of curcumin. The existing literature indicates that MACs exhibit enhanced anticancer properties compared with curcumin. Numerous research articles in recent years have emphasized the significance of MACs as effective anticancer agents. This review focuses on the latest advances in the anticancer potential of MACs, from 2014 to 2024, including discussions on their mechanism of action, structure-activity relationship (SAR), and in silico molecular docking studies.
Collapse
Affiliation(s)
- Amol A Nagargoje
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar (Aurangabad), Maharashtra, India
- Department of Chemistry, Khopoli Municipal Council College, Khopoli, Maharashtra, India
| | - Tejshri R Deshmukh
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar (Aurangabad), Maharashtra, India
| | - Mubarak H Shaikh
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar (Aurangabad), Maharashtra, India
- Department of Chemistry, Radhabai Kale Mahila Mahavidyalaya, Ahmednagar, Maharashtra, India
| | - Vijay M Khedkar
- School of Pharmacy, Vishwakarma University, Pune, Maharashtra, India
| | - Bapurao B Shingate
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar (Aurangabad), Maharashtra, India
| |
Collapse
|
2
|
Yang X, Liu Z, Fang M, Zou T, Zhang Z, Meng X, Wang T, Meng H, Chen Y, Duan Y, Li Q. Novel pterostilbene derivatives ameliorate heart failure by reducing oxidative stress and inflammation through regulating Nrf2/NF-κB signaling pathway. Eur J Med Chem 2023; 258:115602. [PMID: 37406380 DOI: 10.1016/j.ejmech.2023.115602] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/14/2023] [Accepted: 06/25/2023] [Indexed: 07/07/2023]
Abstract
Pterostilbene is a demethylated resveratrol derivative with attractive anti-inflammatory, anti-tumor and anti-oxidative stress activities. However, the clinical use of pterostilbene is limited by its poor selectivity and druggability. Heart failure is a leading cause of morbidity and mortality worldwide, which is closely related to enhanced oxidative stress and inflammation. There is an urgent need for new effective therapeutic drugs that can reduce oxidative stress and inflammatory responses. Therefore, we designed and synthesized a series of novel pterostilbene chalcone and dihydropyrazole derivatives with antioxidant and anti-inflammatory activities by the molecular hybridization strategy. The preliminary anti-inflammatory activities and structure-activity relationships of these compounds were evaluated by nitric oxide (NO) inhibitory activity in lipopolysaccharide (LPS)-treated RAW264.7 cells, and compound E1 exhibited the most potent anti-inflammatory activities. Furthermore, pretreatment with compound E1 decreased reactive oxygen species (ROS) generation both in RAW264.7 and H9C2 cells by increasing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), as well as downstream antioxidant enzymes superoxide dismutase 1 (SOD1), catalase (CAT) and glutathione peroxidase 1 (GPX1). In addition, compound E1 also significantly inhibited LPS or doxorubicin (DOX)-induced inflammation in both RAW264.7 and H9C2 cells through reducing the expression of inflammatory cytokines by inhibiting nuclear factor-κB (NF-κB) signaling pathway. Moreover, we found that compound E1 improved DOX-induced heart failure by inhibiting inflammation and oxidative stress in mouse model, which is mediated by the potential of antioxidant and anti-inflammatory activities. In conclusion, this study demonstrated the novel pterostilbene dihydropyrazole derivative E1 was identified as a promising agent for heart failure treatment.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Zhigang Liu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Mengyuan Fang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Tingfeng Zou
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhen Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xianshe Meng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Tianxiang Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Huawen Meng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yajun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Qingshan Li
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
3
|
Moreira J, Saraiva L, Pinto MM, Cidade H. Bioactive Diarylpentanoids: Insights into the Biological Effects beyond Antitumor Activity and Structure-Activity Relationships. Molecules 2022; 27:6340. [PMID: 36234878 PMCID: PMC9572019 DOI: 10.3390/molecules27196340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/03/2022] Open
Abstract
Diarylpentanoids, a class of natural products and their synthetic analogs which are structurally related to chalcones, have gained increasing attention due to their wide array of biological activities, including antitumor, anti-infective, antioxidant, anti-inflammatory, antidiabetic, anti-hyperuricemic, and neuroprotective properties. Previously, we reviewed diarylpentanoids with promising antitumor activity. However, in view of the wide range of biological activities described for this class of compounds, the purpose of this review is to provide a more detailed overview of the synthetic bioactive diarylpentanoids that have been described over the last two decades, beyond simply their antitumor effects. A total of 745 compounds were found, highlighting the main synthetic methodologies used in their synthesis as well as the structure-activity relationship studies and structural features for all activities reported. Collectively, this review highlights the diarylpentanoid scaffold as a promising starting point for the development of new therapeutic agents.
Collapse
Affiliation(s)
- Joana Moreira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Lucilia Saraiva
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Madalena M. Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
4
|
Discovery of Novel Pterostilbene Derivatives That Might Treat Sepsis by Attenuating Oxidative Stress and Inflammation through Modulation of MAPKs/NF-κB Signaling Pathways. Antioxidants (Basel) 2021; 10:antiox10091333. [PMID: 34572964 PMCID: PMC8470242 DOI: 10.3390/antiox10091333] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis remains one of the most common life-threatening illnesses that is characterized by a systemic inflammatory response syndrome (SIRS) and usually arises following severe trauma and various septic infections. It is still in urgent need of new effective therapeutic agents, and chances are great that some candidates can be identified that can attenuate oxidative stress and inflammatory responses. Pterostilbene, which exerts attractive anti-oxidative and anti-inflammatory activities, is a homologue of natural polyphenolic derivative of resveratrol. Starting from it, we have made several rounds of rational optimizations. Firstly, based on the strategy of pharmacophore combination, indanone moiety was introduced onto the pterostilbene skeleton to generate a novel series of pterostilbene derivatives (PIF_1–PIF_16) which could possess both anti-oxidative and anti-inflammatory activities for sepsis treatment. Then, all target compounds were subjected to their structure–activity relationships (SAR) screening of anti-inflammatory activity in mouse mononuclear macrophage RAW264.7 cell line, and their cytotoxicities were determined after. Finally, an optimal compound, PIF_9, was identified. It decreased the mRNA levels of lipopolysaccharide (LPS)-induced interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX2). We also found that the anti-inflammatory effects might be contributed by its suppression on the nuclear factor-κB (NF-κB) and MAPKs signaling pathway. Moreover, PIF_9 also demonstrated potent anti-oxidative activity in RAW264.7 macrophages and the sepsis mouse model. Not surprisingly, with the benefits mentioned above, it ameliorated LPS-induced sepsis in C57BL/6J mice and reduced multi-organ toxicity. Taken together, PIF_9 was identified as a potential sepsis solution, targeting inflammation and oxidative stress through modulating MAPKs/NF-κB.
Collapse
|
5
|
Radaei Z, Zamani A, Najafi R, Saidijam M, Jalilian FA, Ezati R, Solgi G, Amini R. Promising Effects of Zerumbone on the Regulation of Tumor-promoting Cytokines Induced by TNF-α-activated Fibroblasts. Curr Med Sci 2021; 40:1075-1084. [PMID: 33428135 DOI: 10.1007/s11596-020-2289-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/26/2019] [Indexed: 11/28/2022]
Abstract
Inflammation plays an important role in the development of several cancers. Inflammatory cytokines, including tumor necrosis factor-α (TNF-α), are associated with the induction of inflammation. Chronic inflammation contributes to the progression of cancer through several mechanisms, including increased cytokine production and activation of transcription factors, such as nuclear factor-κB (NF-κB). Zerumbone (ZER), a component of subtropical ginger (Zingiber zerumbet Smith), seems to have anti-inflammatory, anti-cancer, and antioxidant activities. In this study, we aimed to explore the protective function and mechanisms of ZER against TNF-α-induced cancer-promoting cytokines. We found that the viability of stimulated human fibroblast cell lines was reduced after treatment with ZER (IC50=18 µmol/L), compared to un-stimulated fibroblasts (IC50=40 µmol/L). Besides, ZER inhibited mRNA expression and protein secretion of transforming growth factor-β (TGF-β), interleukin-33 (IL-33), monocyte chemoattractant protein-1 (MCP-1), and stromal cell-derived factor 1 (SDF-1), which were produced by TNF-α-induced fibroblasts, as measured by quantitative real time-PCR (qRT-PCR) and ELISA assays. The mRNA expression levels of TGF-β, IL-33, SDF-1, and MCP-1 showed 8, 5, 2.5, and 4-fold reductions, respectively. Moreover, secretion of TGF-β, IL-33, SDF-1, and MCP-1 was reduced to 3.65±0.34 ng/mL, 6.3±0.26, 1703.6±295.2, and 5.02±0.18 pg/mL, respectively, compared to the untreated group. In addition, the conditioned media (CM) of TNF-α-stimulated fibroblasts increased the NF-κB expression in colorectal cancer cell lines (HCT-116 and Sw48), while in the vicinity of ZER, the expression of NF-κB was reversed. Considering the significant effects of ZER, this component can be used as an appropriate alternative herbal treatment for cancer-related chronic inflammation.
Collapse
Affiliation(s)
- Zahra Radaei
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 65178, Iran
| | - Alireza Zamani
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 65178, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, 65178, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, 65178, Iran
| | - Farid Azizi Jalilian
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 65178, Iran
| | - Razieh Ezati
- Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, 14965, Iran
| | - Ghasem Solgi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 65178, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, 65178, Iran.
| |
Collapse
|
6
|
Chen T, Zhu G, Meng X, Zhang X. Recent developments of small molecules with anti-inflammatory activities for the treatment of acute lung injury. Eur J Med Chem 2020; 207:112660. [DOI: 10.1016/j.ejmech.2020.112660] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/05/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022]
|
7
|
Xu Y, Liu Q, Guo X, Xiang L, Zhao G. Resveratrol attenuates IL‑33‑induced mast cell inflammation associated with inhibition of NF‑κB activation and the P38 signaling pathway. Mol Med Rep 2020; 21:1658-1666. [PMID: 32016471 DOI: 10.3892/mmr.2020.10952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/24/2019] [Indexed: 11/05/2022] Open
Abstract
Resveratrol (RSV), a natural polyphenol found in grapes and other herbal plants, has been reported to possess anti‑inflammatory, anti‑oxidative and anti‑proliferative activities. The aim of the present study was to investigate the effect of RSV on interleukin (IL)‑33‑induced inflammatory responses in mast cells and identify the underlying molecular mechanisms. Rat basophilic leukemia (RBL‑2H3) cells were stimulated with IL‑33 in the presence or absence of RSV. MTT, ELISA, reverse transcription‑quantitative PCR and western blot analyses were then performed in order to assess cytotoxicity, inflammatory cytokine production, suppression of tumorigenicity 2 receptor expression, protein expression involved in mitogen‑activated protein kinase (MAPK) and nuclear factor (NF)‑κB signaling, respectively. Finally, rats were used to determine the biological effect of RSV in vivo. The results revealed that RSV inhibited cell viability and increased cytotoxicity in a dose‑dependent manner. Medium concentration of RSV (10 µM) treatment attenuated inflammatory cytokine production, such as IL‑6, IL‑13, tumor necrosis factor‑α and monocyte chemotactic protein‑1, and curbed IL‑33‑induced enhancement of immunoglobulin E‑mediated responses in RBL‑2H3 cells, which were associated with the suppression of NF‑κB‑mediated transcription and inhibition of P38 phosphorylation in response to IL‑33 stimulation, but not extracellular signal regulated kinase or JNK. Notably, RSV application also decreased the levels of inflammatory cytokines in rats induced by IL‑33 injection, which was similar to the anti‑inflammatory effect in vitro. The data from the present study demonstrated that RSV played a regulatory role in antagonizing the effects of IL‑33 on mast cells both in vitro and in vivo, suggesting that it has therapeutic potential in IL‑33‑mediated inflammatory diseases that are associated with mast cells.
Collapse
Affiliation(s)
- Yundan Xu
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Qiang Liu
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Xiaohong Guo
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Lei Xiang
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Gang Zhao
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| |
Collapse
|
8
|
Curcumin analogues and their hybrid molecules as multifunctional drugs. Eur J Med Chem 2019; 182:111631. [DOI: 10.1016/j.ejmech.2019.111631] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/02/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023]
|
9
|
Honda A, Ito S, Tanaka M, Sawahara T, Hayashi T, Fukushima W, Kitamura G, Kudo H, Chowdhury PH, Okano H, Onishi T, Kawaryu Y, Higashihara M, Nakayama H, Ueda K, Takano H. Extract of curry powder and its components protect against diesel exhaust particle-induced inflammatory responses in human airway epithelial cells. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1682526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Akiko Honda
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Sho Ito
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Michitaka Tanaka
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Takahiro Sawahara
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Tomohiro Hayashi
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Wataru Fukushima
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Gaku Kitamura
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hitomi Kudo
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Pratiti Home Chowdhury
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hitoshi Okano
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Toshinori Onishi
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yusuke Kawaryu
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Makoto Higashihara
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hideki Nakayama
- Research & Development Institute, House Foods Corporation, Yotsukaido, Japan
| | - Kayo Ueda
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hirohisa Takano
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
Yin Y, Lian BP, Xia YZ, Shao YY, Kong LY. Design, synthesis and biological evaluation of resveratrol-cinnamoyl derivates as tubulin polymerization inhibitors targeting the colchicine binding site. Bioorg Chem 2019; 93:103319. [PMID: 31585270 DOI: 10.1016/j.bioorg.2019.103319] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/16/2019] [Accepted: 09/26/2019] [Indexed: 02/03/2023]
Abstract
A novel series of resveratrol-cinnamoyl hybrids as tubulin polymerization inhibitors were designed and synthesized, and evaluated for their anti-proliferative activities against A549, MCF-7, HepG2, HeLa and MDA-MB-231 five cancer cell lines. Most designed compounds showed better anti-proliferative activities. Particularly, compound 6h exhibited the potent anti-proliferative activities with the IC50 value of 0.12, 0.016, 0.44, 0.37 and 0.78 μΜ against A549, MCF-7, HepG2, HeLa and MDA-231, respectively, which was superior to that of reference drug colchicine. Besides, compound 6h displayed a remarkable inhibition of tubulin polymerization and a great potency to compete with [3H] colchicine in binding to tubulin. Further studies indicated that compound 6h could induce the MCF-7 cells arrest in the G2/M phase. What' more, compound 6h induced cell apoptosis in a dose-dependent manner, and regulated the expression level of apoptosis-related proteins. These results revealed that compound 6h is a promising tubulin polymerization inhibitor for treatment of cancer and it is worthy of further exploitation.
Collapse
Affiliation(s)
- Yong Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Bao-Ping Lian
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Yuan-Zheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Yu-Ying Shao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
11
|
Insights on the synthesis of asymmetric curcumin derivatives and their biological activities. Eur J Med Chem 2019; 183:111704. [PMID: 31557608 DOI: 10.1016/j.ejmech.2019.111704] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/02/2019] [Accepted: 09/14/2019] [Indexed: 02/08/2023]
Abstract
Curcumin is a small organic molecule with pleiotropic biological activities. However, its multiple structural-pharmacokinetic challenges prevent its development into a clinical drug. Various structural modifications have been made to improve its drug profile. In this review, we focus on the methods adopted in the synthesis of asymmetric curcumin derivatives and their biological activities and forecast the future of this exciting class of compounds in the field of medicine.
Collapse
|
12
|
Novel resveratrol-based flavonol derivatives: Synthesis and anti-inflammatory activity in vitro and in vivo. Eur J Med Chem 2019; 175:114-128. [DOI: 10.1016/j.ejmech.2019.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022]
|
13
|
Wang BS, Huang X, Chen LZ, Liu MM, Shi JB. Design and synthesis of novel pyrazolo[4,3- d]pyrimidines as potential therapeutic agents for acute lung injury. J Enzyme Inhib Med Chem 2019; 34:1121-1130. [PMID: 31117832 PMCID: PMC6534230 DOI: 10.1080/14756366.2019.1618291] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Four series of total 35 new pyrazolo[4,3-d]pyrimidine compounds were designed, synthesized and evaluated for their inhibitory activity against LPS-induced NO production in RAW264.7 macrophages. Among them, compound 4e was found to be the most potent inhibitor, which decreased the production of cytokines in vitro, such as NO, IL-6 and TNF-α, with IC50 values of 2.64, 4.38 and 5.63 μM, respectively. Further studies showed that compound 4e inhibited cytokines secretion of macrophages through suppressing TLR4/p38 signaling pathway. Additionally, compound 4e showed in vivo anti-inflammatory activity in LPS-induced model of acute lung injury. These data suggested that compound 4e may be a promising lead structure for the treatment of ALI.
Collapse
Affiliation(s)
- Bao Shi Wang
- a School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs , Anhui Medical University , Hefei , People's Republic of China
| | - Xin Huang
- a School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs , Anhui Medical University , Hefei , People's Republic of China
| | - Liu Zeng Chen
- a School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs , Anhui Medical University , Hefei , People's Republic of China
| | - Ming Ming Liu
- a School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs , Anhui Medical University , Hefei , People's Republic of China
| | - Jing Bo Shi
- a School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs , Anhui Medical University , Hefei , People's Republic of China
| |
Collapse
|
14
|
Li QS, Li Y, Deora GS, Ruan BF. Derivatives and Analogues of Resveratrol: Recent Advances in Structural Modification. Mini Rev Med Chem 2019; 19:809-825. [DOI: 10.2174/1389557519666190128093840] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/05/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022]
Abstract
Resveratrol is a non-flavonoid polyphenol containing a terpenoid backbone. It has been intensively studied because of its various promising biological properties, such as anticancer, antioxidant, antibacterial, neuroprotective and anti-inflammatory activities. However, the medicinal application of resveratrol is constrained by its poor bioavailability and stability. In the past decade, more attention has been focused on making resveratrol derivatives to improve its pharmacological activities and pharmacokinetics. This review covers the literature published over the past 15 years on synthetic analogues of resveratrol. The emphasis is on the chemistry of new compounds and relevant biological activities along with structure-activity relationship. This review aims to provide a scientific and reliable basis for the development of resveratrol-based clinical drugs.
Collapse
Affiliation(s)
- Qing-Shan Li
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yao Li
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Girdhar Singh Deora
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Ban-Feng Ruan
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
15
|
Chainoglou E, Hadjipavlou-Litina D. Curcumin analogues and derivatives with anti-proliferative and anti-inflammatory activity: Structural characteristics and molecular targets. Expert Opin Drug Discov 2019; 14:821-842. [DOI: 10.1080/17460441.2019.1614560] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Eirini Chainoglou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
16
|
Zhang W, Chen H, Sun C, Wu B, Bai B, Liu H, Shan X, Liang G, Zhang Y. A novel resveratrol analog PA19 attenuates obesity‑induced cardiac and renal injury by inhibiting inflammation and inflammatory cell infiltration. Mol Med Rep 2019; 19:4770-4778. [PMID: 31059027 PMCID: PMC6522815 DOI: 10.3892/mmr.2019.10157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 03/14/2019] [Indexed: 01/22/2023] Open
Abstract
Obesity is a major global health concern and induces numerous complications, such as heart and kidney injury. Inflammation is an important pathogenic mechanism underlying obesity‑associated tissue injury. (1E,4E)‑1‑{2,4‑Dimethoxy‑6‑[(E)‑4‑methoxystyryl]phenyl}‑5‑(2,4‑dimethoxyphenyl)penta‑1,4‑dien‑3‑one (PA19) is a novel anti‑inflammatory compound synthesized by our research group. In the present study, the efficacy of PA19 in attenuating high‑fat diet (HFD)‑induced heart and kidney injury was investigated. Heart and kidney pathological injury and fibrosis were detected by hematoxylin and eosin and Sirius red staining, respectively. The expression levels of inflammatory genes and fibrosis‑associated protein were determined by reverse transcription‑quantitative polymerase chain reaction and western blotting. ELISA was used to detect the level of inflammatory cytokines. Following 20 weeks of HFD treatment, mice exhibited increased lipid accumulation in the serum, heart and kidney injury and fibrosis, and inflammation and inflammatory cell infiltration compared with mice fed a control diet. Conversely, treatment with PA19 during the final 12 weeks of the study significantly reduced the degree of heart and kidney fibrosis and inflammation induced by HFD. The results suggested that PA19 attenuates heart and kidney inflammation and injury induced by HFD, and indicated that PA19 may be a novel therapeutic agent in the treatment of obesity, and obesity‑induced cardiac and renal injury.
Collapse
Affiliation(s)
- Wenxin Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Hongjin Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Chuchu Sun
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Beibei Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Bin Bai
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Hui Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Xiaoou Shan
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yali Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
17
|
Wu B, Xiao Z, Zhang W, Chen H, Liu H, Pan J, Cai X, Liang G, Zhou B, Shan X, Zhang Y. A novel resveratrol-curcumin hybrid, a19, attenuates high fat diet-induced nonalcoholic fatty liver disease. Biomed Pharmacother 2019; 110:951-960. [DOI: 10.1016/j.biopha.2018.11.088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/05/2018] [Accepted: 11/25/2018] [Indexed: 12/22/2022] Open
|
18
|
Alghetaa H, Mohammed A, Sultan M, Busbee P, Murphy A, Chatterjee S, Nagarkatti M, Nagarkatti P. Resveratrol protects mice against SEB-induced acute lung injury and mortality by miR-193a modulation that targets TGF-β signalling. J Cell Mol Med 2018. [PMID: 29512867 PMCID: PMC5908132 DOI: 10.1111/jcmm.13542] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Staphylococcal enterotoxin B (SEB) is a potent superantigen produced by Staphylococcus aureus that triggers a strong immune response, characterized by cytokine storm, multi‐organ failure, and often death. When inhaled, SEB can cause acute lung injury (ALI) and respiratory failure. In this study, we investigated the effect of resveratrol (RES), a phytoallexin, on SEB‐driven ALI and mortality in mice. We used a dual‐exposure model of SEB in C3H/HeJ mice, which caused 100% mortality within the first 5 days of exposure, and treatment with RES resulted in 100% survival of these mice up to 10 days post‐SEB exposure. RES reduced the inflammatory cytokines in the serum and lungs, as well as T cell infiltration into the lungs caused by SEB. Treatment with RES also caused increased production of transforming growth factor‐beta (TGF‐β) in the blood and lungs. RES altered the miRNA profile in the immune cells isolated from the lungs. Of these, miR‐193a was strongly induced by SEB and was down‐regulated by RES treatment. Furthermore, transfection studies and pathway analyses revealed that miR‐193a targeted several molecules involved in TGF‐β signalling (TGFβ2, TGFβR3) and activation of apoptotic pathways death receptor‐6 (DR6). Together, our studies suggest that RES can effectively neutralize SEB‐mediated lung injury and mortality through potential regulation of miRNA that promote anti‐inflammatory activities.
Collapse
Affiliation(s)
- Hasan Alghetaa
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Amira Mohammed
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Muthanna Sultan
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Philip Busbee
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Angela Murphy
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Saurabh Chatterjee
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
19
|
Alexy EJ, Virgil SC, Bartberger MD, Stoltz BM. Enantioselective Pd-Catalyzed Decarboxylative Allylic Alkylation of Thiopyranones. Access to Acyclic, Stereogenic α-Quaternary Ketones. Org Lett 2017; 19:5007-5009. [PMID: 28901769 DOI: 10.1021/acs.orglett.7b02354] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A catalytic, enantioselective decarboxylative allylic alkylation of 4-thiopyranones is reported. The α-quaternary 4-thiopyranones produced are challenging to access by standard enolate alkylation owing to facile ring-opening β-sulfur elimination. In addition, reduction of the carbon-sulfur bonds provides access to elusive acyclic α-quaternary ketones. The alkylated products are obtained in up to 92% yield and 94% enantiomeric excess.
Collapse
Affiliation(s)
- Eric J Alexy
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Scott C Virgil
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Michael D Bartberger
- Department of Molecular Engineering, Therapeutic Discovery, Amgen, Inc. , 1 Amgen Center Drive, M/S 29-M-B, Thousand Oaks, California 91320, United States
| | - Brian M Stoltz
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| |
Collapse
|
20
|
Mojtahedi MM, Darvishi K, Abaee MS, Halvagar MR. Synthesis and fluorescence studies of novel bisarylmethylidene derivatives of 2-methoxy-2-methyl-1,3-dioxan-5-one. CAN J CHEM 2017. [DOI: 10.1139/cjc-2017-0099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The first general procedure is described for the synthesis of novel bisarylmethylidenes of 2-methoxy-2-methyl-1,3-dioxan-5-one 1. Thus, several derivatives of 3 are obtained rapidly in high yields by reacting 1 with different aldehydes in the presence of catalytic quantities of pyrrolidine in EtOH at room temperature. Upon completion of the reactions, products are obtained directly by spontaneous precipitation avoiding time consuming and expensive chromatographic separations. All products were characterized by proton and carbon NMR spectroscopy methods, and in one case, the proposed structure was elucidated by X-ray crystallography, confirming the Z stereochemistry for the olefinic C=C bonds. Due to showing different colours in solid and solution states, products were studied for their photophysical properties as well.
Collapse
Affiliation(s)
- Mohammad M. Mojtahedi
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Pajohesh Blvrd., 17th km of Tehran-Karaj Highway, P.O. Box 14335-186, Tehran, Iran
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Pajohesh Blvrd., 17th km of Tehran-Karaj Highway, P.O. Box 14335-186, Tehran, Iran
| | - Kiana Darvishi
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Pajohesh Blvrd., 17th km of Tehran-Karaj Highway, P.O. Box 14335-186, Tehran, Iran
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Pajohesh Blvrd., 17th km of Tehran-Karaj Highway, P.O. Box 14335-186, Tehran, Iran
| | - M. Saeed Abaee
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Pajohesh Blvrd., 17th km of Tehran-Karaj Highway, P.O. Box 14335-186, Tehran, Iran
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Pajohesh Blvrd., 17th km of Tehran-Karaj Highway, P.O. Box 14335-186, Tehran, Iran
| | - Mohammad R. Halvagar
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Pajohesh Blvrd., 17th km of Tehran-Karaj Highway, P.O. Box 14335-186, Tehran, Iran
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Pajohesh Blvrd., 17th km of Tehran-Karaj Highway, P.O. Box 14335-186, Tehran, Iran
| |
Collapse
|