1
|
Zhang J, Yang W, He M, Peng Z, Wang G. Development of novel pyrazole-1,2,4-triazole derivatives as tyrosinase inhibitors: Design, preparation, mechanism of action and anti-browning application. Food Chem 2024; 460:140722. [PMID: 39106753 DOI: 10.1016/j.foodchem.2024.140722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
Tyrosinase (Polyphenol oxidase), a key enzyme in enzymatic browning, is an attractive target for developing new anti-browning agents in the food industry. In this work, twenty pyrazole-1,2,4-triazole derivatives (3a-3n, 4a-4f) were synthesized and tested in vitro, most of compounds showed potent anti-tyrosinase activity. Of these, 3c (IC50 = 1.02 ± 0.08 μM) was found to be 14 folds stronger than kojic acid (IC50 = 14.74 ± 1.23 μM) and behaved as a mixed type inhibitor. Besides, the disappeared peak of dopaquinone in the HPLC assay intuitively validated the inhibitory effect of 3c. Copper ions chelating, fluorescence quenching and molecular docking assays showed that coordination with copper is the key to play a role. Furthermore, 3c exhibited excellent anti-browning ability for the Rosa roxburghii Tratt, the non-enzymatic browning experiment showed that 3c could prevent browning in non-enzymatic ways. It is suggested that these derivatives could serve as the leading compounds to find more efficient anti-browning agents in the future.
Collapse
Affiliation(s)
- Jinfeng Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Wei Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Min He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
2
|
Omar MH, Emam SH, Mikhail DS, Elmeligie S. Combretastatin A-4 based compounds as potential anticancer agents: A review. Bioorg Chem 2024; 153:107930. [PMID: 39504638 DOI: 10.1016/j.bioorg.2024.107930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
The current review discusses the importance of combretastatin A-4 (CA-4) as a lead compound of microtubule targeting agents. CA-4 holds a unique place among naturally occurring compounds having cytotoxic activity. In this review an overall picture of design strategies, structure-activity relationship, synthesis, cytotoxic activity, and binding interactions of promising CA-4 analogues, are discussed and arranged chronologically from 2016 to early 2023. Also, this review emphasizes their biological activity as anticancer agents, within an overview of clinical application limitation and suggested strategies to overcome. Dual targeting tubulin inhibitors showed highpotentialto surpass medication resistance and provide synergistic efficacy. Linking platinum (IV), amino acids, and HDAC targeting moieties to active tubulin inhibitorsproduced potent active compounds. Analogues of CA-4 bridged with azetidin-2-one, pyrazole, sulfide, or carrying selenium atom exhibited cytotoxic action against a variety of malignant cell lines through different pathways.
Collapse
Affiliation(s)
- Mai H Omar
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Soha H Emam
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Demiana S Mikhail
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Salwa Elmeligie
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
3
|
Ungureanu D, Oniga O, Moldovan C, Ionuț I, Marc G, Stana A, Pele R, Duma M, Tiperciuc B. An Insight into Rational Drug Design: The Development of In-House Azole Compounds with Antimicrobial Activity. Antibiotics (Basel) 2024; 13:763. [PMID: 39200063 PMCID: PMC11350776 DOI: 10.3390/antibiotics13080763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Antimicrobial resistance poses a major threat to global health as the number of efficient antimicrobials decreases and the number of resistant pathogens rises. Our research group has been actively involved in the design of novel antimicrobial drugs. The blueprints of these compounds were azolic heterocycles, particularly thiazole. Starting with oxadiazolines, our research group explored, one by one, the other five-membered heterocycles, developing more or less potent compounds. An overview of this research activity conducted by our research group allowed us to observe an evolution in the methodology used (from inhibition zone diameters to minimal inhibitory concentrations and antibiofilm potential determination) correlated with the design of azole compounds based on results obtained from molecular modeling. The purpose of this review is to present the development of in-house azole compounds with antimicrobial activity, designed over the years by this research group from the departments of Pharmaceutical and Therapeutical Chemistry in Cluj-Napoca.
Collapse
Affiliation(s)
- Daniel Ungureanu
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
- “Prof. Dr. Ion Chiricuță” Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
- Department of Clinical Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Cristina Moldovan
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Ioana Ionuț
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Gabriel Marc
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Anca Stana
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Raluca Pele
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Mihaela Duma
- State Veterinary Laboratory for Animal Health and Safety, 1 Piața Mărăști Street, 400609 Cluj-Napoca, Romania;
| | - Brîndușa Tiperciuc
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| |
Collapse
|
4
|
Zhang H, Li M, Zhou X, Tang L, Chen G, Zhang Y. Design, synthesis of combretastatin A-4 piperazine derivatives as potential antitumor agents by inhibiting tubulin polymerization and inducing autophagy in HCT116 cells. Eur J Med Chem 2024; 272:116497. [PMID: 38759453 DOI: 10.1016/j.ejmech.2024.116497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
A series of combretastatin A-4 (CA-4) derivatives were designed and synthesized, which contain stilbene core structure with different linker, predominantly piperazine derivatives. These compounds were evaluated for their cytotoxic activities against four cancer cell lines, HCT116, A549, AGS, and SK-MES-1. Among them, compound 13 displayed the best effectiveness with IC50 values of 0.227 μM and 0.253 μM against HCT116 and A549 cells, respectively, showing low toxicity to normal cells. Mechanistic studies showed that 13 inhibited HCT116 proliferation via arresting cell cycle at the G2/M phase through disrupting the microtubule network and inducing autophagy in HCT116 cells by regulating the expression levels of autophagy-related proteins. In addition, 13 displayed antiproliferative activities against A549 cells through blocking the cell cycle and inducing A549 cells apoptosis. Because of the poor water solubility of 13, four carbohydrate conjugates were synthesized which exhibited better water solubility. Further investigations revealed that 13 showed positive effects in vivo anticancer study with HCT116 xenograft models. These data suggest that 13 could be served as a promising lead compound for further development of anti-colon carcinoma agent.
Collapse
Affiliation(s)
- Hangqi Zhang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education and Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Ming Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education and Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Xueming Zhou
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education and Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Li Tang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education and Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Guangying Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education and Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, 571158, China.
| | - Yongmin Zhang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education and Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, 571158, China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France.
| |
Collapse
|
5
|
Ma Y, Wang T, Cheng L, Ma X, Li R, Zhang M, Chen J, Zhao P. Design, concise synthesis and evaluation of novel amide-based combretastatin A-4 analogues as potent tubulin inhibitors. Bioorg Med Chem Lett 2024; 108:129816. [PMID: 38806101 DOI: 10.1016/j.bmcl.2024.129816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
As our ongoing work, a novel series of the amide-based CA-4 analogues were successfully designed, synthesized, and explored for their biological evaluation. Among these compounds, 7d and 8a illustrated most potent antiproliferative activity toward A549, HeLa, HCT116, and HT-29 cell lines. Most importantly, these two compounds didn't display noticeable cytotoxic activity on the non-tumoural cell line HEK-293. Further mechanism studies revealed that analogue 8a was identified as a novel tubulin polymerization inhibitor with an IC50 value of 6.90 μM, which is comparable with CA-4. The subsequent investigations unveiled that analogue 8a not only effectively caused cell cycle arrest at the G2/M phase but also induced apoptosis in A549 cells via a concentration-dependent manner. The molecular docking revealed that 8a could occupy well the colchicine-binding site of tubulin. Collectively, these findings indicate that amide-based CA-4 scaffold could be worthy of further evaluation for development of novel tubulin inhibitors with improved safety profile.
Collapse
Affiliation(s)
- Yufeng Ma
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Ting Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Li Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Xuanxuan Ma
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Rou Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Mengting Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Jingkao Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China.
| | - Peiliang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
6
|
Zhuo X, Zheng L, Liu Y, Wang Y, Zou X, Zhong Y, Guo W. Visible Light-Enhanced [3 + 2] Cycloaddition of N, N-Disubstituted Hydrazines with Organo-Cyanamides: Access to Polysubstituted 1,2,4-Triazol-3-amines. J Org Chem 2024. [PMID: 38166434 DOI: 10.1021/acs.joc.3c02085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Visible light-enhanced [3 + 2] cycloaddition of N,N-disubstituted hydrazines with N-cyano-N-aryl-p-toluenesulfonamides is an efficient reaction pathway to polysubstituted 1,2,4-triazol-3-amines. The reaction is performed under mild conditions without the addition of any transition metals. This strategy involves a C(sp3)-H bond activation, a cyano cycloaddition, and the formation of two new C═N bonds. The protocol shows the advantages of good functional group tolerance and broad substrate scope. The late-stage modification experiments provide practical applications in the field of organic synthesis and medicinal chemistry.
Collapse
Affiliation(s)
- Xiaoya Zhuo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Lvyin Zheng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Yujie Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Yihan Wang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Xiaoying Zou
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Yumei Zhong
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Wei Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
7
|
Zaki I, Moustafa AMY, Beshay BY, Masoud RE, Elbastawesy MAI, Abourehab MAS, Zakaria MY. Design and synthesis of new trimethoxylphenyl-linked combretastatin analogues loaded on diamond nanoparticles as a panel for ameliorated solubility and antiproliferative activity. J Enzyme Inhib Med Chem 2022; 37:2679-2701. [PMID: 36154552 PMCID: PMC9518609 DOI: 10.1080/14756366.2022.2116016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
A new series of vinyl amide-, imidazolone-, and triazinone-linked combretastatin A-4 analogues have been designed and synthesised. These compounds have been evaluated for their cytotoxic activity against MDA-MB-231 breast cancer cells. The triazinone-linked combretastatin analogues (6 and 12) exhibited the most potent cytotoxic activity, in sub-micromolar concentration compared with combretastatin A-4 as a reference standard. The results of β-tubulin polymerisation inhibition assay appear to correlate well with the ability to inhibit β-tubulin polymerisation. Additionally, these compounds were subjected to biological assays relating to cell cycle aspects and apoptosis induction. In addition, the most potent compound 6 was loaded on PEG-PCL modified diamond nanoparticles (PEG-PCL-NDs) and F4 was picked as the optimum formula. F4 exhibited enhanced solubility and release over the drug suspension. In the comparative cytotoxic activity, PEG-PCL modified F4 was capable of diminishing the IC50 by around 2.89 times for nude F4, while by 3.48 times relative to non-formulated compound 6.
Collapse
Affiliation(s)
- Islam Zaki
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Amal M Y Moustafa
- Chemistry Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Botros Y Beshay
- Pharmaceutical Sciences (Pharmaceutical Chemistry) Department, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Reham E Masoud
- Clinical Pharmacology Department, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Mohammed A I Elbastawesy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Pharmaceutics, College of Pharmacy, Minia University, Minia, Egypt
| | - Mohamed Y Zakaria
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| |
Collapse
|
8
|
Acar Çevik U, Celik I, Işık A, Gül ÜD, Bayazıt G, Bostancı HE, Özkay Y, Kaplancıklı ZA. Synthesis, and docking studies of novel tetrazole-S-alkyl derivatives as antimicrobial agents. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2117812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Ulviye Acar Çevik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Ayşen Işık
- Department of Biochemistry, Faculty of Science, Selçuk University, Konya, Turkey
| | - Ülküye Dudu Gül
- Department of Bioengineering, Faculty of Engineering, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Gizem Bayazıt
- Department of Biotechnology, Institute of Graduate Studies, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Hayrani Eren Bostancı
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
9
|
Kostin RK, Marshavin AS. Pyrazoles, isoxazoles, and 1,2,3-triazoles as analogs of the natural cytostatic combretastatin A-4: efficient routes of synthesis, tubulin inhibition, and cytotoxicity. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-021-03025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Ding M, Wan S, Wu N, Yan Y, Li J, Bao X. Synthesis, Structural Characterization, and Antibacterial and Antifungal Activities of Novel 1,2,4-Triazole Thioether and Thiazolo[3,2- b]-1,2,4-triazole Derivatives Bearing the 6-Fluoroquinazolinyl Moiety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15084-15096. [PMID: 34881871 DOI: 10.1021/acs.jafc.1c02144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A total of 52 novel 1,2,4-triazole thioether and thiazolo[3,2-b]-1,2,4-triazole derivatives bearing the 6-fluoroquinazolinyl moiety were designed, synthesized, and evaluated as antimicrobial agents in agriculture based on the molecular hybridization strategy. Among them, molecular structures of compounds 5g and 6m were further confirmed via the single-crystal X-ray diffraction method. The bioassay results indicated that some of the target compounds possessed excellent antibacterial activities in vitro against the pathogen Xanthomonas oryzae pv. oryzae (Xoo). For example, compound 6u demonstrated a strong anti-Xoo efficacy with an EC50 value of 18.8 μg/mL, nearly 5-fold more active than that of the commercialized bismerthiazol (EC50 = 93.6 μg/mL). Moreover, the anti-Xoo mechanistic studies revealed that compound 6u exerted its antibacterial effects by increasing the permeability of bacterial membrane, reducing the content of extracellular polysaccharide, and inducing morphological changes of bacterial cells. Importantly, in vivo assays revealed its pronounced protection and curative effects against rice bacterial blight, proving its potential as a promising bactericide candidate for controlling Xoo. Moreover, compound 6u had a good pesticide-likeness based on Tice's criteria. More interestingly, compound 6u with high anti-Xoo activity also demonstrated a potent inhibitory effect of 80.8% against the fungus Rhizoctonia solani at 50 μg/mL, comparable to that of the commercialized chlorothalonil (85.9%). Overall, the current study will provide useful guidance for the rational design of more efficient agricultural antimicrobial agents using the thiazolo[3,2-b]-1,2,4-triazole derivatives bearing the 6-fluoroquinazolinyl moiety as lead compounds.
Collapse
Affiliation(s)
- Muhan Ding
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Suran Wan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Nan Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Ya Yan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Junhong Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Xiaoping Bao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
11
|
Paidakula S, Nerella S, Kankala S, Kankala RK. Recent Trends in Tubulin-Binding Combretastatin A-4 Analogs for Anticancer Drug Development. Curr Med Chem 2021; 29:3748-3773. [PMID: 34856892 DOI: 10.2174/0929867328666211202101641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/20/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022]
Abstract
Although significant progress over several decades has been evidenced in cancer therapy, there still remains a need for the development of novel and effective therapeutic strategies to treat several relapsed and intractable cancers. In this regard, tubulin protein has become one of the efficient and major targets for anticancer drug discovery. Considering the antimitotic ability, several tubulin inhibitors have been developed to act against various cancers. Among various tubulin inhibitors available, combretastatin-A4 (CA-4), a naturally occurring lead molecule, offers exceptional cytotoxicity (including the drug-resistant cell lines) and antivascular effects. Although CA-4 offers exceptional therapeutic efficacy, several new advancements have been proposed, such as the structural modification via A and B rings, as well as cis-olefinic bridging, which provide highly efficient analogs with improved tubulin-binding efficiency to meet the anticancer drug development requirements. This review systematically emphasizes the recent trends and latest developments in the anticancer drug design & discovery, using CA-4 analogs as the tubulin inhibiting agents, highlighting their structure-activity relationships (SAR) and resultant pharmacological efficacies.
Collapse
Affiliation(s)
- Suresh Paidakula
- Department of Chemistry, Kakatiya University, Warangal-506009, Telangana State. India
| | - Srinivas Nerella
- Department of Chemistry, Kakatiya University, Warangal-506009, Telangana State. India
| | - Shravankumar Kankala
- Department of Chemistry, Kakatiya University, Warangal-506009, Telangana State. India
| | | |
Collapse
|
12
|
Guo HY, Chen ZA, Shen QK, Quan ZS. Application of triazoles in the structural modification of natural products. J Enzyme Inhib Med Chem 2021; 36:1115-1144. [PMID: 34167422 PMCID: PMC8231395 DOI: 10.1080/14756366.2021.1890066] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/30/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Nature products have been extensively used in the discovery and development of new drugs, as the most important source of drugs. The triazole ring is one of main pharmacophore of the nitrogen-containing heterocycles. Thus, a new class of triazole-containing natural product conjugates has been synthesised. These compounds reportedly exert anticancer, anti-inflammatory, antimicrobial, antiparasitic, antiviral, antioxidant, anti-Alzheimer, and enzyme inhibitory effects. This review summarises the research progress of triazole-containing natural product derivatives involved in medicinal chemistry in the past six years. This review provides insights and perspectives that will help scientists in the fields of organic synthesis, medicinal chemistry, phytochemistry, and pharmacology.
Collapse
Affiliation(s)
- Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Zheng-Ai Chen
- Department of Pharmacology, Medical School of Yanbian University, Yanji, Jilin, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Zhe-Shan Quan
- Department of Pharmacology, Medical School of Yanbian University, Yanji, Jilin, China
| |
Collapse
|
13
|
Synthesis, Antiproliferative and Antioxidant Activity of 3-Mercapto-1,2,4-Triazole Derivatives as Combretastatin A-4 Analogues. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02459-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Dhotre BK, Raut SV, Jagrut VB, Patharia MA, Pathan MA. Efficient Synthesis of Fluorinated [1,2,4]Triazolo[3,4-b][1,3,4]thiadiazoles. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021070137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Shkoor M, Tashtoush H, Al-Talib M, Mhaidat I, Al-Hiari Y, Kasabri V, Alalawi S. Synthesis and Antiproliferative and Antilipolytic Activities of a Series of 1,3- and 1,4-Bis[5-(R-sulfanyl)-1,2,4-triazol-3-yl)benzenes. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021070149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
16
|
Bayrak R, Ataşen SK, Yılmaz I, Yalçın İ, Erman M, Ünver Y, Değirmencioğlu İ. Synthesis and Spectro-Electrochemical Properties of New Metallophthalocyanines Having High Electron Transfer Capability. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Yang F, Chen L, Lai JM, Jian XE, Lv DX, Yuan LL, Liu YX, Liang FT, Zheng XL, Li XL, Wei LY, You WW, Zhao PL. Synthesis, biological evaluation, and structure-activity relationships of new tubulin polymerization inhibitors based on 5-amino-1,2,4-triazole scaffold. Bioorg Med Chem Lett 2021; 38:127880. [PMID: 33636303 DOI: 10.1016/j.bmcl.2021.127880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Based on our previous research, thirty new 5-amino-1H-1,2,4-triazoles possessing 3,4,5-trimethoxyphenyl moiety were synthesized, and evaluated for antiproliferative activities. Among them, compounds IIa, IIIh, and IIIm demonstrated significant antiproliferative activities against a panel of tumor cell lines, and the promising compound IIIm dose-dependently caused G2/M phase arrest in HeLa cells. Furthermore, analogue IIa exhibited the most potent tubulinpolymerization inhibitory activity with an IC50 value of 9.4 μM, and molecular modeling studies revealed that IIa formed stable interactions in the colchicine-binding site of tubulin, suggesting that 5-amino-1H-1,2,4-triazole scaffold has potential for further investigation to develop novel tubulin polymerization inhibitors with anticancer activity.
Collapse
Affiliation(s)
- Fang Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Lin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Jin-Mei Lai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Xie-Er Jian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Dong-Xin Lv
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Li-Li Yuan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Yu-Xia Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Feng-Ting Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Xiao-Lan Zheng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Xiong-Li Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Li-Yuan Wei
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Wen-Wei You
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Pei-Liang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
18
|
Sun SX, Yan JH, Zuo JT, Wang XB, Chen M, Lu AM, Yang CL, Li GH. Design, synthesis, antifungal evaluation, and molecular docking of novel 1,2,4-triazole derivatives containing oxime ether and cyclopropyl moieties as potential sterol demethylase inhibitors. NEW J CHEM 2021. [DOI: 10.1039/d1nj03578a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A series of novel triazole derivatives containing oxime ether and cyclopropyl moieties were designed and synthesized. Some compounds exhibited remarkable antifungal activities. The molecular docking of compound 5k with FgCYP51 was investigated.
Collapse
Affiliation(s)
- Sheng-Xin Sun
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Jing-Hua Yan
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Jiang-Tao Zuo
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Xiao-Bin Wang
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Min Chen
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Ai-Min Lu
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Chun-Long Yang
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Guo-Hua Li
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| |
Collapse
|
19
|
Yang F, Jian XE, Chen L, Ma YF, Liu YX, You WW, Zhao PL. Discovery of new indole-based 1,2,4-triazole derivatives as potent tubulin polymerization inhibitors with anticancer activity. NEW J CHEM 2021. [DOI: 10.1039/d1nj03892c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Thirty-six novel indole-based 1,2,4-triazole derivatives were designed and synthesized through the molecular hybrid strategy.
Collapse
Affiliation(s)
- Fang Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Xie-Er Jian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Lin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yu-Feng Ma
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yu-Xia Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Wen-Wei You
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Pei-Liang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
20
|
Development of triazolothiadiazine derivatives as highly potent tubulin polymerization inhibitors: Structure-activity relationship, in vitro and in vivo study. Eur J Med Chem 2020; 208:112847. [DOI: 10.1016/j.ejmech.2020.112847] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022]
|
21
|
Yang F, Jian XE, Diao PC, Huo XS, You WW, Zhao PL. Synthesis, and biological evaluation of 3,6-diaryl-[1,2,4]triazolo[4,3-a]pyridine analogues as new potent tubulin polymerization inhibitors. Eur J Med Chem 2020; 204:112625. [DOI: 10.1016/j.ejmech.2020.112625] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/08/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023]
|
22
|
Wang Y, Yao Y, Zhu HL, Duan Y. Butterfly Structure: A Privileged Scaffold Targeting Tubulin-Colchicine Binding Site. Curr Top Med Chem 2020; 20:1505-1508. [PMID: 32543362 DOI: 10.2174/1568026620999200616132924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022]
Abstract
:
Butterfly-shaped structure, as a novel scaffold with an attractive and certain shape, has been
widely used in new drug discovery. Tubulin, composing of α- and β-tubulin heterodimers, plays a key
role in mitosis and cell division which are regarded as an excellent target for cancer therapy. Currently, a
series of butterfly shape diaryl heterocyclic compounds have been reported with strong potential against
the tubulin-colchicine binding site. It is with one ring buried in the β subunit, another ring interacts with
the α subunit and the main body is located in the flat pocket. Here, we firstly introduce the concept of
butterfly structure for the tubulin inhibitors, focusing on the latest advancements in a variety of molecules
bearing butterfly structure, and then highlight the challenges and future direction of butterfly structure-
based tubulin-colchicine binding site inhibitors.
Collapse
Affiliation(s)
- Yingge Wang
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Yongfang Yao
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Hai-Liang Zhu
- Henan Provincial Key Laboratory Of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Yongtao Duan
- Henan Provincial Key Laboratory Of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| |
Collapse
|
23
|
1,2,4-Triazolin-5-thione derivatives with anticancer activity as CK1γ kinase inhibitors. Bioorg Chem 2020; 99:103806. [DOI: 10.1016/j.bioorg.2020.103806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/17/2022]
|
24
|
Chen J, Wei C, Wu S, Luo Y, Wu R, Hu D, Song B. Novel 1,3,4-oxadiazole thioether derivatives containing flexible-chain moiety: Design, synthesis, nematocidal activities, and pesticide-likeness analysis. Bioorg Med Chem Lett 2020; 30:127028. [DOI: 10.1016/j.bmcl.2020.127028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 12/15/2022]
|
25
|
Exploring Diverse-Ring Analogues on Combretastatin A4 (CA-4) Olefin as Microtubule-Targeting Agents. Int J Mol Sci 2020; 21:ijms21051817. [PMID: 32155790 PMCID: PMC7084768 DOI: 10.3390/ijms21051817] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022] Open
Abstract
Combretastatin-4 (CA-4) as a tubulin polymerization inhibitor draws extensive attentions. However, due to its weak stability of cis-olefin and poor metabolic stability, structure modifications on cis-configuration are being performed. In this work, we constructed a series of novel CA-4 analogues with linkers on olefin containing diphenylethanone, cis-locked dihydrofuran, α-substituted diphenylethanone, cyclobutane and cyclohexane on its cis-olefin. Cytotoxic activity of all analogues was measured by an SRB assay. Among them, compound 6b, a by-product in the preparation of diphenylethanone analogues, was found to be the most potent cytotoxic agents against HepG2 cells with IC50 values of less than 0.5 μM. The two isomers of 6b induced cellular apoptosis tested by Annexin V-FITC and propidium iodide (PI) double staining, arrested cells in the G2/M phase by PI staining analysis, and disrupted microtubule network by immunohistochemistry study in HepG2 cells. Moreover, 6b-(E) displayed a dose-dependent inhibition effect for tubulin assembly in in vitro tubulin polymerization assay. In addition, molecular docking studies showed that two isomers of 6b could bind efficiently at colchicine binding site of tubulin similar to CA-4.
Collapse
|
26
|
Synthesis and biological evaluation of novel pyrazolo[3,4-b]pyridines as cis-restricted combretastatin A-4 analogues. Bioorg Med Chem Lett 2020; 30:127025. [PMID: 32063430 DOI: 10.1016/j.bmcl.2020.127025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 01/17/2023]
Abstract
Twenty-six novel pyrazolo[3,4-b]pyridine-bridged analogues of combretastatin A-4 possessing 3,4,5-trimethoxylphenyl groups, were synthesized and evaluated for their antiproliferative and tubulin polymerization inhibitory activities. Preliminary biological evaluation demonstrated that some of the target compounds displayed significant antiproliferative effectagainst four different cell lines including MCF-7, MDA-MB-231, HeLa and Kyse150. The most active analogue 6n was found to induce HeLa cells arrest in the G2/M phase in a dose-dependent manner. Molecular modeling studies indicated that derivative 6n most likely occupies the colchicine site of tubulin. The initial results suggest that the 3,4,5-trimethoxyphenyl substituted pyrazolo[3,4-b]pyridine could serve as a promising scaffold for development of potent tubulin inhibitors as anticancer agents.
Collapse
|
27
|
Shi J, Luo N, Ding M, Bao X. Synthesis, in vitro antibacterial and antifungal evaluation of novel 1,3,4-oxadiazole thioether derivatives bearing the 6-fluoroquinazolinylpiperidinyl moiety. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.06.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Yang H, Yan R, Jiang Y, Yang Z, Zhang X, Zhou M, Wu X, Zhang T, Zhang J. Design, synthesis and biological evaluation of 2-amino-4-(1,2,4-triazol)pyridine derivatives as potent EGFR inhibitors to overcome TKI-resistance. Eur J Med Chem 2020; 187:111966. [DOI: 10.1016/j.ejmech.2019.111966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
|
29
|
Du H, Ding M, Luo N, Shi J, Huang J, Bao X. Design, synthesis, crystal structure and in vitro antimicrobial activity of novel 1,2,4-triazolo[1,5-a]pyrimidine-containing quinazolinone derivatives. Mol Divers 2020; 25:711-722. [PMID: 32006295 DOI: 10.1007/s11030-020-10043-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 01/22/2020] [Indexed: 11/30/2022]
Abstract
A series of novel 1,2,4-triazolo[1,5-a]pyrimidine-containing quinazolin-4(3H)-one derivatives (8a-8o) were designed, synthesized and assessed for their in vitro antibacterial and antifungal activities in agriculture. All the title compounds were completely characterized via 1H NMR, 13C NMR, HRMS and IR spectroscopic data. In particular, the molecular structure of compound 8f was further corroborated through a single-crystal X-ray diffraction measurement. The turbidimetric method revealed that some of the compounds displayed noticeable bactericidal potencies against the tested plant pathogenic bacteria. For example, compounds 8m, 8n and 8o possessed higher antibacterial efficacies in vitro against Xanthomonas oryzae pv. oryzae with EC50 values of 69.0, 53.3 and 58.9 μg/mL, respectively, as compared with commercialized agrobactericide bismerthiazol (EC50 = 91.4 μg/mL). Additionally, compound 8m displayed an EC50 value of 71.5 μg/mL toward Xanthomonas axonopodis pv. citri, comparable to control bismerthiazol (EC50 = 60.5 μg/mL). A preliminary structure-activity relationship (SAR) analysis was also conducted, based on the antibacterial results. Finally, some compounds were also found to have a certain antifungal efficacy in vitro at the concentration of 50 μg/mL.
Collapse
Affiliation(s)
- Huan Du
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Muhan Ding
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Na Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Jun Shi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Jian Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Xiaoping Bao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
30
|
Khan B, Naiyer A, Athar F, Ali S, Thakur SC. Synthesis, characterization and anti-inflammatory activity evaluation of 1,2,4-triazole and its derivatives as a potential scaffold for the synthesis of drugs against prostaglandin-endoperoxide synthase. J Biomol Struct Dyn 2020; 39:457-475. [PMID: 31900051 DOI: 10.1080/07391102.2019.1711193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Substituted 1,2,4-triazole nucleus is common in several drugs used in a variety of clinical conditions including infections, hypoglycemia, hypertension and cancer. In this study, we synthesized 1,2,4-triazole and its 16 hydrazone derivatives (B1-B16), characterized them by IR, NMR and Mass spectroscopy, and evaluated their radical scavenging and anti-inflammatory activities in vitro and in vivo. Out of 16 derivatives, five (B1, B5, B6, B9, and B13) demonstrated a significant radical scavenging and anti-inflammatory activity in vitro. B6, which possessed two electron-donating hydroxyl groups, was most active among all. Molecular docking and MD simulation of the complex of B6 with prostaglandin-endoperoxide synthase (PTGS) or cyclooxygenase (COX) showed that B6 occupied celecoxib binding site in COX with high affinity (the binding free energy of the complex with COX-1 was -10.5, and -11.2 kcal/mol with COX-2). Maximum anti-inflammatory activity was also shown by the B6 derivative in vivo, in the rat model of carrageenan-induced inflammation. B6, along with four other derivatives (B1, B5, B9 and B13) exhibited 80-90% free radical scavenging activity. The IC50 values of these compounds were ≥40 µM. Griess nitrite and dichloro-dihydro-fluorescein-diacetate assays suggested a significant inhibition of nitric oxide and reactive oxygen species, especially by B6 and B9. Taken together, out of 16 derivatives, B6 is reported to have highest anti-inflammatory and antioxidant activity at a low dose level, which may be attributed to its two electron-donating hydroxyls. B6 is proposed to be an important scaffold for the synthesis of new drugs against PTGS for use in a myriad of inflammatory and infectious diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bushra Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Abdullah Naiyer
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Fareeda Athar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Shakir Ali
- Department of Biochemistry, School of Chemical and Life Sciences & DBT BTISNet Bioinformatics infrastructure facility, BIF, Jamia Hamdard, New Delhi, India
| | - Sonu Chand Thakur
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
31
|
Ghanaat J, Khalilzadeh MA, Zareyee D, Shokouhimehr M, Varma RS. Cell cycle inhibition, apoptosis, and molecular docking studies of the novel anticancer bioactive 1,2,4-triazole derivatives. Struct Chem 2019. [DOI: 10.1007/s11224-019-01453-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Galstyan AS, Ghochikyan TV, Samvelyan MA, Frangyan VR, Sarfraz M. Synthesis, Study of the Biological Activity of New 1,2,4‐Triazole Derivatives and Characteristics of the Relationship of the Structure and Biological Activity in a Series of the Latter. ChemistrySelect 2019. [DOI: 10.1002/slct.201902761] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Armen S. Galstyan
- Faculty of ChemistryYerevan State University 1 A Manoukyan Str. Yerevan 0025 Armenia
| | - Tariel V. Ghochikyan
- Faculty of ChemistryYerevan State University 1 A Manoukyan Str. Yerevan 0025 Armenia
| | - Melanya A. Samvelyan
- Faculty of ChemistryYerevan State University 1 A Manoukyan Str. Yerevan 0025 Armenia
| | - Vardges R. Frangyan
- Faculty of ChemistryYerevan State University 1 A Manoukyan Str. Yerevan 0025 Armenia
| | - Muhammad Sarfraz
- Division of Bioorganic ChemistrySchool of PharmacySaarland University Campus B2 1 Saarbruecken D-66123 Germany
| |
Collapse
|
33
|
Diao PC, Jian XE, Chen P, Huang C, Yin J, Huang JC, Li JS, Zhao PL. Design, synthesis and biological evaluation of novel indole-based oxalamide and aminoacetamide derivatives as tubulin polymerization inhibitors. Bioorg Med Chem Lett 2019; 30:126816. [PMID: 31753698 DOI: 10.1016/j.bmcl.2019.126816] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/14/2019] [Accepted: 11/08/2019] [Indexed: 01/24/2023]
Abstract
A series of novel indole-based oxalamide and aminoacetamide derivatives were designed, synthesized, and evaluated for antiproliferative activities. Preliminary results revealed that compound 8g exhibited significant antiproliferative effect against PC-3, HeLa and HCT-116 cell lines. Flow cytometric analysis of the cell cycle demonstrated the compound 8g induced the cell cycle arrest at G2/M phase in HeLa cell lines. Immunocytochemistry revealed loss of intact microtubule structure in cells treated with 8g andinhibition of tubulinpolymerization. Additionally, molecular docking analysis suggested that 8g formed stable interactions in the colchicine-binding site of tubulin. These preliminary results demonstrated that a new class of novel indole-based oxalamide and aminoacetamide derivatives described in the investigation could be developed as potential scaffolds to new anticancer agents.
Collapse
Affiliation(s)
- Peng-Cheng Diao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Xie-Er Jian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Peng Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Chuan Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Jie Yin
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Jie Chun Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Jun-Sheng Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Pei-Liang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
34
|
Fan Z, Shi J, Luo N, Ding M, Bao X. Synthesis, Crystal Structure, and Agricultural Antimicrobial Evaluation of Novel Quinazoline Thioether Derivatives Incorporating the 1,2,4-Triazolo[4,3- a]pyridine Moiety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11598-11606. [PMID: 31560195 DOI: 10.1021/acs.jafc.9b04733] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A total of 22 quinazoline thioether derivatives incorporating a 1,2,4-triazolo[4,3-a]pyridine moiety were designed, synthesized, and evaluated as antimicrobial agents in agriculture. Among these compounds, the chemical structure of compound 6l was further confirmed via single-crystal X-ray diffraction analysis. The bioassay results revealed that some of the compounds possessed noticeable in vitro antibacterial activities against the tested phytopathogenic bacteria. For example, compounds 6b and 6g had EC50 values as low as 10.0 and 24.7 μg/mL against Xanthomonas axonopodis pv. citri (Xac), respectively, which were significantly better than that of the commercial agrobactericide bismerthiazol (56.9 μg/mL). Particularly, compound 6b was also found to be capable of suppressing the pathogenic bacterium Xanthomonas oryzae pv. oryzae (Xoo) approximately 12-fold more potent than control bismerthiazol, in terms of their EC50 values (7.2 versus 89.8 μg/mL). Importantly, the most active compound 6b turned out to be one with the highest hydrophilicity and the lowest molecular weight within the series. In vivo bioassays further showed the application prospect of 6b as a promising plant bactericide for controlling Xoo. Additionally, in vitro antifungal activities of these compounds were also evaluated at the concentration of 50 μg/mL. Overall, the present study demonstrated the potential of 1,2,4-triazolo[4,3-a]pyridine-bearing quinazoline thioether derivatives as efficient agricultural antibacterial agents for crop protection.
Collapse
Affiliation(s)
- Zhijiang Fan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals , Guizhou University , Guiyang 550025 , P. R. China
| | - Jun Shi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals , Guizhou University , Guiyang 550025 , P. R. China
| | - Na Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals , Guizhou University , Guiyang 550025 , P. R. China
| | - Muhan Ding
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals , Guizhou University , Guiyang 550025 , P. R. China
| | - Xiaoping Bao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals , Guizhou University , Guiyang 550025 , P. R. China
| |
Collapse
|
35
|
Ansari M, Shokrzadeh M, Karima S, Rajaei S, Hashemi SM, Mirzaei H, Fallah M, Emami S. Design, synthesis and biological evaluation of flexible and rigid analogs of 4H-1,2,4-triazoles bearing 3,4,5-trimethoxyphenyl moiety as new antiproliferative agents. Bioorg Chem 2019; 93:103300. [PMID: 31586708 DOI: 10.1016/j.bioorg.2019.103300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
Several flexible and rigid analogs of 4H-1,2,4-triazoles (compounds 8a-g and 9a-g) bearing trimethoxyphenyl pharmacophoric unit, were designed and synthesized as potential anticancer agents. The in vitro cytotoxic assay indicated that both flexible and rigid analogs (8 and 9, respectively) can potentially inhibit the growth of cancerous cells (A549, MCF7, and SKOV3), with IC50 values less than 5.0 µM. Furthermore, compounds 10a-l as regional isomers of compounds 9 exhibited remarkable cytotoxic activity with IC50 values ranging from 0.30 to 5.0 µM. The rigid analogs 9a, 10h and 10k were significantly more potent than etoposide against MCF7, SKOV3 and A549 cells, respectively. These compounds showed high selectivity towards cancer cells over normal cells, as they had no significant cytotoxicity against L929 cells. In addition, the representative compounds 9a and 10h could inhibit the tubulin polymerization at micro-molar levels. By determining changes in the colchicine-tubulin fluorescence, it was suggested that compound 10h could bind to the tubulin at the colchicine pocket. The molecular docking study further confirmed the inhibitory activity of promising compounds 9a, 10h and 10k on tubulin polymerization through binding to the colchicine-binding site.
Collapse
Affiliation(s)
- Mahsa Ansari
- Pharmaceutical Sciences Research Center, Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Shima Rajaei
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Seyedeh Mahdieh Hashemi
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hassan Mirzaei
- Pharmaceutical Sciences Research Center, Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Marjan Fallah
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
36
|
Potent combretastatin A-4 analogs containing 1,2,4-triazole: Synthesis, antiproliferative, anti-tubulin activity, and docking study. Eur J Med Chem 2019; 183:111697. [PMID: 31536891 DOI: 10.1016/j.ejmech.2019.111697] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022]
Abstract
A series of cis restricted 1,2,4-triazole analogs of combretastatin A-4 (CA-4) were designed and synthesized. The antiproliferative activity of these compounds was measured on hepatocellular carcinoma HepG2, leukemia HL-60, and breast cancer MCF-7 cell lines. The obtained results showed a substantial ability of the synthesized anilides to inhibit tumor growth. On HepG2 cells, 5o and 5r showed potent IC50 values of 0.10 and 0.04 μM, respectively. While on HL-60 cells, the IC50 values were 0.004 and 0.01 μM for 5b and 5i, respectively. The inhibitory activity of tubulin polymerization was evaluated on HepG2 cells. The anilide 5r showed a remarkable tubulin inhibition compared to CA-4. Moreover, flow cytometry studies showed that HepG2 cells treated with the most potent compounds 5b and 5r were arrested in the G2/M phase of the cell cycle. This effect was accompanied by cellular apoptosis and activation of caspase-3. Molecular modeling showed several hydrogen bonding and van der Waals interactions with several important amino acids inside the colchicine binding site of tubulin.
Collapse
|
37
|
Novel [1,2,4]triazolo[1,5-a]pyrimidine derivatives as potent antitubulin agents: Design, multicomponent synthesis and antiproliferative activities. Bioorg Chem 2019; 92:103260. [PMID: 31525523 DOI: 10.1016/j.bioorg.2019.103260] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/27/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022]
Abstract
As restricted CA-4 analogues, a novel series of [1,2,4]triazolo[1,5-a]pyrimidines possessing 3,4,5-trimethoxylphenyl groups has been achieved successfully via an efficient one-pot three-component reaction of 3-(3,4,5-trimethoxyphenyl)-1H-1,2,4-triazol-5-amine, 1,3-dicarbonyl compounds and aldehydes. Initial biological evaluation demonstrated some of target compounds displayed potent antitumor activity in vitro against three cancer cell lines. Among them, the most highly active analogue 26 inhibited the growth of HeLa, and A549 cell lines with IC50 values at 0.75, and 1.02 μM, respectively, indicating excellent selectivity over non-tumoural cell line HEK-293 (IC50 = 29.94 μM) which suggested that the target compounds might possess a high safety index. Moreover, cell cycle analysis illustrated that the analogue 26 significantly induced HeLa cells arrest in G2/M phase, meanwhile the compound could dramatically affect cell morphology and microtubule networks. In addition, compound 28 exhibited potent anti-tubulin activity with IC50 values of 9.90 μM, and molecular docking studies revealed the analogue occupied the colchicine-binding site of tubulin. These observations suggest that [1,2,4]triazolo[1,5-a]pyrimidines represent a new class of tubulin polymerization inhibitors and well worth further investigation aiming to generate potential anticancer agents.
Collapse
|
38
|
Diao PC, Hu MJ, Yang HK, You WW, Zhao PL. Facile one-pot synthesis, antiproliferative evaluation and structure-activity relationships of 3-amino-1H-indoles and 3-amino-1H-7-azaindoles. Bioorg Chem 2019; 88:102914. [DOI: 10.1016/j.bioorg.2019.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/26/2019] [Accepted: 04/06/2019] [Indexed: 12/31/2022]
|
39
|
A class of novel tubulin polymerization inhibitors exert effective anti-tumor activity via mitotic catastrophe. Eur J Med Chem 2019; 163:896-910. [DOI: 10.1016/j.ejmech.2018.12.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 02/08/2023]
|
40
|
Chen P, Zhuang YX, Diao PC, Yang F, Wu SY, Lv L, You WW, Zhao PL. Synthesis, biological evaluation, and molecular docking investigation of 3-amidoindoles as potent tubulin polymerization inhibitors. Eur J Med Chem 2019; 162:525-533. [DOI: 10.1016/j.ejmech.2018.11.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/29/2018] [Accepted: 11/16/2018] [Indexed: 01/30/2023]
|
41
|
Yang F, He CP, Diao PC, Hong KH, Rao JJ, Zhao PL. Discovery and optimization of 3,4,5-trimethoxyphenyl substituted triazolylthioacetamides as potent tubulin polymerization inhibitors. Bioorg Med Chem Lett 2018; 29:22-27. [PMID: 30448234 DOI: 10.1016/j.bmcl.2018.11.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/05/2018] [Accepted: 11/12/2018] [Indexed: 12/17/2022]
Abstract
Based on our previous research, three series of new triazolylthioacetamides possessing 3,4,5-trimethoxyphenyl moiety were synthesized, and evaluated for antiproliferative activities and inhibition of tubulin polymerization. The most promising compounds 8b and 8j demonstrated more significant antiproliferative activities against MCF-7, HeLa, and HT-29 cell lines than our lead compound 6. Moreover, analogues 8f, 8j, and 8o manifested more potent antiproliferative activities against HeLa cell line with IC50 values of 0.04, 0.05 and 0.16 μM, respectively, representing 100-, 82-, and 25-fold improvements of the activity compared to compound 6. Furthermore, the representative compound, 8j, was found to induce significant cell cycle arrest at the G2/M phase in HeLa cell lines via a concentration-dependent manner. Meanwhile, compound 8b exhibited the most potent tubulin polymerization inhibitory activity with an IC50 value of 5.9 μM, which was almost as active as that of CA-4 (IC50 = 4.2 μM). Additionally, molecular docking analysis suggested that 8b formed stable interactions in the colchicine-binding site of tubulin.
Collapse
Affiliation(s)
- Fang Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Cai-Ping He
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Peng-Cheng Diao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Kwon Ho Hong
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis 55414, United States
| | - Jin-Jun Rao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China.
| | - Pei-Liang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
42
|
Jin RY, Zeng CY, Liang XH, Sun XH, Liu YF, Wang YY, Zhou S. Design, synthesis, biological activities and DFT calculation of novel 1,2,4-triazole Schiff base derivatives. Bioorg Chem 2018; 80:253-260. [DOI: 10.1016/j.bioorg.2018.06.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/21/2018] [Accepted: 06/23/2018] [Indexed: 01/19/2023]
|
43
|
|
44
|
Jin R, Liu J, Zhang G, Li J, Zhang S, Guo H. Design, Synthesis, and Antifungal Activities of Novel 1,2,4-Triazole Schiff Base Derivatives. Chem Biodivers 2018; 15:e1800263. [PMID: 29981528 DOI: 10.1002/cbdv.201800263] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/05/2018] [Indexed: 01/01/2023]
Abstract
With the aim to find new compounds with high antifungal activity, 21 4-amino-5-substituted-1,2,4-triazole Schiff bases (2a - 2g, 3a - 3g, and 4a - 4g) were designed and synthesized. Their antifungal activities against Pythium solani, Gibberlla nicotiancola, Fusarium oxysporium f. sp. niveum, Gibberlla saubinetii, Alternaria iycopersici, Phytophthora capsici, Physalospora piricola, Cercospora arachidicola hori, and Fusarium oxysporium f. sp. cucumber were tested, parts of the compounds exhibited excellent antifungal activity. This research provides useful information for further study of antifungal agents.
Collapse
Affiliation(s)
- Ruyi Jin
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an/Xianyang, 712046, P. R. China
| | - Jingli Liu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an/Xianyang, 712046, P. R. China
| | - Guanghui Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an/Xianyang, 712046, P. R. China
| | - Jiajia Li
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an/Xianyang, 712046, P. R. China
| | - Shuan Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an/Xianyang, 712046, P. R. China
| | - Hui Guo
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an/Xianyang, 712046, P. R. China
| |
Collapse
|
45
|
Fan Z, Shi J, Bao X. Synthesis and antimicrobial evaluation of novel 1,2,4-triazole thioether derivatives bearing a quinazoline moiety. Mol Divers 2018; 22:657-667. [DOI: 10.1007/s11030-018-9821-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 03/07/2018] [Indexed: 01/30/2023]
|
46
|
Conesa-Milián L, Falomir E, Murga J, Carda M, Meyen E, Liekens S, Alberto Marco J. Synthesis and biological evaluation of carbamates derived from aminocombretastatin A-4 as vascular disrupting agents. Eur J Med Chem 2018; 147:183-193. [DOI: 10.1016/j.ejmech.2018.01.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 02/08/2023]
|
47
|
Naret T, Bignon J, Bernadat G, Benchekroun M, Levaique H, Lenoir C, Dubois J, Pruvost A, Saller F, Borgel D, Manoury B, Leblais V, Darrigrand R, Apcher S, Brion JD, Schmitt E, Leroux FR, Alami M, Hamze A. A fluorine scan of a tubulin polymerization inhibitor isocombretastatin A-4: Design, synthesis, molecular modelling, and biological evaluation. Eur J Med Chem 2018; 143:473-490. [DOI: 10.1016/j.ejmech.2017.11.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/12/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022]
|
48
|
Song MY, Cao CY, He QR, Dong QM, Li D, Tang JJ, Gao JM. Constructing novel dihydrofuran and dihydroisoxazole analogues of isocombretastatin-4 as tubulin polymerization inhibitors through [3+2] reactions. Bioorg Med Chem 2017; 25:5290-5302. [PMID: 28803799 DOI: 10.1016/j.bmc.2017.07.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/19/2022]
Abstract
[3+2] reactions play a key role in constructing various pharmaceutical moleculars. In this study, using Mn(OAc)3 mediated and 1,3-dipolar [3+2] cyclization reactions, 38 novel dihydrofuran and dihydroisoxazole analogues of isoCA-4 were synthesized as inhibitors of tubulin polymerization. Among them, compound 6g was found to be the most potent cytotoxic agents against PC-3 cells with IC50 value of 0.47μM, and compound 5p exhibted highest activity on HeLa cells with IC50 vaule of 2.32µM. Tubulin polymerization assay revealed that 6g was a dose-dependent and effective inhibitor of tubulin assembly. Immunohistochemistry studies and cell cycle distribution analysis indicated that 6g severely disrupted microtubule network and significantly arrested most cells in the G2/M phase of the cell cycle in PC-3 cells. In addition, molecular docking studies showed that two chiral isomers of 6g can bind efficiently and similarly at colchicine binding site of tubulin.
Collapse
Affiliation(s)
- Ming-Yu Song
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Chen-Yu Cao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Qiu-Rui He
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Qing-Miao Dong
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Ding Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
49
|
Li Q, Yang HK, Sun Q, You WW, Zhao PL. Design, synthesis and antiproliferative activity of novel substituted 2-amino-7,8-dihydropteridin-6(5H)-one derivatives. Bioorg Med Chem Lett 2017; 27:3954-3958. [PMID: 28789892 DOI: 10.1016/j.bmcl.2017.07.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/20/2017] [Accepted: 07/28/2017] [Indexed: 01/04/2023]
Abstract
Based on our previous work, a series of novel 2-amino-7,8-dihydropteridin-6(5H)-one derivatives were designed and synthesized via a ring-closing strategy. Biological evaluation with four human cancer cell lines (BT549, T47D, MDA-MB-468, and MDA-MB-231) showed that most of these compounds possessed moderate to potent antiproliferative activities. The most promising compound 8-benzyl-2-(phenethylamino)-7,8-dihydropteridin-6(5H)-one (6q) possessing IC50 values of 7.75, 6.37, and 10.73μM against MDA-MB-468, T47D, and BT549, respectively, which were 49, 11, and 8 folds more active than the positive control fluorouracil. Moreover, fluorescence-activated cell sorting analysis revealed that compound 6q displayed a significant effect on G1 cell-cycle arrest in a concentration-dependent manner in T47D cells. The initial structure-activity relationship studies indicated that linker-length of amine chain in C-2 position of pyrimidine ring played a crucial role in modulating the antitumor activity, which could be of help in the rational design of dihydropteridin-6(5H)-ones as novel anticancer drugs.
Collapse
Affiliation(s)
- Qiu Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Hai-Kui Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Qi Sun
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Wen-Wei You
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Pei-Liang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
50
|
Damião MCFCB, Galaverna R, Kozikowski AP, Eubanks J, Pastre JC. Telescoped continuous flow generation of a library of highly substituted 3-thio-1,2,4-triazoles. REACT CHEM ENG 2017. [DOI: 10.1039/c7re00125h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An integrated continuous flow process for the synthesis of 3-thio-1,2,4-triazoles is reported. A small library of 18 compounds was prepared in just 48 minutes of residence time in moderate to excellent yields.
Collapse
Affiliation(s)
| | - Renan Galaverna
- Institute of Chemistry
- University of Campinas - UNICAMP
- Campinas
- Brazil
| | | | - James Eubanks
- Division of Genetics and Development
- Krembil Research Institute
- Toronto
- Canada
| | - Julio C. Pastre
- Institute of Chemistry
- University of Campinas - UNICAMP
- Campinas
- Brazil
| |
Collapse
|