1
|
Hassan AHE, Choi Y, Kim R, Kim HJ, Almatary AM, El-Sayed SM, Lee Y, Lee JK, Park KD, Lee YS. Synthesis and biological evaluation of O 4'-benzyl-hispidol derivatives and analogs as dual monoamine oxidase-B inhibitors and anti-neuroinflammatory agents. Bioorg Med Chem 2024; 110:117826. [PMID: 39004050 DOI: 10.1016/j.bmc.2024.117826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Design, synthesis, and biological evaluation of two series of O4'-benzyl-hispidol derivatives and the analogous corresponding O3'-benzyl derivatives aiming to develop selective monoamine oxidase-B inhibitors endowed with anti-neuroinflammatory activity is reported herein. The first O4'-benzyl-hispidol derivatives series afforded several more potentially active and MAO-B inhibitors than the O3'-benzyl derivatives series. The most potential compound 2e of O4'-benzyl derivatives elicited sub-micromolar MAO-B IC50 of 0.38 µM with a selectivity index >264 whereas most potential compound 3b of O3'-benzyl derivatives showed only 0.95 MAO-B IC50 and a selectivity index >105. Advancement of the most active compounds showing sub-micromolar activities to further cellular evaluations of viability and induced production of pro-neuroinflammatory mediators confirmed compound 2e as a potential lead compound inhibiting the production of the neuroinflammatory mediator nitric oxide significantly by microglial BV2 cells at 3 µM concentration without significant cytotoxicity up to 30 µM. In silico molecular docking study predicted plausible binding modes with MAO enzymes and provided insights at the molecular level. Overall, this report presents compound 2e as a potential lead compound to develop potential multifunctional compounds.
Collapse
Affiliation(s)
- Ahmed H E Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Yeonwoo Choi
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Rium Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
| | - Hyeon Jeong Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
| | - Aya M Almatary
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Selwan M El-Sayed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura National University, Gamasa 7731168, Egypt
| | - Yeongae Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong Kil Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Ki Duk Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea; Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
2
|
Fan M, Song X, Lu L, He J, Shen Y, Zhang C, Wang F, Xie Y. Comprehensive safety evaluation of a novel multitargeting compound XYY-CP1106: A candidate for Alzheimer's disease. Biomed Pharmacother 2024; 176:116786. [PMID: 38805971 DOI: 10.1016/j.biopha.2024.116786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
Multitargeting has become a promising strategy for the development of anti-Alzheimer's disease (AD) drugs, considering the complexity of molecular mechanisms in AD pathology. In most pre-clinical studies, the effectiveness of these multi-targeted anti-AD drugs has been demonstrated but comprehensive safety assessments are lacking. Here, the safety evaluation of a novel multi-targeted candidate in AD (XYY-CP1106), characterized by its dual-property of iron chelation and monoamine oxidase B inhibition, was conducted by multifaceted analysis. Acute toxicity in mice was conducted to investigate the safety of oral administration and the maximum tolerated dose of the agent. In vitro Ames analysis, CHL chromosomal aberration analysis, and bone marrow micronucleus analysis were executed to evaluate the genotoxicity. A teratogenesis investigation in pregnant mice were meticulously performed to evaluate the teratogenesis of XYY-CP1106. Furthermore, a 90-day long-term toxicity analysis in rats was investigated to evaluate the cumulative toxicity after long-term administration. Strikingly, no toxic phenomena were found in all investigations, demonstrating relatively high safety profile of the candidate compound. The securing of safety heightened the translational significance of XYY-CP1106 as a novel multi-targeted anti-AD candidate, supporting the rationality of multitargeting strategy in the designs of smart anti-AD drugs.
Collapse
Affiliation(s)
- Miaoliang Fan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaoxin Song
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liwen Lu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiayan He
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yikai Shen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Fang Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, China.
| |
Collapse
|
3
|
Sudevan ST, Oh JM, Abdelgawad MA, Abourehab MAS, Rangarajan TM, Kumar S, Ahmad I, Patel H, Kim H, Mathew B. Introduction of benzyloxy pharmacophore into aryl/heteroaryl chalcone motifs as a new class of monoamine oxidase B inhibitors. Sci Rep 2022; 12:22404. [PMID: 36575270 PMCID: PMC9794710 DOI: 10.1038/s41598-022-26929-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The inhibitory action of fifteen benzyloxy ortho/para-substituted chalcones (B1-B15) was evaluated against human monoamine oxidases (hMAOs). All the molecules inhibited hMAO-B isoform more potently than hMAO-A. Furthermore, the majority of the molecules showed strong inhibitory actions against hMAO-B at 10 μM level with residual activities of less than 50%. Compound B10 has an IC50 value of 0.067 μM, making it the most potent inhibitor of hMAO-B, trailed by compound B15 (IC50 = 0.12 μM). The thiophene substituent (B10) in the A-ring exhibited the strongest hMAO-B inhibition structurally, however, increased residue synthesis did not result in a rise in hMAO-B inhibition. In contrast, the benzyl group at the para position of the B-ring displayed more hMAO-B inhibition than the other positions. Compounds B10 and B15 had relatively high selectivity index (SI) values for hMAO-B (504.791 and 287.600, respectively). Ki values of B10 and B15 were 0.030 ± 0.001 and 0.033 ± 0.001 μM, respectively. The reversibility study showed that B10 and B15 were reversible inhibitors of hMAO-B. PAMPA assay manifested that the benzyloxy chalcones (B10 and B15) had a significant permeability and CNS bioavailability with Pe value higher than 4.0 × 10-6 cm/s. Both compounds were stabilized in protein-ligand complexes by the π-π stacking, which enabled them to bind to the hMAO-B enzyme's active site incredibly effectively. The hMAO-B was stabilized by B10- and B15-hMAO-B complexes, with binding energies of - 74.57 and - 87.72 kcal/mol, respectively. Using a genetic algorithm and multiple linear regression, the QSAR model was created. Based on the best 2D and 3D descriptor-based QSAR model, the following statistics were displayed: R2 = 0.9125, Q2loo = 0.8347. These findings imply that B10 and B15 are effective, selective, and reversible hMAO-B inhibitors.
Collapse
Affiliation(s)
- Sachithra Thazhathuveedu Sudevan
- grid.411370.00000 0000 9081 2061Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041 India
| | - Jong Min Oh
- grid.412871.90000 0000 8543 5345Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922 Republic of Korea
| | - Mohamed A. Abdelgawad
- grid.440748.b0000 0004 1756 6705Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, 72341 Saudi Arabia ,grid.411662.60000 0004 0412 4932Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514 Egypt
| | - Mohammed A. S. Abourehab
- grid.412832.e0000 0000 9137 6644Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955 Saudi Arabia
| | - T. M. Rangarajan
- grid.8195.50000 0001 2109 4999Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi, 110021 India
| | - Sunil Kumar
- grid.411370.00000 0000 9081 2061Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041 India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule, 424002 Maharashtra India
| | - Harun Patel
- grid.412233.50000 0001 0641 8393Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405 Maharashtra India
| | - Hoon Kim
- grid.412871.90000 0000 8543 5345Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922 Republic of Korea
| | - Bijo Mathew
- grid.411370.00000 0000 9081 2061Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041 India
| |
Collapse
|
4
|
Sudevan ST, Rangarajan TM, Al-Sehemi AG, Nair AS, Koyiparambath VP, Mathew B. Revealing the role of the benzyloxy pharmacophore in the design of a new class of monoamine oxidase-B inhibitors. Arch Pharm (Weinheim) 2022; 355:e2200084. [PMID: 35567313 DOI: 10.1002/ardp.202200084] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/09/2022]
Abstract
The conceptual layout of monoamine oxidase (MAO) inhibitors has been modified to explore their potential biological application in the case of neurological disorders for the time being. The current review article is an effort to display the summation of innovative conceptual prospects of MAO inhibitors and their intriguing chemistry and bioactivity. Based on this scenario, we emphasize the pivotal role of the benzyloxy moiety attached to scaffolds like oxadiazolones, indolalkylamines, safinamide, caffeine, benzofurans, α-tetralones, β-nitrostyrene, benzoquinones, coumarins, indoles, chromones, and chromanone analogs, while acting as an MAO inhibitor.
Collapse
Affiliation(s)
- Sachithra T Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - T M Rangarajan
- Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi, India
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia.,Department of Chemistry, KingKhalid University, 61413, Abha, Saudi Arabia
| | - Aathira S Nair
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Vishal P Koyiparambath
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| |
Collapse
|
5
|
Kumar S, Nair AS, Bhashkar V, Sudevan ST, Koyiparambath VP, Khames A, Abdelgawad MA, Mathew B. Navigating into the Chemical Space of Monoamine Oxidase Inhibitors by Artificial Intelligence and Cheminformatics Approach. ACS OMEGA 2021; 6:23399-23411. [PMID: 34549139 PMCID: PMC8444296 DOI: 10.1021/acsomega.1c03250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/06/2021] [Indexed: 05/20/2023]
Abstract
The monoamine oxidase (MAO) enzyme class is a prevalent target for many neurodegenerative and depressive disorders. Even though scrutinization of many promising drugs for the treatment of MAO inhibition has been carried out in recent times, a conclusive structural requirement for potent activity needs to be developed. Numerous approaches have been examined for the identification of structural features for potent MAO inhibitors (MAOIs) that mainly involve an array of computational studies, synthetic approaches, and biological evaluation. In this paper, we have analyzed ∼2200 well-known MAOIs to expand perceptions in the chemical space of MAOIs. The physicochemical properties of the MAOIs disclosed a discernible hydrophobic feature making a bunch discrete from the central nervous system (CNS) acting drugs, as exposed using the principal component analysis (PCA). The Murcko scaffold structure study revealed unfavorable and favorable scaffold structures, in both data sets, with the highest biological activity shown by the 3-phenyl-2H-chromen-2-one scaffold. This scaffold showed a polypharmacological effect. R-group disintegration and automatic structure-activity relationship (SAR) study resulted in identification of substructures responsible for the inhibitory bioactivity of the MAO-A and MAO-B enzymes. Moreover, with activity cliff analysis, significant biological activity was detected by simple molecular conversion in the chemical compound structure. In addition, we used the machine learning tool to generate a hypothesis wherein pyrazole, benzene ring, and amide containing structural functionalities can exhibit potential biological activities. This hypothesis revealed that CNS target drugs, C4155, C13390, C21265, C43862, C31524, C24810, C37100, C42075, and C43644, could be repurposed as valuable candidates for the MAO-B enzyme. For researchers, this study will bring new perceptions in the discovery and development of MAOIs and direct lead and hit optimization for the progress of small molecules beneficial for MAO-targeting associated diseases.
Collapse
Affiliation(s)
- Sunil Kumar
- Department
of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India
| | - Aathira Sujathan Nair
- Department
of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India
| | - Vaishnav Bhashkar
- Department
of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India
| | - Sachithra Thazhathuveedu Sudevan
- Department
of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India
| | - Vishal Payyalot Koyiparambath
- Department
of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India
| | - Ahmed Khames
- Department
of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - Bijo Mathew
- Department
of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India
- ,
| |
Collapse
|
6
|
Sharma P, Singh M, Mathew B. An Update of Synthetic Approaches and Structure‐Activity Relationships of Various Classes of Human MAO‐B Inhibitors. ChemistrySelect 2021. [DOI: 10.1002/slct.202004188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Pratibha Sharma
- Chitkara College of Pharmacy Chitkara University Punjab India
| | - Manjinder Singh
- Chitkara College of Pharmacy Chitkara University Punjab India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus Kochi 682 041 India
| |
Collapse
|
7
|
Sang Z, Wang K, Han X, Cao M, Tan Z, Liu W. Design, Synthesis, and Evaluation of Novel Ferulic Acid Derivatives as Multi-Target-Directed Ligands for the Treatment of Alzheimer's Disease. ACS Chem Neurosci 2019; 10:1008-1024. [PMID: 30537804 DOI: 10.1021/acschemneuro.8b00530] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A novel series of ferulic acid derivatives was designed and synthesized on the basis of the multi-target-directed ligands strategy for the treatment of Alzheimer's disease (AD). In vitro results revealed that all the target compounds were highly effective and selective butyrylcholinesterase (BuChE) inhibitors. In particular, compound TM-10 showed the best BuChE inhibitory activity, with IC50 = 8.9 nM, and remarkable monoamine oxidase A and B inhibitory potency, with IC50 = 6.3 and 8.6 μM, respectively. TM-10 could inhibit (53.9%) and disaggregate (43.8%) self-induced amyloid-β peptide (Aβ) aggregation. In addition, TM-10 exhibited potent antioxidant activity (ORAC = 0.52 equiv) and neuroprotective effect against Aβ1-42-mediated SH-SY5Y neurotoxicity, and it acted as an autophagic activator. TM-10 also showed good blood-brain barrier penetration. Furthermore, TM-10 exhibited a favorable dyskinesia recovery rate and response efficiency on an AlCl3-induced zebrafish AD model and a potent neuroprotective effect on Aβ1-40-induced zebrafish vascular injury. Further, in vivo assays demonstrated that TM-10 showed low acute toxicity, and the step-down passive avoidance test indicated that this compound could improve scopolamine-induced memory deficit in mice. Therefore, the present study displays evidence that TM-10 is a potent, multi-functional agent against AD and could be a promising lead candidate for anti-Alzheimer's disease drug development.
Collapse
Affiliation(s)
- Zhipei Sang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Keren Wang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Xue Han
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Mengxiao Cao
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Zhenghuai Tan
- Institute of Traditional Chinese Medicine Pharmacology and Toxicology, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Wenmin Liu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, China
| |
Collapse
|
8
|
Tripathi AC, Upadhyay S, Paliwal S, Saraf SK. Privileged scaffolds as MAO inhibitors: Retrospect and prospects. Eur J Med Chem 2018; 145:445-497. [PMID: 29335210 DOI: 10.1016/j.ejmech.2018.01.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/01/2017] [Accepted: 01/01/2018] [Indexed: 12/24/2022]
Abstract
This review aims to be a comprehensive, authoritative, critical, and readable review of general interest to the medicinal chemistry community because it focuses on the pharmacological, chemical, structural and computational aspects of diverse chemical categories as monoamine oxidase inhibitors (MAOIs). Monoamine oxidases (MAOs), namely MAO-A and MAO-B represent an enormously valuable class of neuronal enzymes embodying neurobiological origin and functions, serving as potential therapeutic target in neuronal pharmacotherapy, and hence we have coined the term "Neurozymes" which is being introduced for the first time ever. Nowadays, therapeutic attention on MAOIs engrosses two imperative categories; MAO-A inhibitors, in certain mental disorders such as depression and anxiety, and MAO-B inhibitors, in neurodegenerative disorders like Alzheimer's disease (AD) and Parkinson's disease (PD). The use of MAOIs declined due to some potential side effects, food and drug interactions, and introduction of other classes of drugs. However, curiosity in MAOIs is reviving and the recent developments of new generation of highly selective and reversible MAOIs, have renewed the therapeutic prospective of these compounds. The initial section of the review emphasizes on the detailed classification, structural and binding characteristics, therapeutic potential, current status and future challenges of the privileged pharmacophores. However, the chemical prospective of privileged scaffolds such as; aliphatic and aromatic amines, amides, hydrazines, azoles, diazoles, tetrazoles, indoles, azines, diazines, xanthenes, tricyclics, benzopyrones, and more interestingly natural products, along with their conclusive SARs have been discussed in the later segment of review. The last segment of the article encompasses some patents granted in the field of MAOIs, in a simplistic way.
Collapse
Affiliation(s)
- Avinash C Tripathi
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, UP, India
| | - Savita Upadhyay
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, UP, India
| | - Sarvesh Paliwal
- Pharmacy Department, Banasthali Vidyapith, Banasthali, Tonk 304022, Rajasthan, India
| | - Shailendra K Saraf
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, UP, India.
| |
Collapse
|
9
|
Lee HW, Ryu HW, Baek SC, Kang MG, Park D, Han HY, An JH, Oh SR, Kim H. Potent inhibitions of monoamine oxidase A and B by acacetin and its 7-O-(6-O-malonylglucoside) derivative from Agastache rugosa. Int J Biol Macromol 2017. [DOI: 10.1016/j.ijbiomac.2017.06.076] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|