1
|
Rajput S, Malviya R, Uniyal P. Advancements in the diagnosis, prognosis, and treatment of retinoblastoma. CANADIAN JOURNAL OF OPHTHALMOLOGY 2024; 59:281-299. [PMID: 38369298 DOI: 10.1016/j.jcjo.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/05/2023] [Accepted: 01/29/2024] [Indexed: 02/20/2024]
Abstract
Retinoblastoma (RB) is a prevalent primitive intraocular malignancy in children, particularly in those younger than age 3 years. RB is caused by mutations in the RB1 gene. In developing countries, mortality rates for this type of cancer are still high, whereas industrialized countries have achieved a survival rate of >95%-98%. Untreated, the condition can be fatal, underscoring the importance of early diagnosis. The existing treatments primarily consist of surgery, radiotherapy, and chemotherapy. The detrimental effects of radiation and chemotherapeutic drugs have been documented as factors that contribute to increased mortality rates and negatively affect the quality of life for patients. MicroRNA (miRNA), a type of noncoding RNA, exerts a substantial influence on RB development and the emergence of treatment resistance by regulating diverse cellular processes. This review highlights recent developments in the involvement of miRNAs in RB. This encompasses the clinical significance of miRNAs in the diagnosis, prognosis, and treatment of RB. Additionally, this paper examines the regulatory mechanisms of miRNAs in RB and explores potential therapeutic interventions. This paper provides an overview of the current and emerging treatment options for RB, focusing on recent studies investigating the application of different types of nanoparticles for the diagnosis and treatment of this condition.
Collapse
Affiliation(s)
- Shivam Rajput
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
2
|
Karati D, Mukherjee S, Roy S. Emerging therapeutic strategies in cancer therapy by HDAC inhibition as the chemotherapeutic potent and epigenetic regulator. Med Oncol 2024; 41:84. [PMID: 38438564 DOI: 10.1007/s12032-024-02303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/16/2024] [Indexed: 03/06/2024]
Abstract
In developing new cancer medications, attention has been focused on novel epigenetic medicines called histone deacetylase (HDAC) inhibitors. Our understanding of cancer behavior is being advanced by research on epigenetics, which also supplies new targets for improving the effectiveness of cancer therapy. Most recently published patents emphasize HDAC selective drugs and multitarget HDAC inhibitors. Though significant progress has been made in emerging HDAC selective antagonists, it is urgently necessary to find new HDAC blockers with novel zinc-binding analogues to avoid the undesirable pharmacological characteristics of hydroxamic acid. HDAC antagonists have lately been explored as a novel approach to treating various diseases, including cancer. The complicated terrain of HDAC inhibitor development is summarized in this article, starting with a discussion of the many HDAC isotypes and their involvement in cancer biology, followed by a discussion of the mechanisms of action of HDAC inhibitors, their current level of development, effect of miRNA, and their combination with immunotherapeutic.
Collapse
Affiliation(s)
- Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, 124 B.L. Saha Road, Kolkata, West Bengal, 700053, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, 124 B.L. Saha Road, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
3
|
Micheletti G, Boga C, Drius G, Bordoni S, Calonghi N. Suberoylanilide Hydroxamic Acid Analogs with Heteroaryl Amide Group and Different Chain Length: Synthesis and Effect on Histone Deacetylase. Molecules 2024; 29:238. [PMID: 38202821 PMCID: PMC10781187 DOI: 10.3390/molecules29010238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
This review covers the last 25 years of the literature on analogs of suberoylanilide hydroxamic acid (SAHA, known also as vorinostat) acting as an HDAC inhibitor. In particular, the topic has been focused on the synthesis and biological activity of compounds where the phenyl group (the surface recognition moiety, CAP) of SAHA has been replaced by an azaheterocycle through a direct bond with amide nitrogen atom, and the methylene chain in the linker region is of variable length. Most of the compounds displayed good to excellent inhibitory activity against HDACs and in many cases showed antiproliferative activity against human cancer cell lines.
Collapse
Affiliation(s)
- Gabriele Micheletti
- Department of Industrial Chemistry ‘Toso Montanari’, Alma Mater Studiorum, Università di Bologna, Viale Del Risorgimento 4, 40136 Bologna, Italy; (G.D.); (S.B.)
| | - Carla Boga
- Department of Industrial Chemistry ‘Toso Montanari’, Alma Mater Studiorum, Università di Bologna, Viale Del Risorgimento 4, 40136 Bologna, Italy; (G.D.); (S.B.)
| | - Giacomo Drius
- Department of Industrial Chemistry ‘Toso Montanari’, Alma Mater Studiorum, Università di Bologna, Viale Del Risorgimento 4, 40136 Bologna, Italy; (G.D.); (S.B.)
| | - Silvia Bordoni
- Department of Industrial Chemistry ‘Toso Montanari’, Alma Mater Studiorum, Università di Bologna, Viale Del Risorgimento 4, 40136 Bologna, Italy; (G.D.); (S.B.)
| | - Natalia Calonghi
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
4
|
Recent updates on thienopyrimidine derivatives as anticancer agents. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03040-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
AbstractThienopyrimidine derivatives hold a unique place between fused pyrimidine compounds. They are important and widely represented in medicinal chemistry as they are structural analogs of purines. Thienopyrimidine derivatives have various biological activities. The current review discusses different synthetic methods for the preparation of heterocyclic thienopyrimidine derivatives. It also highlights the most recent research on the anticancer effects of thienopyrimidines through the inhibition of various enzymes and pathways, which was published within the last 9 years.
Graphical Abstract
Collapse
|
5
|
Hydroxamic acid hybrids as the potential anticancer agents: An Overview. Eur J Med Chem 2020; 205:112679. [DOI: 10.1016/j.ejmech.2020.112679] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/12/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
|
6
|
Zhang B, Zhang Q, Liu Z, Wang N, Jin H, Liu F, Zhang C, He S. Synthesis and Anticancer Research of
N
‐(2‐aminophenyl)benzamide Acridine Derivatives as Dual Topoisomerase I and Isoform‐Selective HDAC Inhibitors. ChemistrySelect 2020. [DOI: 10.1002/slct.202001880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Bin Zhang
- College of Food and Pharmaceutical Sciences Ningbo University Ningbo Zhejiang 315211 China
- State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Shenzhen 518055 China
| | - Qiting Zhang
- Institute of Drug Discovery Technology Ningbo University Ningbo Zhejiang 315211 China
| | - Zedong Liu
- College of Food and Pharmaceutical Sciences Ningbo University Ningbo Zhejiang 315211 China
| | - Ning Wang
- Institute of Drug Discovery Technology Ningbo University Ningbo Zhejiang 315211 China
- State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Shenzhen 518055 China
| | - Haixiao Jin
- College of Food and Pharmaceutical Sciences Ningbo University Ningbo Zhejiang 315211 China
| | - Feng Liu
- State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Shenzhen 518055 China
| | - Cunlong Zhang
- State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Shenzhen 518055 China
| | - Shan He
- College of Food and Pharmaceutical Sciences Ningbo University Ningbo Zhejiang 315211 China
| |
Collapse
|
7
|
Elmongy EI. Thieno[2,3‐
d
]pyrimidine derivatives: Synthetic approaches and their FLT3 kinase inhibition. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Elshaymaa I. Elmongy
- Department of Pharmaceutical Chemistry, Faculty of PharmacyHelwan University Cairo Egypt
- Department of Pharmaceutical Sciences, Faculty of PharmacyPrincess Nourah bint Abdulrahman University Riyadh Saudi Arabia
| |
Collapse
|
8
|
Liu J, Zhou J, He F, Gao L, Wen Y, Gao L, Wang P, Kang D, Hu L. Design, synthesis and biological evaluation of novel indazole-based derivatives as potent HDAC inhibitors via fragment-based virtual screening. Eur J Med Chem 2020; 192:112189. [DOI: 10.1016/j.ejmech.2020.112189] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/31/2022]
|
9
|
Sultana F, Manasa KL, Shaik SP, Bonam SR, Kamal A. Zinc Dependent Histone Deacetylase Inhibitors in Cancer Therapeutics: Recent Update. Curr Med Chem 2020; 26:7212-7280. [PMID: 29852860 DOI: 10.2174/0929867325666180530094120] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/12/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Histone deacetylases (HDAC) are an important class of enzymes that play a pivotal role in epigenetic regulation of gene expression that modifies the terminal of core histones leading to remodelling of chromatin topology and thereby controlling gene expression. HDAC inhibitors (HDACi) counter this action and can result in hyperacetylation of histones, thereby inducing an array of cellular consequences such as activation of apoptotic pathways, generation of reactive oxygen species (ROS), cell cycle arrest and autophagy. Hence, there is a growing interest in the potential clinical use of HDAC inhibitors as a new class of targeted cancer therapeutics. Methodology and Result: Several research articles spanning between 2016 and 2017 were reviewed in this article and presently offer critical insights into the important strategies such as structure-based rational drug design, multi-parameter lead optimization methodologies, relevant SAR studies and biology of various class of HDAC inhibitors, such as hydroxamic acids, benzamides, cyclic peptides, aliphatic acids, summarising the clinical trials and results of various combination drug therapy till date. CONCLUSION This review will provide a platform to the synthetic chemists and biologists to cater the needs of both molecular targeted therapy and combination drug therapy to design and synthesize safe and selective HDAC inhibitors in cancer therapeutics.
Collapse
Affiliation(s)
- Faria Sultana
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India
| | - Kesari Lakshmi Manasa
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India.,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Siddiq Pasha Shaik
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India.,Academy of Scientific and Innovative Research, New Delhi, 110 025, India
| | - Srinivasa Reddy Bonam
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Ahmed Kamal
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India.,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India.,Academy of Scientific and Innovative Research, New Delhi, 110 025, India.,School of Pharmaceutical Education and Research (SPER), Jamia Hamdard University, New Delhi, 110062, India
| |
Collapse
|
10
|
Development of classification models for identification of important structural features of isoform-selective histone deacetylase inhibitors (class I). Mol Divers 2019; 24:1077-1094. [DOI: 10.1007/s11030-019-10013-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/02/2019] [Indexed: 10/25/2022]
|
11
|
Suhendra D, Ryantin Gunawan E, Hajidi H. Synthesis and Characterization of N-Methyl Fatty Hydroxamic Acids from Ketapang Seed Oil Catalyzed by Lipase. Molecules 2019; 24:molecules24213895. [PMID: 31671840 PMCID: PMC6865262 DOI: 10.3390/molecules24213895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/20/2019] [Accepted: 10/25/2019] [Indexed: 11/22/2022] Open
Abstract
N-methyl fatty hydroxamic acid (N-MFHA), which is a derivative of hydroxamic acid (HA), was synthesized from ketapang seed oil (Terminalia catappa L.). In general, HAs have wide applications due to their chelating properties and biological activities. N-MFHAs were synthesized using immobilized lipase (Lipozyme TL IM) in biphasic medium which was the ketapang seed oil dissolved in hexane and N-methylhydroxylamine dissolved in water. The products were characterized through color testing and FT-IR spectroscopy after purification. Various factors affecting the enzyme activity investigated in the study included the effect of incubation time, the amount of lipase used, and the temperature. On the basis of the results, the optimum conditions for the synthesis of N-MFHA obtained are 25 h of incubation time, a temperature of 40 °C, and a ratio of 1:100 for the amount of enzyme (g)/oil (g). At the optimum conditions of the reaction, 59.7% of the oils were converted to N-MFHA.
Collapse
Affiliation(s)
- Dedy Suhendra
- Chemistry Department, Faculty of Mathematics and Natural Science, University of Mataram, Mataram 83125, Indonesia.
| | - Erin Ryantin Gunawan
- Chemistry Department, Faculty of Mathematics and Natural Science, University of Mataram, Mataram 83125, Indonesia.
| | - Hajidi Hajidi
- Chemistry Department, Faculty of Mathematics and Natural Science, University of Mataram, Mataram 83125, Indonesia.
| |
Collapse
|
12
|
Sangwan R, Rajan R, Mandal PK. HDAC as onco target: Reviewing the synthetic approaches with SAR study of their inhibitors. Eur J Med Chem 2018; 158:620-706. [DOI: 10.1016/j.ejmech.2018.08.073] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/09/2018] [Accepted: 08/26/2018] [Indexed: 02/06/2023]
|
13
|
Adhikari N, Amin SA, Trivedi P, Jha T, Ghosh B. HDAC3 is a potential validated target for cancer: An overview on the benzamide-based selective HDAC3 inhibitors through comparative SAR/QSAR/QAAR approaches. Eur J Med Chem 2018; 157:1127-1142. [DOI: 10.1016/j.ejmech.2018.08.081] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/08/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023]
|
14
|
The First Catalytic Direct C–H Arylation on C2 and C3 of Thiophene Ring Applied to Thieno-Pyridines, -Pyrimidines and -Pyrazines. Catalysts 2018. [DOI: 10.3390/catal8040137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
15
|
Mohareb RM, Abbas NS, Ibrahim RA. Uses of Cyclohexan-1,4-dione for the Synthesis of 2-Amino-4,5-dihydrobenzo[b]thiophen-6(7H)-one Derivatives with Anti-proliferative and Pim-1 Kinase Activities. Chem Pharm Bull (Tokyo) 2017; 65:1117-1131. [PMID: 29199218 DOI: 10.1248/cpb.c17-00582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The reaction of cyclohexan-1,4-dione with elemental sulfur and any of the 2-cyano-N-arylacetamide derivatives 2a-c gave the 2-amino-4,5-dihydrobenzo[b]thiophen-6(7H)-one derivatives 3a-c to be used in some heterocyclization reactions. The multicomponent reactions of any of compounds 3a-c with aromatic aldehydes 6a-c and either of malononitrile or ethylcyanoacetate gave the 5,9-dihydro-4H-thieno[2,3-f]chromene derivatives 9a-r, respectively. The anti-proliferative evaluation of the newly synthesized compounds against the six cancer cell lines A549, HT-29, MKN-45, U87MG, SMMC-7721 and H460 showed that the nine compounds 3c, 5c, 9e, 9h, 9i, 9j, 9l, 9q, 11e and 13e with highest cytotoxcity. Toxicity of these compounds against shrimp larvae revealed that compounds 3c, 9j, 9q, and 13e showed no toxicity against the tested organisms. The c-Met kinase inhibition of the most potent compounds showed that compounds 9j, 9q, 10e, 12e and 13e have the highest activities. Compounds 9j, 9l, 9q and 11e showed high activity towards tyrosine kinases. Moreover, compounds 9j, 9q and 13e showed the highest inhibitor activity towards Pim-1 kinase.
Collapse
Affiliation(s)
| | - Nermeen Saeed Abbas
- Department of Chemistry, Faculty of Science, Helwan University.,Department of Chemistry, Faculty of Science, Taibah University
| | | |
Collapse
|
16
|
Ghith A, Ismail NS, Youssef K, Abouzid KA. Medicinal Attributes of Thienopyrimidine Based Scaffold Targeting Tyrosine Kinases and Their Potential Anticancer Activities. Arch Pharm (Weinheim) 2017; 350. [DOI: 10.1002/ardp.201700242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/14/2017] [Accepted: 09/05/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Amna Ghith
- Faculty of Pharmaceutical Sciences and Pharmaceutical Industries; Department of Pharmaceutical Chemistry; Future University in Egypt; Cairo Egypt
| | - Nasser S.M. Ismail
- Faculty of Pharmaceutical Sciences and Pharmaceutical Industries; Department of Pharmaceutical Chemistry; Future University in Egypt; Cairo Egypt
| | - Khairia Youssef
- Faculty of Pharmaceutical Sciences and Pharmaceutical Industries; Department of Pharmaceutical Chemistry; Future University in Egypt; Cairo Egypt
| | - Khaled A.M. Abouzid
- Faculty of Pharmacy; Department of Pharmaceutical Chemistry; Ain Shams University; Abbassia, Cairo Egypt
| |
Collapse
|
17
|
Zhang Q, Zhang L, Yu J, Li H, He S, Tang W, Zuo J, Lu W. Discovery of new BTK inhibitors with B cell suppression activity bearing a 4,6-substituted thieno[3,2-d]pyrimidine scaffold. RSC Adv 2017. [DOI: 10.1039/c7ra04261b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Seventeen compounds with 4,6-substituted thieno[3,2-d]pyrimidine scaffold were prepared as new Bruton's tyrosine kinase inhibitors. Compound 8 exhibits anti-BTK activity, immunosuppressive activity, enzymatic selectivity and low toxicity.
Collapse
Affiliation(s)
- Qiumeng Zhang
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Luyao Zhang
- Laboratory of Immunopharmacology
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- P. R. China
| | - Jie Yu
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Heng Li
- Laboratory of Immunopharmacology
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- P. R. China
| | - Shijun He
- Laboratory of Immunopharmacology
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- P. R. China
| | - Wei Tang
- Laboratory of Immunopharmacology
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- P. R. China
| | - Jianping Zuo
- Laboratory of Immunopharmacology
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- P. R. China
| | - Wei Lu
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| |
Collapse
|