1
|
Jagtap AD, Geraghty RJ, Wang Z. Inhibiting HCMV pUL89-C Endonuclease with Metal-Binding Compounds. J Med Chem 2023; 66:13874-13887. [PMID: 37827528 DOI: 10.1021/acs.jmedchem.3c01280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Human cytomegalovirus (HCMV) infects individuals of all ages and establishes a lifelong latency. Current antiviral drugs are suboptimal in efficacy and safety and ineffective against resistant/refractory HCMV. Therefore, there is an unmet clinical need for efficacious, safe, and mechanistically novel HCMV drugs. The recent Food and Drug Administration (FDA) approval of letermovir (LTV) validated the HCMV terminase complex as a new target for antiviral development. LTV targets terminase subunit pUL56 but not the main endonuclease enzymatic function housed in the C terminus of subunit pUL89 (pUL89-C). Structurally and mechanistically, pUL89-C is an RNase H-like viral endonuclease entailing two divalent metal ions at the active site. In recent years, numerous studies have extensively explored pUL89-C inhibition using metal-chelating chemotypes, an approach previously used for inhibiting HIV ribonuclease H (RNase H) and integrase strand transfer (INST). Collectively, the work summarized herein validates the use of metal-binding scaffolds for designing potent and specific pUL89-C inhibitors.
Collapse
Affiliation(s)
- Ajit Dhananjay Jagtap
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Robert J Geraghty
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Kang JX, Zhao GK, Yang XM, Huang MX, Hui WQ, Zeng R, Ouyang Q. Recent advances on dual inhibitors targeting HIV reverse transcriptase associated polymerase and ribonuclease H. Eur J Med Chem 2023; 250:115196. [PMID: 36787657 DOI: 10.1016/j.ejmech.2023.115196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Reverse transcriptase (RT) plays an indispensable role in the replication of human immunodeficiency virus (HIV) through its associated polymerase and ribonuclease H (RNase H) activities during the viral RNA genome transformation into proviral DNA. Due to the fact that HIV is a highly mutagenic virus and easily resistant to single-target RT inhibitors, dual inhibitors targeting HIV RT associated polymerase and RNase H have been developed. These dual inhibitors have the advantages of increasing efficacy, reducing drug resistance, drug-drug interactions, and cytotoxicity, as well as improving patient compliance. In this review, we summarize recent advances in polymerase/RNase H dual inhibitors focusing on drug design strategies, and structure-activity relationships and share new insights into developing anti-HIV drugs.
Collapse
Affiliation(s)
- Jia-Xiong Kang
- Department of Pharmacy, Armed Police Forces Hospital of Sichuan, 614000, Leshan, China
| | - Guang-Kuan Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Third Military Medical University, 400038, Chongqing, China
| | - Xiu-Ming Yang
- Department of Medicinal Chemistry, School of Pharmacy, Third Military Medical University, 400038, Chongqing, China
| | - Mou-Xin Huang
- Department of Medicinal Chemistry, School of Pharmacy, Third Military Medical University, 400038, Chongqing, China
| | - Wen-Qi Hui
- Department of Pharmacy, Xi'an Fifth Hospital, Xian, 710082, Shaanxi, China
| | - Rong Zeng
- Department of Medicinal Chemistry, School of Pharmacy, Third Military Medical University, 400038, Chongqing, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, School of Pharmacy, Third Military Medical University, 400038, Chongqing, China.
| |
Collapse
|
3
|
He T, Edwards TC, Majima R, Jung E, Kankanala J, Xie J, Geraghty RJ, Wang Z. Repurposing N-hydroxy thienopyrimidine-2,4-diones (HtPD) as inhibitors of human cytomegalovirus pUL89 endonuclease: Synthesis and biological characterization. Bioorg Chem 2022; 129:106198. [PMID: 36265353 PMCID: PMC9643671 DOI: 10.1016/j.bioorg.2022.106198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/02/2022]
Abstract
The terminase complex of human cytomegalovirus (HCMV) is required for viral genome packaging and cleavage. Critical to the terminase functions is a metal-dependent endonuclease at the C-terminus of pUL89 (pUL89-C). We have previously reported metal-chelating N-hydroxy thienopyrimidine-2,4-diones (HtPD) as inhibitors of human immunodeficiency virus 1 (HIV-1) RNase H. In the current work, we have synthesized new analogs and resynthesized known analogs of two isomeric HtPD subtypes, anti-HtPD (13), and syn-HtPD (14), and characterized them as inhibitors of pUL89-C. Remarkably, the vast majority of analogs strongly inhibited pUL89-C in the biochemical endonuclease assay, with IC50 values in the nM range. In the cell-based antiviral assay, a few analogs inhibited HCMV in low μM concentrations. Selected analogs were further characterized in a biophysical thermal shift assay (TSA) and in silico molecular docking, and the results support pUL89-C as the protein target of these inhibitors. Collectively, the biochemical, antiviral, biophysical, and in silico data reported herein indicate that the isomeric HtPD chemotypes 13-14 can serve as valuable chemical platforms for designing improved inhibitors of HCMV pUL89-C.
Collapse
Affiliation(s)
- Tianyu He
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tiffany C Edwards
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ryuichi Majima
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eunkyung Jung
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jayakanth Kankanala
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert J Geraghty
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
4
|
Current medicinal chemistry strategies in the discovery of novel HIV-1 ribonuclease H inhibitors. Eur J Med Chem 2022; 243:114760. [PMID: 36152387 DOI: 10.1016/j.ejmech.2022.114760] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022]
Abstract
During HIV-1 genome replication, the viral reverse transcriptase-associated ribonuclease H (RT-associated RNase H) activity hydrolyzes the RNA strand of RNA/DNA heteroduplex intermediates. As of today, HIV-1 RNase H inhibitors (RHIs) remain at an investigational level, although none of them reached clinical trials. Therefore, RNase H remains as an attractive target for drug design and development. In this paper, we review the current status of medicinal chemistry strategies aimed at the discovery of novel RHIs, while discussing problems encountered in their characterization and further development, thereby providing an update on recent progress in the field.
Collapse
|
5
|
Jung E, Majima R, Edwards TC, Soto‐Acosta R, Geraghty RJ, Wang Z. 8-Hydroxy-1,6-naphthyridine-7-carboxamides as Inhibitors of Human Cytomegalovirus pUL89 Endonuclease. ChemMedChem 2022; 17:e202200334. [PMID: 35879245 PMCID: PMC9463105 DOI: 10.1002/cmdc.202200334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 11/10/2022]
Abstract
Human cytomegalovirus (HCMV) replication requires a metal-dependent endonuclease at the C-terminus of pUL89 (pUL89-C) for viral genome packaging and cleavage. We have previously shown that pUL89-C can be pharmacologically inhibited with designed metal-chelating compounds. We report herein the synthesis of a few 8-hydroxy-1,6-naphthyridine subtypes, including 5-chloro (subtype 15), 5-aryl (subtype 16), and 5-amino (subtype 17) variants. Analogs were studied for the inhibition of pUL89-C in a biochemical endonuclease assay, a biophysical thermal shift assay (TSA), in silico molecular docking, and for the antiviral potential against HCMV in cell-based assays. These studies identified eight analogs of 8-hydroxy-1,6-naphthyridine-7-carboxamide subtypes for further characterization, most of which inhibited pUL89-C with single-digit μM IC50 values, and conferred antiviral activity in μM range. TSA and molecular modeling of selected analogs corroborate their binding to pUL89-C. Collectively, our biochemical, antiviral, biophysical and in silico data suggest that 8-hydroxy-1,6-naphthyridine-7-carboxamide subtypes can be used for designing inhibitors of HCMV pUL89-C.
Collapse
Affiliation(s)
- Eunkyung Jung
- Center for Drug DesignCollege of PharmacyUniversity of MinnesotaMinneapolisMN 55455USA
| | - Ryuichi Majima
- Center for Drug DesignCollege of PharmacyUniversity of MinnesotaMinneapolisMN 55455USA
| | - Tiffany C. Edwards
- Center for Drug DesignCollege of PharmacyUniversity of MinnesotaMinneapolisMN 55455USA
| | - Ruben Soto‐Acosta
- Center for Drug DesignCollege of PharmacyUniversity of MinnesotaMinneapolisMN 55455USA
| | - Robert J. Geraghty
- Center for Drug DesignCollege of PharmacyUniversity of MinnesotaMinneapolisMN 55455USA
| | - Zhengqiang Wang
- Center for Drug DesignCollege of PharmacyUniversity of MinnesotaMinneapolisMN 55455USA
| |
Collapse
|
6
|
He T, Edwards TC, Xie J, Aihara H, Geraghty RJ, Wang Z. 4,5-Dihydroxypyrimidine Methyl Carboxylates, Carboxylic Acids, and Carboxamides as Inhibitors of Human Cytomegalovirus pUL89 Endonuclease. J Med Chem 2022; 65:5830-5849. [PMID: 35377638 PMCID: PMC9441020 DOI: 10.1021/acs.jmedchem.2c00203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human cytomegalovirus (HCMV) terminase complex entails a metal-dependent endonuclease at the C-terminus of pUL89 (pUL89-C). We report herein the design, synthesis, and characterization of dihydroxypyrimidine (DHP) acid (14), methyl ester (13), and amide (15) subtypes as inhibitors of HCMV pUL89-C. All analogs synthesized were tested in an endonuclease assay and a thermal shift assay (TSA) and subjected to molecular docking to predict binding affinity. Although analogs inhibiting pUL89-C in the sub-μM range were identified from all three subtypes, acids (14) showed better overall potency, substantially larger thermal shift, and considerably better docking scores than esters (13) and amides (15). In the cell-based antiviral assay, six analogs inhibited HCMV with moderate activities (EC50 = 14.4-22.8 μM). The acid subtype (14) showed good in vitro ADME properties, except for poor permeability. Overall, our data support the DHP acid subtype (14) as a valuable scaffold for developing antivirals targeting HCMV pUL89-C.
Collapse
Affiliation(s)
- Tianyu He
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Tiffany C Edwards
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Robert J Geraghty
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Bradley DP, O’Dea AT, Woodson ME, Li Q, Ponzar NL, Knier A, Rogers BL, Murelli RP, Tavis JE. Effects of Troponoids on Mitochondrial Function and Cytotoxicity. Antimicrob Agents Chemother 2022; 66:e0161721. [PMID: 34694883 PMCID: PMC8765277 DOI: 10.1128/aac.01617-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/19/2021] [Indexed: 11/20/2022] Open
Abstract
The α-hydroxytropolones (αHTs) are troponoid inhibitors of hepatitis B virus (HBV) replication that can target HBV RNase H with submicromolar efficacies. αHTs and related troponoids (tropones and tropolones) can be cytotoxic in cell lines as measured by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assays that assess mitochondrial function. Previous studies suggest that tropolones induce cytotoxicity through inhibition of mitochondrial respiration. Therefore, we screened 35 diverse troponoids for effects on mitochondrial function, mitochondrial/nuclear genome ratios, cytotoxicity, and reactive oxygen species (ROS) production. Troponoids as a class did not inhibit respiration or glycolysis, although the α-ketotropolone subclass interfered with these processes. The troponoids had no impact on the mitochondrial DNA/nuclear DNA ratio after 3 days of compound exposure. The patterns of troponoid-induced cytotoxicity among three hepatic cell lines were similar for all compounds, but three potent HBV RNase H inhibitors were not cytotoxic in primary human hepatocytes. Tropolones and αHTs increased ROS production in cells at cytotoxic concentrations but had no effect at lower concentrations that efficiently inhibit HBV replication. Troponoid-mediated cytotoxicity was significantly decreased upon the addition of the ROS scavenger N-acetylcysteine. These studies show that troponoids can increase ROS production at high concentrations within cell lines, leading to cytotoxicity, but are not cytotoxic in primary hepatocytes. Future development of αHTs as potential therapeutics against HBV may need to mitigate ROS production by altering compound design and/or by coadministering ROS antagonists to ameliorate increased ROS levels.
Collapse
Affiliation(s)
- Daniel P. Bradley
- Saint Louis University School of Medicine, St. Louis, Missouri, USA
- Saint Louis University Institute for Drug and Biotherapeutic Innovation, St. Louis, Missouri, USA
| | - Austin T. O’Dea
- Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Molly E. Woodson
- Saint Louis University School of Medicine, St. Louis, Missouri, USA
- Saint Louis University Institute for Drug and Biotherapeutic Innovation, St. Louis, Missouri, USA
| | - Qilan Li
- Saint Louis University School of Medicine, St. Louis, Missouri, USA
- Saint Louis University Institute for Drug and Biotherapeutic Innovation, St. Louis, Missouri, USA
| | - Nathan L. Ponzar
- Saint Louis University School of Medicine, St. Louis, Missouri, USA
- Saint Louis University Institute for Drug and Biotherapeutic Innovation, St. Louis, Missouri, USA
| | - Alaina Knier
- Saint Louis University School of Medicine, St. Louis, Missouri, USA
- Saint Louis University Institute for Drug and Biotherapeutic Innovation, St. Louis, Missouri, USA
| | | | - Ryan P. Murelli
- Brooklyn College, City University of New York, New York, New York, USA
- Ph.D. Program in Chemistry, The Graduate Center of The City University of New York, New York, New York, USA
| | - John E. Tavis
- Saint Louis University School of Medicine, St. Louis, Missouri, USA
- Saint Louis University Institute for Drug and Biotherapeutic Innovation, St. Louis, Missouri, USA
| |
Collapse
|
8
|
Xavier T, Condon S, Pichon C, Le Gall E, Presset M. Substituted Malonic Acid Half Oxyesters (SMAHOs): Greener Nucleophiles for Organic Synthesis. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tania Xavier
- ICMPE: Institut de Chimie et des Materiaux Paris-Est C3M FRANCE
| | - Sylvie Condon
- ICMPE: Institut de Chimie et des Materiaux Paris-Est C3M FRANCE
| | | | - Erwan Le Gall
- ICMPE: Institut de Chimie et des Materiaux Paris-Est C3M FRANCE
| | - Marc Presset
- Institut de Chimie et des Materiaux Paris-Est C3M 2-8 Rue Henri Dunant94320 94320 Thiais FRANCE
| |
Collapse
|
9
|
Development of Human Immunodeficiency Virus Type 1 Resistance to 4'-Ethynyl-2-Fluoro-2'-Deoxyadenosine (EFdA) Starting with Wild-Type or Nucleoside Reverse Transcriptase Inhibitor Resistant-Strains. Antimicrob Agents Chemother 2021; 65:e0116721. [PMID: 34516245 DOI: 10.1128/aac.01167-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA, MK-8591, islatravir) is a nucleoside reverse transcriptase translocation inhibitor (NRTTI) with exceptional potency against WT and drug-resistant HIV-1, in Phase III clinical trials. EFdA resistance is not well characterized. To study EFdA-resistance patterns as it may emerge in naïve or tenofovir- (TFV), emtricitabine/lamivudine- (FTC/3TC), or zidovudine- (AZT) treated patients we performed viral passaging experiments starting with wild-type, K65R, M184V, or D67N/K70R/T215F/K219Q HIV-1. Regardless the starting viral sequence, all selected EFdA-resistant variants included the M184V RT mutation. Using recombinant viruses, we validated the role for M184V as the primary determinant of EFdA resistance; none of the observed connection subdomain (R358K and E399K) or RNase H domain (A502V) mutations significantly contributed to EFdA resistance. A novel EFdA resistance mutational pattern that included A114S was identified in the background of M184V. A114S/M184V exhibited higher EFdA resistance (∼24-fold) than M184V (∼8-fold) or A114S alone (∼2-fold). Remarkably, A114S/M184V and A114S/M184V/A502V resistance mutations were up to 50-fold more sensitive to tenofovir than WT HIV-1. These mutants also had significantly lower specific infectivity than WT. Biochemical experiments confirmed decreases in the enzymatic efficiency (kcat/Km) of WT vs. A114S (2.1-fold) and A114S/M184V/A502V (6.5-fold) RTs, with no effect of A502V on enzymatic efficiency or specific infectivity. The rather modest EFdA resistance of M184V or A114S/M184V (8- and 24-fold), their hypersusceptibility to tenofovir, and strong published in vitro and in vivo data, suggest that EFdA is an excellent therapeutic candidate for naïve, AZT-, FTC/3TC, and especially tenofovir-treated patients.
Collapse
|
10
|
Metal binding 6-arylthio-3-hydroxypyrimidine-2,4-diones inhibited human cytomegalovirus by targeting the pUL89 endonuclease of the terminase complex. Eur J Med Chem 2021; 222:113640. [PMID: 34147908 DOI: 10.1016/j.ejmech.2021.113640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/18/2022]
Abstract
The genome packaging of human cytomegalovirus (HCMV) requires a divalent metal-dependent endonuclease activity localized to the C-terminus of pUL89 (pUL89-C), which is reminiscent of RNase H-like enzymes in active site structure and catalytic mechanism. Our previous work has shown that metal-binding small molecules can effectively inhibit pUL89-C while conferring significant antiviral activities. In this report we generated a collection of 43 metal-binding small molecules by repurposing analogs of the 6-arylthio-3-hydroxypyrimidine-2,4-dione chemotype previously synthesized for targeting HIV-1 RNase H, and by chemically synthesizing new N-1 analogs. The analogs were subjected to two parallel screening assays: the pUL89-C biochemical assay and the HCMV antiviral assay. Compounds with significant inhibition from each assay were further tested in a dose-response fashion. Single dose cell viability and PAMPA cell permeability were also conducted and considered in selecting compounds for the dose-response antiviral testing. These assays identified a few analogs displaying low μM inhibition against pUL89-C in the biochemical assay and HCMV replication in the antiviral assay. The target engagement was further evaluated via a thermal shift assay using recombinant pUL89-C and molecular docking. Overall, our current work identified novel inhibitors of pUL89-C with significant antiviral activities and further supports targeting pUL89-C with metal-binding small molecules as an antiviral approach against HCMV.
Collapse
|
11
|
Search for new therapeutics against HIV-1 via dual inhibition of RNase H and integrase: current status and future challenges. Future Med Chem 2021; 13:269-286. [PMID: 33399497 DOI: 10.4155/fmc-2020-0257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Reverse transcriptase and integrase are key enzymes that play a pivotal role in HIV-1 viral maturation and replication. Reverse transcriptase consists of two active sites: RNA-dependent DNA polymerase and RNase H. The catalytic domains of integrase and RNase H share striking similarity, comprising two aspartates and one glutamate residue, also known as the catalytic DDE triad, and a Mg2+ pair. The simultaneous inhibition of reverse transcriptase and integrase can be a rational drug discovery approach for combating the emerging drug resistance problem. In the present review, the dual inhibition of RNase H and integrase is systematically discussed, including rationality of design, journey of development, advancement and future perspective.
Collapse
|
12
|
Wang L, Sarafianos SG, Wang Z. Cutting into the Substrate Dominance: Pharmacophore and Structure-Based Approaches toward Inhibiting Human Immunodeficiency Virus Reverse Transcriptase-Associated Ribonuclease H. Acc Chem Res 2020; 53:218-230. [PMID: 31880912 DOI: 10.1021/acs.accounts.9b00450] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Human immunodeficiency virus (HIV) reverse transcriptase (RT) contains two distinct functional domains: a DNA polymerase (pol) domain and a ribonuclease H (RNase H) domain, both of which are required for viral genome replication. Over the last 3 decades, RT has been at the forefront of HIV drug discovery efforts with numerous nucleoside reverse transcriptase inhibitors (NRTIs) and non-nucleoside reverse transcriptase inhibitors (NNRTIs) approved by the FDA. However, all these RT inhibitors target only the pol function, and inhibitors of RT-associated RNase H have yet to enter the development pipeline, which in itself manifests both the opportunity and challenges of targeting RNase H: if developed, RT RNase H inhibitors would represent a mechanistically novel class of HIV drugs that can be particularly valuable in treating HIV strains resistant to current drugs. The challenges include (1) the difficulty in selectively targeting RT RNase H over RT pol due to their close interplay both spatially and temporally and over HIV-1 integrase strand transfer (INST) activity because of their active site similarities; (2) to a larger extent, the inability of active site inhibitors to confer significant antiviral effect, presumably due to a steep substrate barrier by which the pre-existing substrate prevents access of small molecules to the active site. As a result, previously reported RT RNase H inhibitors typically lacked target specificity and significant antiviral potency. Achieving meaningful antiviral activity via active site targeting likely entails selective and ultrapotent RNase H inhibition to allow small molecules to cut into the dominance of substrates. Based on a pharmacophore model informed by prior work, we designed and redesigned a few metal-chelating chemotypes, such as 2-hydroxyisoquinolinedione (HID), hydroxypyridonecarboxylic acid (HPCA), 3-hydroxypyrimidine-2,4-dione (HPD), and N-hydroxythienopyrimidine-2,4-dione (HTPD). Analogues of these chemotypes generally exhibited improved potency and selectivity inhibiting RT RNase H over the best previous compounds and further validated the pharmacophore model. Extended structure-activity relationship (SAR) on the HPD inhibitor type by mainly altering the linkage generated a few subtypes showing exceptional potency (single-digit nanomolar) and excellent selectivity over the inhibition of RT pol and INST. In parallel, a structure-based approach also allowed us to design a unique double-winged HPD subtype to potently and selectively inhibit RT RNase H and effectively compete against the RNA/DNA substrate. Significantly, all potent HPD subtypes consistently inhibited HIV-1 in the cell culture, suggesting that carefully designed active site RNase H inhibitors with ultrapotency could partially overcome the barrier to antiviral phenotype. Overall, in addition to identifying our own inhibitor types, our medicinal chemistry efforts demonstrated the value of pharmacophore and structure-based approaches in designing active side-directed RNase H inhibitors and could provide a viable path to validating RNase H as a novel antiviral target.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Stefan G. Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
13
|
Tramontano E, Corona A, Menéndez-Arias L. Ribonuclease H, an unexploited target for antiviral intervention against HIV and hepatitis B virus. Antiviral Res 2019; 171:104613. [PMID: 31550450 DOI: 10.1016/j.antiviral.2019.104613] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/18/2022]
Abstract
Ribonucleases H (RNases H) are endonucleolytic enzymes, evolutionarily related to retroviral integrases, DNA transposases, resolvases and numerous nucleases. RNases H cleave RNA in RNA/DNA hybrids and their activity plays an important role in the replication of prokaryotic and eukaryotic genomes, as well as in the replication of reverse-transcribing viruses. During reverse transcription, the RNase H activity of human immunodeficiency virus (HIV) and hepatitis B virus (HBV) degrades the viral genomic RNA to facilitate the synthesis of viral double-stranded DNA. HIV and HBV reverse transcriptases contain DNA polymerase and RNase H domains that act in a coordinated manner to produce double-stranded viral DNA. Although RNase H inhibitors have not been developed into licensed drugs, recent progress has led to the identification of a number of small molecules with inhibitory activity at low micromolar or even nanomolar concentrations. These compounds can be classified into metal-chelating active site inhibitors and allosteric inhibitors. Among them, α-hydroxytropolones, N-hydroxyisoquinolinediones and N-hydroxypyridinediones represent chemotypes active against both HIV and HBV RNases H. In this review we summarize recent developments in the field including the identification of novel RNase H inhibitors, compounds with dual inhibitory activity, broad specificity and efforts to decrease their toxicity.
Collapse
Affiliation(s)
- Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy.
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid, Spain.
| |
Collapse
|
14
|
Tang J, Do HT, Huber AD, Casey MC, Kirby KA, Wilson DJ, Kankanala J, Parniak MA, Sarafianos SG, Wang Z. Pharmacophore-based design of novel 3-hydroxypyrimidine-2,4-dione subtypes as inhibitors of HIV reverse transcriptase-associated RNase H: Tolerance of a nonflexible linker. Eur J Med Chem 2019; 166:390-399. [PMID: 30739822 PMCID: PMC6459026 DOI: 10.1016/j.ejmech.2019.01.081] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/17/2019] [Accepted: 01/30/2019] [Indexed: 11/29/2022]
Abstract
The pharmacophore of active site inhibitors of human immunodeficiency virus (HIV) reverse transcriptase (RT)-associated RNase H typically entails a flexible linker connecting the chelating core and the hydrophobic aromatics. We report herein that novel 3-hydroxypyrimidine-2,4-dione (HPD) subtypes with a nonflexible C-6 carbonyl linkage exhibited potent and selective biochemical inhibitory profiles with strong RNase H inhibition at low nM, weak to moderate integrase strand transfer (INST) inhibition at low μM, and no to marginal RT polymerase (pol) inhibition up to 10 μM. A few analogues also demonstrated significant antiviral activity without cytotoxicity. The overall inhibitory profile is comparable to or better than that of previous HPD subtypes with a flexible C-6 linker, suggesting that the nonflexible carbonyl linker can be tolerated in the design of novel HIV RNase H active site inhibitors.
Collapse
Affiliation(s)
- Jing Tang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ha T Do
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Andrew D Huber
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO, 65211, USA
| | - Mary C Casey
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, Columbia, MO, 65211, USA
| | - Karen A Kirby
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, Columbia, MO, 65211, USA; Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Daniel J Wilson
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jayakanth Kankanala
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael A Parniak
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Stefan G Sarafianos
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, Columbia, MO, 65211, USA; Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA; Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
15
|
Gao P, Wang X, Sun L, Cheng X, Poongavanam V, Kongsted J, Álvarez M, Luczkowiak J, Pannecouque C, De Clercq E, Lee KH, Chen CH, Liu H, Menéndez-Arias L, Liu X, Zhan P. Design, synthesis, and biologic evaluation of novel galloyl derivatives as HIV-1 RNase H inhibitors. Chem Biol Drug Des 2019; 93:582-589. [PMID: 30560566 DOI: 10.1111/cbdd.13455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/13/2018] [Accepted: 11/24/2018] [Indexed: 12/14/2022]
Abstract
Human immunodeficiency virus (HIV) reverse transcriptase (RT)-associated ribonuclease H (RNase H) remains as the only enzyme encoded within the viral genome not targeted by current antiviral drugs. In this work, we report the design, synthesis, and biologic evaluation of a novel series of galloyl derivatives with HIV-1 RNase H inhibitory activity. Most of them showed IC50 s at sub- to low-micromolar concentrations in enzymatic assays. The most potent compound was II-25 that showed an IC50 of 0.72 ± 0.07 μM in RNase H inhibition assays carried out with the HIV-1BH 10 RT. II-25 was 2.8 times more potent than β-thujaplicinol in these assays. Interestingly, II-25 and other galloyl derivatives were also found to inhibit the HIV IN strand transfer activity in vitro. Structure-activity relationships (SAR) studies and molecular modeling analysis predict key interactions with RT residues His539 and Arg557, while providing helpful insight for further optimization of selected compounds.
Collapse
Affiliation(s)
- Ping Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, China
| | - Xueshun Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, China
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, China
| | - Xiqiang Cheng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, China
| | | | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Mar Álvarez
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | - Joanna Luczkowiak
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | | | - Erik De Clercq
- Rega Institute for Medical Research, K.U.Leuven, Leuven, Belgium
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Chin-Ho Chen
- Surgical Science, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Huiqing Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, China
| |
Collapse
|
16
|
Wang L, Tang J, Huber AD, Casey MC, Kirby KA, Wilson DJ, Kankanala J, Parniak MA, Sarafianos SG, Wang Z. 6-Biphenylmethyl-3-hydroxypyrimidine-2,4-diones potently and selectively inhibited HIV reverse transcriptase-associated RNase H. Eur J Med Chem 2018; 156:680-691. [PMID: 30031978 DOI: 10.1016/j.ejmech.2018.07.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/11/2018] [Accepted: 07/14/2018] [Indexed: 12/11/2022]
Abstract
Human immunodeficiency virus (HIV) reverse transcriptase (RT)-associated ribonuclease H (RNase H) remains an unvalidated drug target. Reported HIV RNase H inhibitors generally lack significant antiviral activity. We report herein the design, synthesis, biochemical and antiviral evaluations of a new 6-biphenylmethyl subtype of the 3-hydroxypyrimidine-2,4-dione (HPD) chemotype. In biochemical assays, analogues of this new subtype potently inhibited RT RNase H in low nanomolar range without inhibiting RT polymerase (pol) or integrase strand transfer (INST) at the highest concentrations tested. In cell-based assays, a few analogues inhibited HIV in low micromolar range without cytotoxicity at concentrations up to 100 μM.
Collapse
Affiliation(s)
- Lei Wang
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jing Tang
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Andrew D Huber
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Mary C Casey
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Karen A Kirby
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, USA; Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Daniel J Wilson
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jayakanth Kankanala
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael A Parniak
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Stefan G Sarafianos
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, USA; Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Zhengqiang Wang
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
17
|
Wang L, Tang J, Huber AD, Casey MC, Kirby KA, Wilson DJ, Kankanala J, Xie J, Parniak MA, Sarafianos SG, Wang Z. 6-Arylthio-3-hydroxypyrimidine-2,4-diones potently inhibited HIV reverse transcriptase-associated RNase H with antiviral activity. Eur J Med Chem 2018; 156:652-665. [PMID: 30031976 DOI: 10.1016/j.ejmech.2018.07.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 05/31/2018] [Accepted: 07/15/2018] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus (HIV) reverse transcriptase (RT) associated ribonuclease H (RNase H) remains the only virally encoded enzymatic function not targeted by current drugs. Although a few chemotypes have been reported to inhibit HIV RNase H in biochemical assays, their general lack of significant antiviral activity in cell culture necessitates continued efforts in identifying highly potent RNase H inhibitors to confer antiviral activity. We report herein the design, synthesis, biochemical and antiviral evaluations of a new 6-arylthio subtype of the 3-hydroxypyrimidine-2,4-dione (HPD) chemotype. In biochemical assays these new analogues inhibited RT RNase H in single-digit nanomolar range without inhibiting RT polymerase (pol) at concentrations up to 10 μM, amounting to exceptional biochemical inhibitory selectivity. Many analogues also inhibited integrase strand transfer (INST) activity in low to sub micromolar range. More importantly, most analogues inhibited HIV in low micromolar range without cytotoxicity. In the end, compound 13j (RNase H IC50 = 0.005 μM; RT pol IC50 = 10 μM; INST IC50 = 4.0 μM; antiviral EC50 = 7.7 μM; CC50 > 100 μM) represents the best analogues within this series. These results characterize the new 6-arylthio-HPD subtype as a promising scaffold for HIV RNase H inhibitor discovery.
Collapse
Affiliation(s)
- Lei Wang
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jing Tang
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Andrew D Huber
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO, 65211, USA
| | - Mary C Casey
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, Columbia, MO, 65211, USA
| | - Karen A Kirby
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, Columbia, MO, 65211, USA; Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Daniel J Wilson
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jayakanth Kankanala
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jiashu Xie
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael A Parniak
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Stefan G Sarafianos
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, Columbia, MO, 65211, USA; Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA; Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO, 65211, USA
| | - Zhengqiang Wang
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
18
|
Kankanala J, Kirby KA, Huber AD, Casey MC, Wilson DJ, Sarafianos SG, Wang Z. Design, synthesis and biological evaluations of N-Hydroxy thienopyrimidine-2,4-diones as inhibitors of HIV reverse transcriptase-associated RNase H. Eur J Med Chem 2017; 141:149-161. [PMID: 29031062 DOI: 10.1016/j.ejmech.2017.09.054] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/13/2017] [Accepted: 09/25/2017] [Indexed: 11/29/2022]
Abstract
Human immunodeficiency virus (HIV) reverse transcriptase (RT) associated ribonuclease H (RNase H) is the only HIV enzymatic function not targeted by current antiviral drugs. Although various chemotypes have been reported to inhibit HIV RNase H, few have shown significant antiviral activities. We report herein the design, synthesis and biological evaluation of a novel N-hydroxy thienopyrimidine-2,3-dione chemotype (11) which potently and selectively inhibited RNase H with considerable potency against HIV-1 in cell culture. Current structure-activity-relationship (SAR) identified analogue 11d as a nanomolar inhibitor of RNase H (IC50 = 0.04 μM) with decent antiviral potency (EC50 = 7.4 μM) and no cytotoxicity (CC50 > 100 μM). In extended biochemical assays compound 11d did not inhibit RT polymerase (pol) while inhibiting integrase strand transfer (INST) with 53 fold lower potency (IC50 = 2.1 μM) than RNase H inhibition. Crystallographic and molecular modeling studies confirmed the RNase H active site binding mode.
Collapse
Affiliation(s)
- Jayakanth Kankanala
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Karen A Kirby
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Andrew D Huber
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Mary C Casey
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Daniel J Wilson
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stefan G Sarafianos
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA; Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Zhengqiang Wang
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
19
|
Vernekar SKV, Tang J, Wu B, Huber AD, Casey MC, Myshakina N, Wilson DJ, Kankanala J, Kirby KA, Parniak MA, Sarafianos SG, Wang Z. Double-Winged 3-Hydroxypyrimidine-2,4-diones: Potent and Selective Inhibition against HIV-1 RNase H with Significant Antiviral Activity. J Med Chem 2017; 60:5045-5056. [PMID: 28525279 DOI: 10.1021/acs.jmedchem.7b00440] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human immunodeficiency virus (HIV) reverse transcriptase (RT)-associated ribonuclease H (RNase H) remains the only virally encoded enzymatic function yet to be exploited as an antiviral target. One of the possible challenges may be that targeting HIV RNase H is confronted with a steep substrate barrier. We have previously reported a 3-hydroxypyrimidine-2,4-dione (HPD) subtype that potently and selectively inhibited RNase H without inhibiting HIV in cell culture. We report herein a critical redesign of the HPD chemotype featuring an additional wing at the C5 position that led to drastically improved RNase H inhibition and significant antiviral activity. Structure-activity relationship (SAR) concerning primarily the length and flexibility of the two wings revealed important structural features that dictate the potency and selectivity of RNase H inhibition as well as the observed antiviral activity. Our current medicinal chemistry data also revealed that the RNase H biochemical inhibition largely correlated the antiviral activity.
Collapse
Affiliation(s)
- Sanjeev Kumar V Vernekar
- Center for Drug Design, Academic Health Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Jing Tang
- Center for Drug Design, Academic Health Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Bulan Wu
- Center for Drug Design, Academic Health Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Andrew D Huber
- Department of Veterinary Pathobiology, Christopher S. Bond Life Sciences Center, University of Missouri , Columbia, Missouri 65211, United States
| | - Mary C Casey
- Department of Molecular Microbiology and Immunology, Christopher S. Bond Life Sciences Center, University of Missouri School of Medicine , Columbia, Missouri 65211, United States
| | - Nataliya Myshakina
- Department of Natural Science, Chatham University , 1 Woodland Road, Pittsburgh, Pennsylvania 15232, United States
| | - Daniel J Wilson
- Center for Drug Design, Academic Health Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Jayakanth Kankanala
- Center for Drug Design, Academic Health Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Karen A Kirby
- Department of Molecular Microbiology and Immunology, Christopher S. Bond Life Sciences Center, University of Missouri School of Medicine , Columbia, Missouri 65211, United States
| | - Michael A Parniak
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15219, United States
| | - Stefan G Sarafianos
- Department of Molecular Microbiology and Immunology, Christopher S. Bond Life Sciences Center, University of Missouri School of Medicine , Columbia, Missouri 65211, United States.,Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Zhengqiang Wang
- Center for Drug Design, Academic Health Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|