1
|
Islam MR, Markatos C, Pirmettis I, Papadopoulos M, Karageorgos V, Liapakis G, Fahmy H. Design, Synthesis, and Biological Evaluations of Novel Thiazolo[4,5-d]pyrimidine Corticotropin Releasing Factor (CRF) Receptor Antagonists as Potential Treatments for Stress Related Disorders and Congenital Adrenal Hyperplasia (CAH). Molecules 2024; 29:3647. [PMID: 39125051 PMCID: PMC11314199 DOI: 10.3390/molecules29153647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Corticotropin-releasing factor (CRF) is a key neuropeptide hormone that is secreted from the hypothalamus. It is the master hormone of the HPA axis, which orchestrates the physiological and behavioral responses to stress. Many disorders, including anxiety, depression, addiction relapse, and others, are related to over-activation of this system. Thus, new molecules that may interfere with CRF receptor binding may be of value to treat neuropsychiatric stress-related disorders. Also, CRF1R antagonists have recently emerged as potential treatment options for congenital adrenal hyperplasia. Previously, several series of CRF1 receptor antagonists were developed by our group. In continuation of our efforts in this direction, herein we report the synthesis and biological evaluation of a new series of CRF1R antagonists. Representative compounds were evaluated for their binding affinities compared to antalarmin. Four compounds (2, 5, 20, and 21) showed log IC50 values of -8.22, -7.95, -8.04, and -7.88, respectively, compared to -7.78 for antalarmin. This result indicates that these four compounds are superior to antalarmin by 2.5, 1.4, 1.7, and 1.25 times, respectively. It is worth mentioning that compound 2, in terms of IC50, is among the best CRF1R antagonists ever developed in the last 40 years. The in silico physicochemical properties of the lead compounds showed good drug-like properties. Thus, further research in this direction may lead to better and safer CRF receptor antagonists that may have clinical applications, particularly for stress-related disorders and the treatment of congenital adrenal hyperplasia.
Collapse
Affiliation(s)
- Md Rabiul Islam
- Department of Pharmaceutical Science, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA;
| | - Christos Markatos
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece; (C.M.); (V.K.); (G.L.)
| | - Ioannis Pirmettis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece; (I.P.); (M.P.)
| | - Minas Papadopoulos
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece; (I.P.); (M.P.)
| | - Vlasios Karageorgos
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece; (C.M.); (V.K.); (G.L.)
| | - George Liapakis
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece; (C.M.); (V.K.); (G.L.)
| | - Hesham Fahmy
- Department of Pharmaceutical Science, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA;
| |
Collapse
|
2
|
Identification of potential antagonists of CRF1R for possible treatment of stress and anxiety neuro-disorders using structure-based virtual screening and molecular dynamics simulation. Comput Biol Chem 2022; 100:107743. [DOI: 10.1016/j.compbiolchem.2022.107743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/18/2022]
|
3
|
Islam MR, Fahmy H. Thiazolopyrimidine Scaffold as a Promising Nucleus for Developing Anticancer Drugs: a Review in Last Decade. Anticancer Agents Med Chem 2022; 22:2942-2955. [PMID: 35410622 DOI: 10.2174/1871520622666220411110528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/27/2021] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
Abstract
The thiazolopyrimidine nucleus is a bioisostericanalog of purine and an important class of N-containing heterocycles. Thiazolopyrimidine scaffolds are considered a promising class of bioactive compounds that encompass diverse biological activities such as antibacterial, antiviral, antifungal, anticancer, corticotrophin-releasing factor antagonists, anti-inflammatory, antituberculosis, and glutamic receptors antagonists. Despite the importance of thiazolopyrimidines from a pharmacological viewpoint, there is hardly a comprehensive review on this important heterocyclic nucleus. Throughout the years, those scaffolds have been studied extensively for its anticancer properties and several compounds were designed, synthesized, and evaluated for their anticancer effects with activity in the µM to nM range. However, there are hardly any reviews covering the anticancer effects of thiazolopyrimidines. In this review, an effort was made to compile literatures covering the anticancer activity of thiazolopyrimidines reported in the last decade (2010-2020). Nearly thirty articles were reviewed and compounds which IC50 < 50 µM against at least 50% of the used cell lines were listed in this review. The best ten compounds (10a, 14b, 17g, 18,25e, 25k, 34e, 41i, 49a, & 49c) show the best anticancer activity against the corresponding cell lines during the last 10 years are highlighted. By highlighting the most active compounds, this review article sheds light on the structural features associated with the strongest anticancer effects to provide guidance to future research aiming to develop anticancer molecules.
Collapse
Affiliation(s)
- Md Rabiul Islam
- Department of Pharmaceutical Science, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA
| | - Hesham Fahmy
- Department of Pharmaceutical Science, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
4
|
Design, synthesis, structural optimization, SAR, in silico prediction of physicochemical properties and pharmacological evaluation of novel & potent thiazolo[4,5-d]pyrimidine corticotropin releasing factor (CRF) receptor antagonists. Eur J Pharm Sci 2021; 169:106084. [PMID: 34856350 DOI: 10.1016/j.ejps.2021.106084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 11/21/2022]
Abstract
Corticotropin-releasing factor (CRF) is a 41-amino-acid neuropeptide secreted from the hypothalamus and is the main regulator of the hypothalamus-pituitary-adrenocortical (HPA) axis. CRF is the master hormone which modulates physiological and behavioral responses to stress. Many disorders including anxiety, depression, addictive disorders and others are related to over activation of the CRF system. This suggests that new molecules which can interfere with CRF binding to its receptors may be potential candidates for neuropsychiatric drugs to treat stress-related disorders. Previously, three series of pyrimidine and fused pyrimidine CRF1 receptor antagonists were synthesized by our group and specific binding assays, competitive binding studies and determination of the ability to antagonize the agonist-stimulated accumulation of cAMP (the second messenger for CRF receptors) were reported. In continuation of our efforts in this direction, in the current manuscript, we report the synthesis & biological evaluation of a new series of CRF1 receptor antagonists. Seven compounds showed promising binding affinity with the best two compounds (compounds 6 & 43) displaying a superior binding affinity to all of our previous compounds. Compounds 6 & 43 have only 4 times and 2 times less binding affinity than the standard CRF antagonist antalarmin, respectively. Thus, our two best lead compounds (compound 6 & 43) can be considered potent CRF receptor antagonists with binding affinity of 41.0 & 19.2 nM versus 9.7 nM for antalarmin.
Collapse
|
5
|
Elgiushy HR, Abou-Taleb NA, Holz GG, Chepurny OG, Pirmettis I, Kakabakos S, Karageorgos V, Liapakis G, Albohy A, Abouzid KAM, Hammad SF. Synthesis, in vitro biological investigation, and molecular dynamics simulations of thiazolopyrimidine based compounds as corticotrophin releasing factor receptor-1 antagonists. Bioorg Chem 2021; 114:105079. [PMID: 34174633 PMCID: PMC8387444 DOI: 10.1016/j.bioorg.2021.105079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 11/23/2022]
Abstract
Corticotrophin releasing factor receptor-1 (CRFR1) is a potential target for treatment of depression and anxiety through modifying stress response. A series of new thiazolo[4,5-d]pyrimidine derivatives were designed, prepared and biologically evaluated as potential CRFR1 antagonists. Four compounds produced more than fifty percent inhibition in the [125I]-Tyr0-sauvagine specific binding assay. Assessment of binding affinities revealed that compound (3-(2,4-dimethoxyphenyl)-7-(dipropylamino)-5-methylthiazolo[4,5-d]pyrimidin-2(3H)-one) 8c was the best candidate with highest binding affinity (Ki = 32.1 nM). Further evaluation showed the ability of compound 8c to inhibit CRF induced cAMP accumulation in a dose response manner. Docking and molecular dynamics simulations were used to investigate potential binding modes of synthesized compounds as well as the stability of 8c-CRFR1 complex. These studies suggest similar allosteric binding of 8c compared to that of the co-crystalized ligand CP-376395 in 4K5Y pdb file.
Collapse
Affiliation(s)
- Hossam R Elgiushy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Ain Helwan 11795, Cairo, Egypt; Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, 21934 Alexandria, Egypt
| | - Nageh A Abou-Taleb
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Ain Helwan 11795, Cairo, Egypt
| | - George G Holz
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Oleg G Chepurny
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Ioannis Pirmettis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Sotirios Kakabakos
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Vlasios Karageorgos
- Department of Pharmacology, School of Medicine, University of Crete, Voutes, 71003, Heraklion, Crete, Greece
| | - George Liapakis
- Department of Pharmacology, School of Medicine, University of Crete, Voutes, 71003, Heraklion, Crete, Greece
| | - Amgad Albohy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Suez Desert Road, Cairo 11837, Egypt
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia 11566, Cairo, Egypt; Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt.
| | - Sherif F Hammad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Ain Helwan 11795, Cairo, Egypt; Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, 21934 Alexandria, Egypt.
| |
Collapse
|
6
|
Uba AI, Scorese N, Dean E, Liu H, Wu C. Activation Mechanism of Corticotrophin Releasing Factor Receptor Type 1 Elucidated Using Molecular Dynamics Simulations. ACS Chem Neurosci 2021; 12:1674-1687. [PMID: 33860667 DOI: 10.1021/acschemneuro.1c00126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The corticotropin-releasing factor receptor type 1 (CRF1R), a member of class B G-protein-coupled receptors (GPCRs), is a good drug target for treating depression, anxiety, and other stress-related neurodisorders. However, there is no approved drug targeting the CRF1R to date, partly due to inadequate structural information and its elusive activation mechanism. Here, by use of the crystal structures of its transmembrane domain (TMD) and the N-terminal extracellular domain (ECD) as a template, a full-length homology model of CRF1R was built and its complexes with peptide agonist urocortin 1 or small molecule antagonist CP-376395 were subjected to all-atom molecular dynamics simulations. We observed well preserved helical contents in the TMD through simulations, while the transmembrane (TM) helices showed clear rearrangements. The TM rearrangement is especially pronounced for the TM6 in the agonist-bound CRF1R system. The observed conformational changes are likely due to breakage of interhelical/inter-regional hydrogen bonds in the TMD. Dynamical network analysis identifies communities with high connections to TM6. Simulations reveal three key residues, Y3566.53, Q3847.49, and L3957.60, which corroborate experimental mutagenesis data, implying the important roles in the receptor activation. The observed large-scale conformational changes are related to CRF1R activation by agonist binding, providing guidance for ligand design.
Collapse
Affiliation(s)
- Abdullahi Ibrahim Uba
- Complex Systems Division, Beijing Computational Science Research Center, Beijing 100193, China
| | - Nicolas Scorese
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Emily Dean
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Haiguang Liu
- Complex Systems Division, Beijing Computational Science Research Center, Beijing 100193, China
| | - Chun Wu
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
7
|
Fouad MA, Abdel-Hamid H, Ayoup MS. Two decades of recent advances of Ugi reactions: synthetic and pharmaceutical applications. RSC Adv 2020; 10:42644-42681. [PMID: 35514898 PMCID: PMC9058431 DOI: 10.1039/d0ra07501a] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/24/2020] [Indexed: 12/30/2022] Open
Abstract
Multicomponent reactions (MCRs) are powerful synthetic tools in which more than two starting materials couple with each other to form multi-functionalized compounds in a one-pot process, the so-called "tandem", "domino" or "cascade" reaction, or utilizing an additional step without changing the solvent, the so-called a sequential-addition procedure, to limit the number of synthetic steps, while increasing the complexity and the molecular diversity, which are highly step-economical reactions. The Ugi reaction, one of the most common multicomponent reactions, has recently fascinated chemists with the high diversity brought by its four- or three-component-based isonitrile. The Ugi reaction has been introduced in organic synthesis as a novel, efficient and useful tool for the preparation of libraries of multifunctional peptides, natural products, and heterocyclic compounds with stereochemistry control. In this review, we highlight the recent advances of the Ugi reaction in the last two decades from 2000-2019, mainly in the synthesis of linear or cyclic peptides, heterocyclic compounds with versatile ring sizes, and natural products, as well as the enantioselective Ugi reactions. Meanwhile, the applications of these compounds in pharmaceutical trials are also discussed.
Collapse
Affiliation(s)
- Manar Ahmed Fouad
- Department of Chemistry, Faculty of Science, Alexandria University Alexandria 21321 Egypt
| | - Hamida Abdel-Hamid
- Department of Chemistry, Faculty of Science, Alexandria University Alexandria 21321 Egypt
| | - Mohammed Salah Ayoup
- Department of Chemistry, Faculty of Science, Alexandria University Alexandria 21321 Egypt
| |
Collapse
|