1
|
Ni C, Yue L, Ran M, Wang L, Huang F, Yang S, Lai J, Jiang N, Huang X, Qin D, Li H, Zhou J, Zeng J, Wu A, Wu J. Identification of octyl gallate, a novel apoptosis-inducing compound for colon cancer therapy, from Sanguisorba officinalis L. by cell membrane chromatography and UHPLC-(Q)TOF-MS/MS. Heliyon 2024; 10:e32230. [PMID: 38933948 PMCID: PMC11200347 DOI: 10.1016/j.heliyon.2024.e32230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Colon cancer is a common gastrointestinal malignancy that ranks third in incidence among gastrointestinal cancers. Therefore, screening bioactive compounds for treatment of colon cancer is urgently needed. Sanguisorba officinalis L. (SO) has been demonstrated that the extractions or monomers possess potential anti-tumor effect. In this study, we firstly used cell membrane chromatography (CMC) and ultra-performance liquid chromatography coupled with (quadrupole) time-of-flight mass spectrometry (UHPLC-(Q) TOF-MS/MS) to identify a novel active ingredient, octyl gallate (OG), from SO methanol extract (SO-MtOH). HCT116 and SW620 cells lines were used for in vitro research, which showed OG presents great anti-colon cancer effect by inhibiting proliferation, inducing apoptosis, and repressing the migration and invasion. Furthermore, SW620 bearing athymic nude mice was used to investigate the potential antitumor activity in vivo, which exhibited OG treatment remarkably lessened the tumor volume. Mechanism studies showed that OG downregulated the PI3K/AKT/mTOR signaling axis and induced apoptosis by upregulating the Bax/Bcl-2 protein and the cleaved caspase-3, caspase-9. In conclusion, our research innovatively applied the method of CMC to intriguingly unearth the potential anti-colon cancer ingredient OG and demonstrated its the great antineoplastic activity, which provide a new insight for researchers efficiently developing the novel apoptosis-inducing compound for colon cancer therapy.
Collapse
Affiliation(s)
- Chengyang Ni
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Liang Yue
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Department of Pharmacy, Deyang People's Hospital, Deyang, 618000, China
| | - Mei Ran
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Feihong Huang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Shuo Yang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jia Lai
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Nan Jiang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xinwu Huang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Dalian Qin
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Hua Li
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jie Zhou
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jing Zeng
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Anguo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, Sichuan, 646000, China
| |
Collapse
|
2
|
Wu Y, Huang L, Ma X, Zhou X, Li Q, Li F. Design, synthesis, and antiproliferative evaluation of novel dehydroabietic acid-1,2,3-triazole-oxazolidinone hybrids. RSC Med Chem 2024; 15:561-571. [PMID: 38389893 PMCID: PMC10880940 DOI: 10.1039/d3md00550j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/28/2023] [Indexed: 02/24/2024] Open
Abstract
A series of novel dehydroabietic acid derivatives containing both 1,2,3-triazole and oxazolidinone 4a-4t have been synthesized and their antiproliferative activity in vitro against HeLa, HepG2, MGC-803 and T-24 cell lines evaluated. Most of them displayed cell proliferation inhibition on four tested human malignant tumour cell lines to some degree. Among them, compound 4p exhibited promising cytotoxicity with IC50 values ranging from 3.18 to 25.31 μM and weak cytotoxicity toward normal cells. The mechanism of action of 4p was then studied using flow cytometry, Hoechst 33258 staining, ROS generation assay, and JC-1 mitochondrial membrane potential staining, which illustrated that compound 4p induced apoptosis, arrested mitotic process at the G1 phase of the cell cycle, reduced the mitochondrial membrane potential, and increased intracellular ROS levels. In summary, the introduction of an oxazolidinone group via a "1,2,3-triazole" linker significantly improved the antitumor activity of dehydroabietic acid, and deserves to be further investigated.
Collapse
Affiliation(s)
- Yaju Wu
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Lin Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Xianli Ma
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Xiaoqun Zhou
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Qian Li
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Fangyao Li
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| |
Collapse
|
3
|
Zhao R, Zhu J, Jiang X, Bai R. Click chemistry-aided drug discovery: A retrospective and prospective outlook. Eur J Med Chem 2024; 264:116037. [PMID: 38101038 DOI: 10.1016/j.ejmech.2023.116037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Click chemistry has emerged as a valuable tool for rapid compound synthesis, presenting notable advantages and convenience in the exploration of potential drug candidates. In particular, in situ click chemistry capitalizes on enzymes as reaction templates, leveraging their favorable conformation to selectively link individual building blocks and generate novel hits. This review comprehensively outlines and introduces the extensive use of click chemistry in compound library construction, and hit and lead discovery, supported by specific research examples. Additionally, it discusses the limitations and precautions associated with the application of click chemistry in drug discovery. Our intention for this review is to contribute to the development of a modular synthetic approach for the rapid identification of drug candidates.
Collapse
Affiliation(s)
- Rui Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Junlong Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
4
|
Li Q, Qi S, Liang J, Tian Y, He S, Liao Q, Xing S, Han L, Chen X. Review of triazole scaffolds for treatment and diagnosis of Alzheimer's disease. Chem Biol Interact 2023; 382:110623. [PMID: 37451665 DOI: 10.1016/j.cbi.2023.110623] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Triazole scaffolds, a series of 5-membered heterocycles, are well known for their high efficacy, low toxicity, and superior pharmacokinetics. Alzheimer's disease (AD) is the first neurodegenerative disorder with complex pathological mechanisms. Triazole, as an aromatic group with three nitrogen atoms, forms polar and non-polar interactions with diverse key residues in the receptor-ligand binding procedure, and has been widely used in the molecular design in the development of anti-AD agents. Moreover, considering the simple synthesis approaches, triazole scaffolds are commonly used to link two pharmacodynamic groups in one chemical molecule, forming multi-target directed ligands (MTDLs). Furthermore, the click reaction between azide- and cyano-modified enzyme and ligand provides feasibility for the new modulator discovery, compound tissue distribution evaluation, enzyme localization, and pharmacological mechanism study, promoting the diagnosis of AD course.
Collapse
Affiliation(s)
- Qi Li
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| | - Shulei Qi
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Jinxin Liang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Yuqing Tian
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Siyu He
- Guizhou Medical University, Guiyang, 550025, Guizhou, PR China
| | - Qinghong Liao
- Shandong Junrong Technology Transfer Co., Ltd, Qingdao, 266071, Shandong, PR China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Lingfei Han
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Xuehong Chen
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| |
Collapse
|
5
|
Cheng Z, Chu H, Zhu Q, Yang L. Ferroptosis in non-alcoholic liver disease: Molecular mechanisms and therapeutic implications. Front Nutr 2023; 10:1090338. [PMID: 36992907 PMCID: PMC10040549 DOI: 10.3389/fnut.2023.1090338] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
Ferroptosis refers to a novel modality of regulated cell death characterized by excessive iron accumulation and overwhelming lipid peroxidation, which takes an important part in multiple pathological processes associated with cell death. Considering the crucial roles of the liver in iron and lipid metabolism and its predisposition to oxidative insults, more and more studies have been conducted to explore the relationship between ferroptosis and various liver disorders, including non-alcoholic fatty liver disease (NAFLD). With increased morbidity and high mortality rates, NAFLD has currently emerged as a global public health issue. However, the etiology of NAFLD is not fully understood. In recent years, an accumulating body of evidence have suggested that ferroptosis plays a pivotal role in the pathogenesis of NAFLD, but the precise mechanisms underlying how ferroptosis affects NAFLD still remain obscure. Here, we summarize the molecular mechanisms of ferroptosis and its complicated regulation systems, delineate the different effects that ferroptosis exerts in different stages of NAFLD, and discuss some potential effective therapies targeting ferroptosis for NAFLD treatment, which putatively points out a novel direction for NAFLD treatment.
Collapse
Affiliation(s)
- Zilu Cheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingjing Zhu
- Jinyintan Hospital, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Qingjing Zhu,
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Ling Yang, ,
| |
Collapse
|
6
|
Recent Advances on Biological Activities and Structural Modifications of Dehydroabietic Acid. Toxins (Basel) 2022; 14:toxins14090632. [PMID: 36136570 PMCID: PMC9501862 DOI: 10.3390/toxins14090632] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Dehydroabietic acid is a tricyclic diterpenoid resin acid isolated from rosin. Dehydroabietic acid and its derivatives showed lots of medical and agricultural bioactivities, such as anticancer, antibacterial, antiviral, antiulcer, insecticidal, and herbicidal activities. This review summarized the research advances on the structural modification and total synthesis of dehydroabietic acid and its derivatives from 2015 to 2021, and analyzed the biotransformation and structure-activity relationships in order to provide a reference for the development and utilization of dehydroabietic acid and its derivatives as drugs and pesticides.
Collapse
|
7
|
Ni C, Wu Y, Ran M, Li J, Li H, Lan C, Liu J, Dai P, Wu J, Li F. Design, Synthesis and Evaluation of Novel Dehydroabietic Acid-Dithiocarbamate Hybrids as Potential Multi-Targeted Compounds for Tumor Cytotoxicity. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
8
|
Mareddy J, Hossain KA, Yadav NS, Banothu V, Anireddy JS, Pal S. Novel molecules containing structural features of NSAIDs and 1,2,3-triazole ring: Design, synthesis and evaluation as potential cytotoxic agents. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Guo HY, Chen ZA, Shen QK, Quan ZS. Application of triazoles in the structural modification of natural products. J Enzyme Inhib Med Chem 2021; 36:1115-1144. [PMID: 34167422 PMCID: PMC8231395 DOI: 10.1080/14756366.2021.1890066] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/30/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Nature products have been extensively used in the discovery and development of new drugs, as the most important source of drugs. The triazole ring is one of main pharmacophore of the nitrogen-containing heterocycles. Thus, a new class of triazole-containing natural product conjugates has been synthesised. These compounds reportedly exert anticancer, anti-inflammatory, antimicrobial, antiparasitic, antiviral, antioxidant, anti-Alzheimer, and enzyme inhibitory effects. This review summarises the research progress of triazole-containing natural product derivatives involved in medicinal chemistry in the past six years. This review provides insights and perspectives that will help scientists in the fields of organic synthesis, medicinal chemistry, phytochemistry, and pharmacology.
Collapse
Affiliation(s)
- Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Zheng-Ai Chen
- Department of Pharmacology, Medical School of Yanbian University, Yanji, Jilin, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Zhe-Shan Quan
- Department of Pharmacology, Medical School of Yanbian University, Yanji, Jilin, China
| |
Collapse
|
10
|
Soam P, Gaba H, Mandal D, Tyagi V. A Pd-catalyzed one-pot cascade consisting of C-C/C-O/N-N bond formation to access benzoxazine fused 1,2,3-triazoles. Org Biomol Chem 2021; 19:9936-9945. [PMID: 34739023 DOI: 10.1039/d1ob01539g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Pd-catalyzed one-pot cascade consisting of C-C/C-O/N-N bond formation to access clinically important fused 1,2,3-triazoles using N-aryl-α-(tosylhydrazone)acetamides with isocyanide has been developed. Besides, various substitutions on the N-aryl part of acetamides along with different isocyanides show good compatibility in this protocol. Next, two plausible mechanistic routes were proposed; however, one of the routes was more favourable which involved the formation of a benzoxazine ring first followed by the realization of a triazole ring. Additionally, the more favourable mechanistic route was investigated using DFT studies which suggests that the formations of a Pd(II)-isocyanide complex and α-diazoimino intermediates were key steps in the catalytic cycle.
Collapse
Affiliation(s)
- Pooja Soam
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147004, Punjab, India.
| | - Hashmita Gaba
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147004, Punjab, India.
| | - Debasish Mandal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147004, Punjab, India.
| | - Vikas Tyagi
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147004, Punjab, India.
| |
Collapse
|
11
|
Zhang X, Zhang S, Zhao S, Wang X, Liu B, Xu H. Click Chemistry in Natural Product Modification. Front Chem 2021; 9:774977. [PMID: 34869223 PMCID: PMC8635925 DOI: 10.3389/fchem.2021.774977] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022] Open
Abstract
Click chemistry is perhaps the most powerful synthetic toolbox that can efficiently access the molecular diversity and unique functions of complex natural products up to now. It enables the ready synthesis of diverse sets of natural product derivatives either for the optimization of their drawbacks or for the construction of natural product-like drug screening libraries. This paper showcases the state-of-the-art development of click chemistry in natural product modification and summarizes the pharmacological activities of the active derivatives as well as the mechanism of action. The aim of this paper is to gain a deep understanding of the fruitful achievements and to provide perspectives, trends, and directions regarding further research in natural product medicinal chemistry.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Songfeng Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xuan Wang
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Liu
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| |
Collapse
|
12
|
Zhang H, Zhang E, Hu H. Role of Ferroptosis in Non-Alcoholic Fatty Liver Disease and Its Implications for Therapeutic Strategies. Biomedicines 2021; 9:biomedicines9111660. [PMID: 34829889 PMCID: PMC8615581 DOI: 10.3390/biomedicines9111660] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the chronic liver disease with the highest incidence throughout the world, but its pathogenesis has not been fully elucidated. Ferroptosis is a novel form of programmed cell death caused by iron-dependent lipid peroxidation. Abnormal iron metabolism, lipid peroxidation, and accumulation of polyunsaturated fatty acid phospholipids (PUFA-PLs) can all trigger ferroptosis. Emerging evidence indicates that ferroptosis plays a critical role in the pathological progression of NAFLD. Because the liver is the main organ for iron storage and lipid metabolism, ferroptosis is an ideal target for liver diseases. Inhibiting ferroptosis may become a new therapeutic strategy for the treatment of NAFLD. In this article, we describe the role of ferroptosis in the progression of NAFLD and its related mechanisms. This review will highlight further directions for the treatment of NAFLD and the selection of corresponding drugs that target ferroptosis.
Collapse
Affiliation(s)
- Han Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100080, China;
| | - Enxiang Zhang
- Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life Sciences, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, China
- Correspondence: (E.Z.); (H.H.)
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100080, China;
- Correspondence: (E.Z.); (H.H.)
| |
Collapse
|
13
|
Gao G, Xie Z, Li EW, Yuan Y, Fu Y, Wang P, Zhang X, Qiao Y, Xu J, Hölscher C, Wang H, Zhang Z. Dehydroabietic acid improves nonalcoholic fatty liver disease through activating the Keap1/Nrf2-ARE signaling pathway to reduce ferroptosis. J Nat Med 2021; 75:540-552. [PMID: 33590347 DOI: 10.1007/s11418-021-01491-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
The accumulation of iron-dependent lipid peroxides is one of the important causes of NAFLD. The purpose of this study is to explore the effect of dehydroabietic acid (DA) on ferroptosis in nonalcoholic fatty liver disease (NAFLD) mice and its possible mechanisms. DA improved NAFLD and reduced triglycerides (TG), total cholesterol (TC), and lipid peroxidation level and inhibited ferroptosis in the liver of HFD-induced mice. DA binds with Keap1 to form 3 stable hydrogen bonds at VAL512 and LEU557 and increased nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response elemen (ARE) luciferase activity. DA promoted the expression downstream of Nrf2 such as heme oxygenase-1 (HO-1), glutathione (GSH) and its peroxidase 4 (GPX4), so as to eliminate the accumulation of reactive oxygen species (ROS) and reduce lipid peroxides malondialdehyde (MDA) in the liver. DA inhibited ferroptosis and increased the expression of key genes such as ferroptosis suppressor protein 1 (FSP1) in vitro and vivo. In all, DA may bind with Keap1, activate Nrf2-ARE, induce its target gene expression, inhibit ROS accumulation and lipid peroxidation, and reduce HFD-induced NAFLD.
Collapse
Affiliation(s)
- Gai Gao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China.,College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Zhishen Xie
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Er-Wen Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yong Yuan
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yu Fu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Pan Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xiaowei Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yonghui Qiao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jiangyan Xu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Christian Hölscher
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Hui Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Zhenqiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| |
Collapse
|
14
|
Nemallapudi BR, Guda DR, Ummadi N, Avula B, Zyryanov GV, Reddy CS, Gundala S. New Methods for Synthesis of 1,2,3-Triazoles: A Review. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2020.1866038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
| | | | - Nagarjuna Ummadi
- Department of Chemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Balakrishna Avula
- Department of Chemistry, Rajeev Gandhi Memorial College of Engineering and Technology (Autonomous), Nandyal, Andhra Pradesh, India
| | - Grigory V. Zyryanov
- Department of Chemistry, Chemical Engineering Institute, Ural Federal University, Yekaterinburg, Russia
- Department of Chemistry, I. Ya. Postovsky Institute of Organic Synthesis, Ural Division of Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Cirandur Suresh Reddy
- Department of Chemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Sravya Gundala
- Department of Chemistry, Chemical Engineering Institute, Ural Federal University, Yekaterinburg, Russia
| |
Collapse
|
15
|
Pereira GR, Ferreira ACG, Neves PHDAS, Gomes EBS, Nascimento MFAD, Sousa JAC, Santos JDO, Brandão GC, Oliveira ABD. Quinolinotriazole antiplasmodials via click chemistry: synthesis and in vitro studies of 7-Chloroquinoline-based compounds. BRAZ J PHARM SCI 2021. [DOI: 10.1590/s2175-979020200004181086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
16
|
Kumar S, Sharma B, Mehra V, Kumar V. Recent accomplishments on the synthetic/biological facets of pharmacologically active 1H-1,2,3-triazoles. Eur J Med Chem 2020; 212:113069. [PMID: 33388593 DOI: 10.1016/j.ejmech.2020.113069] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022]
Abstract
The continuous demand of medicinally important scaffolds has prompted the synthetic chemists to identify simple and efficient routes for their synthesis. 1H-1,2,3-triazole, obtained by highly versatile, efficacious and selective "Click Reaction" has become a synthetic/medicinal chemist's favorite not only because of its ability to mimic different functional groups but also due to enhancement in the targeted biological activities. Triazole ring has also been shown to play a critical role in biomolecular mimetics, fragment-based drug design, and bioorthogonal methodologies. In addition, the availability of triazole containing drugs such as fluconazole, furacyclin, etizolam, voriconazole, triozolam etc. in market has underscored the potential of this biologically enriched core in expediting development of new scaffolds. The present review, therefore, is an attempt to highlight the recent synthetic/biological advancements in triazole derivatives that could facilitate the in-depth understanding of its role in the drug discovery process.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Bharvi Sharma
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Vishu Mehra
- Department of Chemistry, Hindu College, Amritsar, Punjab, 143001, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
17
|
Abuelizz HA, Anouar EH, Al-Shakliah NS, Marzouk M, Al-Salahi R. Structural cytotoxicity relationship of 2-phenoxy(thiomethyl)pyridotriazolopyrimidines: Quantum chemical calculations and statistical analysis. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractPreviously, a series of pyridotriazolopyrimidines (1–6) were synthesized and fully described. The target compounds (1–6) were evaluated for their cytotoxicity against MCF-7, HepG2, WRL 68, and A549 (breast adenocarcinoma, hepatocellular carcinoma, embryonic liver, and pulmonary adenocarcinoma, respectively) cell lines using MTT assay. The tested compounds demonstrated cytotoxicity, but no significant activity. To elucidate the structure–cytotoxicity relation of the prepared pyridotriazolopyrimidines, several chemical descriptors were determined, including electronic, steric, and hydrophobic descriptors. These chemical descriptors were calculated in the polarizable continuum model (water as solvent) using density functional theory calculations at B3LYP/6-31+G(d,p). By employing simple linear regression (SLR) and multiple linear regression (MLR) analyses, the impact of the selected descriptors was assessed statistically. The obtained results clearly reveal that the cytotoxicity of pyridotriazolopyrimidines depends on their (i) basic skeleton and (ii) the type of the tested cell. Interestingly, SLR and MLR analyses show that the impact of the selected descriptors is strongly related to the tested cells and basic skeleton of the tested compounds. For instance, the cytotoxicity of subclasses 2a and 2c–2f against A459 shows strong correlation with ionization potential, hardness (η), and hydrophobicity (log P) with a correlation coefficient of 99.86% and a standard deviation of 0.53.
Collapse
Affiliation(s)
- Hatem A. Abuelizz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - El Hassane Anouar
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Nasser S. Al-Shakliah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohamed Marzouk
- Chemistry of Natural Products Group, Center of Excellence for Advanced Sciences, National Research Centre, 33 El-Bohouth St. (Former El-Tahrir St.), Dokki 12622, Giza, Egypt
| | - Rashad Al-Salahi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
18
|
Yang YQ, Chen H, Liu QS, Sun Y, Gu W. Synthesis and anticancer evaluation of novel 1H-benzo[d]imidazole derivatives of dehydroabietic acid as PI3Kα inhibitors. Bioorg Chem 2020; 100:103845. [PMID: 32344183 DOI: 10.1016/j.bioorg.2020.103845] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022]
Abstract
Phosphatidylinositol 3-kinase (PI3K) is one of the most attractive therapeutic targets for cancer treatment. In this study, a series of new 2-arylthio- and 2-arylamino-1H-benzo[d]imidazole derivatives of dehydroabietic acid were designed, synthesized and characterized by 1H NMR, 13C NMR, IR and MS spectra analyses. In the in vitro anticancer assay, some title compounds showed significant inhibitory activities against four cancer cell lines (HCT-116, MCF-7, HeLa and HepG2). Among them, compound 9g exhibited the most potent activity with IC50 values of 0.18 ± 0.03, 0.43 ± 0.05, 0.71 ± 0.08 and 0.63 ± 0.09 μM against four cancer cell lines, and considerably lower cytotoxicity to human gastric mucosal cell line Ges-1 (IC50: 21.95 ± 0.73 μM). Besides, compound 9g displayed a certain selective activity to PI3Kα (IC50 = 0.012 ± 0.002 μM) over PI3Kβ, γ and δ, and meanwhile, it can remarkably decrease the expression level of p-Akt (Ser473). In addition, compound 9g could increase intracellular reactive oxygen species level, decrease mitochondrial membrane potential, upregulate Bax and cleaved caspase-3/9 levels, downregulate Bcl-2 level and thus induce the apoptosis of HCT-116 cells in a dose-dependent manner. The results suggested that compound 9g could be considered as a promising PI3Kα inhibitor.
Collapse
Affiliation(s)
- Ya-Qun Yang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Hao Chen
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Qing-Song Liu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yue Sun
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Wen Gu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
19
|
Rani A, Singh G, Singh A, Maqbool U, Kaur G, Singh J. CuAAC-ensembled 1,2,3-triazole-linked isosteres as pharmacophores in drug discovery: review. RSC Adv 2020; 10:5610-5635. [PMID: 35497465 PMCID: PMC9049420 DOI: 10.1039/c9ra09510a] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
Abstract
The review lays emphasis on the significance of 1,2,3-triazoles synthesized via CuAAC reaction having potential to act as anti-microbial, anti-cancer, anti-viral, anti-inflammatory, anti-tuberculosis, anti-diabetic, and anti-Alzheimer drugs. The importance of click chemistry is due to its 'quicker' methodology that has the capability to create complex and efficient drugs with high yield and purity from simple and cheap starting materials. The activity of different triazolyl compounds was compiled considering MIC, IC50, and EC50 values against different species of microbes. In addition to this, the anti-oxidant property of triazolyl compounds have also been reviewed and discussed.
Collapse
Affiliation(s)
- Alisha Rani
- Department of Chemistry, Lovely Professional University Phagwara-144411 Punjab India +91 9815967272
| | - Gurjaspreet Singh
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160014 India
| | - Akshpreet Singh
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160014 India
| | - Ubair Maqbool
- Department of Chemistry, Lovely Professional University Phagwara-144411 Punjab India +91 9815967272
| | - Gurpreet Kaur
- Department of Chemistry, Gujranwala Guru Nanak Khalsa College Civil Lines Ludhiana-141001 India
| | - Jandeep Singh
- Department of Chemistry, Lovely Professional University Phagwara-144411 Punjab India +91 9815967272
| |
Collapse
|
20
|
Zhang X, Bai R, Xiong H, Xu H, Hou W. Meeting organometallic chemistry with drug discovery: C H activation enabled discovery of a new ring system of 12H-Indazolo[2,1-a]cinnolin-12-ones with anti-proliferation activity. Bioorg Med Chem Lett 2020; 30:126916. [DOI: 10.1016/j.bmcl.2019.126916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 01/01/2023]
|
21
|
Tretyakova EV, Salimova EV, Parfenova LV. Synthesis and Antimicrobial and Antifungal Activity of Resin Acid Acetylene Derivatives. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162019050121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Tashakkorian H, Hasantabar V, Golpour M. Structural and antitumoral characteristic dataset of the chitosan based magnetic nanocomposite. Data Brief 2019; 27:104583. [PMID: 31673586 PMCID: PMC6817675 DOI: 10.1016/j.dib.2019.104583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 01/28/2023] Open
Abstract
The evaluation on the characteristic dataset and figures presented here, are related to our latest research data entitled “Fabrication of chitosan based magnetic nanocomposite by click reaction strategy; evaluation of nanometric and Cytotoxic characteristics” [1]. FTIR, Vibrating Sample Magnetometer (VSM) measurements, Xray diffraction (XRD) information and the resulted figures for structural confirmation of the prepared chitosan based nanocomposite are presented in this article. The morphological changes of the Fibroblast, Saos, MCF7 and Hela cell lines after treatment with the mention compound were displayed. The additional adsorption data for the synthesized nanobiocomposite were also demonstrated with graphs.
Collapse
Affiliation(s)
- Hamed Tashakkorian
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Pharmacology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Vahid Hasantabar
- University of Mazandaran, Faculty of Chemistry, Department of Organic-Polymer Chemistry, Babolsar, 47416, Iran
| | - Monire Golpour
- Molecular and Cell Biology Research Center, Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
23
|
Jain A, Piplani P. Exploring the Chemistry and Therapeutic Potential of Triazoles: A Comprehensive Literature Review. Mini Rev Med Chem 2019; 19:1298-1368. [DOI: 10.2174/1389557519666190312162601] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
Abstract
:
Triazole is a valuable platform in medicinal chemistry, possessing assorted pharmacological
properties, which could play a major role in the common mechanisms associated with various disorders
like cancer, infections, inflammation, convulsions, oxidative stress and neurodegeneration. Structural
modification of this scaffold could be helpful in the generation of new therapeutically useful
agents. Although research endeavors are moving towards the growth of synthetic analogs of triazole,
there is still a lot of scope to achieve drug discovery break-through in this area. Upcoming therapeutic
prospective of this moiety has captured the attention of medicinal chemists to synthesize novel triazole
derivatives. The authors amalgamated the chemistry, synthetic strategies and detailed pharmacological
activities of the triazole nucleus in the present review. Information regarding the marketed triazole derivatives
has also been incorporated. The objective of the review is to provide insights to designing and
synthesizing novel triazole derivatives with advanced and unexplored pharmacological implications.
Collapse
Affiliation(s)
- Ankit Jain
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh- 160014, India
| | - Poonam Piplani
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh- 160014, India
| |
Collapse
|
24
|
Hou W, Liu B, Xu H. Triptolide: Medicinal chemistry, chemical biology and clinical progress. Eur J Med Chem 2019; 176:378-392. [DOI: 10.1016/j.ejmech.2019.05.032] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/11/2019] [Accepted: 05/11/2019] [Indexed: 12/14/2022]
|
25
|
Optically pure chiral copper(II) complexes of rosin derivative as attractive anticancer agents with potential anti-metastatic and anti-angiogenic activities. Eur J Med Chem 2019; 176:175-186. [DOI: 10.1016/j.ejmech.2019.05.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 12/16/2022]
|
26
|
Hou W, Xiong H, Bai R, Xiao Z, Su L, Ruan BH, Xu H. Synthesis of Indazolo[2,1-a]Cinnolines via Rhodium (III)-Catalyzed C–H activation/annulation under mild conditions. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
Abuelizz HA, Awad HM, Marzouk M, Nasr FA, Alqahtani AS, Bakheit AH, Naglah AM, Al-Salahi R. Synthesis and biological evaluation of 4-(1 H-1,2,4-triazol-1-yl)benzoic acid hybrids as anticancer agents. RSC Adv 2019; 9:19065-19074. [PMID: 35516906 PMCID: PMC9064907 DOI: 10.1039/c9ra03151k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 05/20/2019] [Indexed: 11/25/2022] Open
Abstract
A series of 4-(1H-1,2,4-triazol-1-yl)benzoic acid hybrids (1-17) was successfully synthesized and their structures were established by NMR and MS analysis. In vitro cytotoxic evaluation indicated that some of the hybrids exhibited potent inhibitory activities against MCF-7 and HCT-116 cancer cell lines, with IC50 values ranging from 15.6 to 23.9 µM, compared with reference drug doxorubicin (19.7 and 22.6 µM, respectively). Notably, the most potent compounds, 2, 5, 14, and 15, not only exhibited an obvious improvement in IC50 values, but demonstrated very weak cytotoxic effects toward normal cells (RPE-1) compared with doxorubicin. A further investigation showed that compounds 2 and 14 clearly inhibited the proliferation of MCF-7 cancer cells by inducing apoptosis. In addition, these hybrids showed acceptable correlation with bioassay results in regression plots generated by 2D QSAR models. Our results indicated that 1,2,4-triazole benzoic acid hybrids could be used as a structural optimization platform for the design and development of more selective and potent anticancer molecules.
Collapse
Affiliation(s)
- Hatem A Abuelizz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University PO Box 2457 Riyadh 11451 Saudi Arabia
| | - Hanem M Awad
- Department of Tanning Materials and Leather Technology, National Research Centre 33 El-Bohouth St. (Former El-Tahrir St.), Dokki Cairo 12622 Egypt
| | - Mohamed Marzouk
- Chemistry of Natural Products Group, Center of Excellence for Advanced Sciences, National Research Centre 33 El-Bohouth St. (Former El-Tahrir St.), Dokki Cairo 12622 Egypt
| | - Fahd A Nasr
- Medicinal Aromatic, and Poisonous Plants Research Center, College of Pharmacy, King Saud University PO Box 2457 Riyadh 11451 Saudi Arabia
| | - Ali S Alqahtani
- Pharmacognosy Department, College of Pharmacy, King Saud University PO Box 2457 Riyadh 11451 Saudi Arabia
| | - Ahmed H Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University PO Box 2457 Riyadh 11451 Saudi Arabia
- Department of Chemistry, Faculty of Science and Technology, El-Neelain University PO Box 12702 Khartoum 11121 Sudan
| | - Ahmed M Naglah
- Department of Pharmaceutical Chemistry, Drug Exploration and Development Chair (DEDC), College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
- Peptide Chemistry Department, Chemical Industries Research Division, National Research Centre 33 El-Bohouth St. (Former El-Tahrir St.), Dokki Cairo 12622 Egypt
| | - Rashad Al-Salahi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University PO Box 2457 Riyadh 11451 Saudi Arabia
| |
Collapse
|
28
|
Hou W, Fan Q, Su L, Xu H. Synthesis of Oridonin Derivatives via Mizoroki-Heck Reaction and Click Chemistry for Cytotoxic Activity. Anticancer Agents Med Chem 2019; 19:935-947. [PMID: 30657049 DOI: 10.2174/1871520619666190118121439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 01/01/2019] [Accepted: 01/07/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Natural products (NPs) are evolutionarily chosen "privileged structures" that have a profound impact upon the anticancer drug discovery and development progress. However, the search for new drugs based on structure modification of NPs has often been hindered due to the tedious and complicated synthetic pathways. Fortunately, Mizoroki-Heck reaction and copper-catalyzed alkyne-azide cycloaddition (CuAAC) could provide perfect strategies for selective modification on NPs even in the presence of liable functionalities. OBJECTIVE Here, we used oridonin, an ent-kaurane diterpenoid that showed a wide range of biological activities, as a parent molecule for the generation of analogues with anticancer activity. METHODS Derivatives of oridonin were generated based on the structure-activity relationship study of oridonin and synthesized via Mizoroki-Heck reaction and CuAAC. The cytotoxicity of new oridonin derivatives were evaluated on both cancer cells and normal cells. Furthermore, the apoptotic effect and cell cycle arrest effect of the selected potent analogue were evaluated by flow cytometry and western blotting analysis. RESULTS Two series of novel C-14 and C-17 modified derivatives of oridonin were obtained via Heck reaction and copper-catalyzed alkyne-azide cycloaddition (CuAAC), respectively. In vitro antiproliferative activities showed that the introduction of C-14 (2-triazole)acetoxyl- moiety could retain or enhance cytotoxicity, whereas the introduction of C-17 phenyl ring might exert negative effect. Further studies demonstrated that derivative 23 exhibited broad-spectrum antiproliferative activity, effectively overcame drug-resistance and showed weak cytotoxicity on non-cancer cells. Preliminary mechanistic studies indicated that 23 might cause G2/M phase arrest and induce apoptosis in PC-3 cells. CONCLUSION Mizoroki-Heck reaction and CuAAC are perfect strategies for structure modification of complex natural products. The introduction of C-14 (2-triazole)acetoxyl- moiety could retain or enhance the cytotoxicity of oridonin, the introduction of C-17 phenyl group might exert negative effect on its cytotoxicity.
Collapse
Affiliation(s)
- Wei Hou
- College of Pharmaceutical Science, and Institute of Drug Development & Chemical Biology (IDD&CB), Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qiuju Fan
- Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Lin Su
- College of Pharmaceutical Science, and Institute of Drug Development & Chemical Biology (IDD&CB), Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, 201210, China
| |
Collapse
|
29
|
Nouraie P, Moradi Dehaghi S, Foroumadi A. Coumarin-1,2,3-triazole hybrid derivatives: Green synthesis and DFT calculations. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2018.1557686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Pegah Nouraie
- Department of Chemistry, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | | | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Tashrifi Z, Mohammadi-khanaposhtani M, Shafiee Ardestani M, Safavi M, Rad-Moghadam K, Mehrdad M, Larijani B, Mahdavi M. Design, Synthesis and In vitro Cytotoxicity of New 1,2,3-triazol- and Nitrostyrene Hybrids as Potent Anticancer Agents. LETT DRUG DES DISCOV 2018. [DOI: 10.2174/1570180815666180427151830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
A new series of 1,2,3-triazol-nitrostyrene derivatives was designed,
synthesized, and evaluated for cytotoxic activity against Hep-2 and L929 cell lines.
</P><P>
Methods: The synthetic procedure started from the functionalization of 4-hydroxybenzaldehyde
with propargyl bromide and a subsequent click reaction to give 1,2,3-triazole derivatives. Then, the
reaction of the mentioned derivatives with nitromethane led to the formation of the title compounds
in excellent yields.
Results:
Most of the compounds exhibited better cytotoxic activity with respect to the standard drug
5-fluorouracil. Among them, (E)-1-(3,4-dichlorobenzyl)-4-((4-(2-nitrovinyl)phenoxy)methyl)-1H-
1,2,3-triazole 6i (IC50 = 4.66 ± 1.3 µM) against the Hep-2 cell line and (E)-1-(2,3-dichlorobenzoyl)-
4-((4-(2-nitrovinyl)phenoxy)methyl)-1H-1,2,3-triazole 6g (IC50 = 5.18 ± 0.8 µM) against the L929
cell line exhibited the best cytotoxic effects.
Conclusion:
Moreover, the acridine orange/ethidium bromide double staining technique showed
that the most potent compounds 6i and 6g could induce apoptosis in studied cancer cell lines.
Collapse
Affiliation(s)
- Zahra Tashrifi
- Department of Chemistry, University of Guilan, Rasht, Iran
| | | | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy and Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | | | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Hou W, Zhang G, Luo Z, Su L, Xu H. Click chemistry‐based synthesis and cytotoxic activity evaluation of 4α‐triazole acetate podophyllotoxin derivatives. Chem Biol Drug Des 2018; 93:473-483. [DOI: 10.1111/cbdd.13436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 09/26/2018] [Accepted: 10/28/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Wei Hou
- College of Pharmaceutical ScienceInstitute of Drug Development & Chemical Biology (IDD & CB)Zhejiang University of Technology Hangzhou China
| | - Guanjun Zhang
- College of Chemical Engineering and Materials ScienceTianjin University of Science & Technology Tianjin China
| | - Zhi Luo
- Shanghai Evergene Biotech Co., Ltd. Shanghai China
| | - Lin Su
- College of Pharmaceutical ScienceInstitute of Drug Development & Chemical Biology (IDD & CB)Zhejiang University of Technology Hangzhou China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech University Shanghai China
| |
Collapse
|
32
|
Wang X, Pang FH, Huang L, Yang XP, Ma XL, Jiang CN, Li FY, Lei FH. Synthesis and Biological Evaluation of Novel Dehydroabietic Acid-Oxazolidinone Hybrids for Antitumor Properties. Int J Mol Sci 2018; 19:ijms19103116. [PMID: 30314336 PMCID: PMC6213879 DOI: 10.3390/ijms19103116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/13/2018] [Accepted: 10/03/2018] [Indexed: 12/18/2022] Open
Abstract
Novel representatives of the important group of biologically-active, dehydroabietic acid-bearing oxazolidinone moiety were synthesized to explore more efficacious and less toxic antitumor agents. Structures of all the newly target molecules were confirmed by IR, 1H-NMR, 13C-NMR, and HR-MS. The inhibitory activities of these compounds against different human cancer cell lines (MGC-803, CNE-2, SK-OV-3, NCI-H460) and human normal liver cell line LO2 were evaluated and compared with the commercial anticancer drug cisplatin, using standard MTT (methyl thiazolytetrazolium) assay in vitro. The pharmacological screening results revealed that most of the hybrids showed significantly improved antiproliferative activities over dehydroabietic acid and that some displayed better inhibitory activities compared to cisplatin. In particular, compound 4j exhibited promising cytotoxicity with IC50 values ranging from 3.82 to 17.76 µM against all the test cell lines and displayed very weak cytotoxicity (IC50 > 100 µM) on normal cells, showing good selectivity between normal and malignant cells. Furthermore, the action mechanism of the representative compound 4j was preliminarily investigated by Annexin-V/PI dual staining, Hoechst 33258 staining, which indicated that the compound can induce cell apoptosis in MGC-803 cells in a dose-dependent manner and arrest the cell cycle in G1 phase. Therefore, 4j may be further exploited as a novel pharmacophore model for the development of anticancer agents.
Collapse
Affiliation(s)
- Xiu Wang
- College of Pharmacy, Guilin Medical University, 109 North 2nd Huancheng Road, Guilin 541004, China.
| | - Fu-Hua Pang
- College of Pharmacy, Guilin Medical University, 109 North 2nd Huancheng Road, Guilin 541004, China.
| | - Lin Huang
- College of Pharmacy, Guilin Medical University, 109 North 2nd Huancheng Road, Guilin 541004, China.
| | - Xin-Ping Yang
- College of Pharmacy, Guilin Medical University, 109 North 2nd Huancheng Road, Guilin 541004, China.
| | - Xian-Li Ma
- College of Pharmacy, Guilin Medical University, 109 North 2nd Huancheng Road, Guilin 541004, China.
| | - Cai-Na Jiang
- College of Pharmacy, Guilin Medical University, 109 North 2nd Huancheng Road, Guilin 541004, China.
| | - Fang-Yao Li
- College of Pharmacy, Guilin Medical University, 109 North 2nd Huancheng Road, Guilin 541004, China.
| | - Fu-Hou Lei
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Nanning 530006, China.
| |
Collapse
|
33
|
Ke Y, Liang JJ, Hou RJ, Li MM, Zhao LF, Wang W, Liu Y, Xie H, Yang RH, Hu TX, Wang JY, Liu HM. Synthesis and biological evaluation of novel Jiyuan Oridonin A-1,2,3-triazole-azole derivatives as antiproliferative agents. Eur J Med Chem 2018; 157:1249-1263. [DOI: 10.1016/j.ejmech.2018.08.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 01/05/2023]
|
34
|
Tavares WR, Seca AML. The Current Status of the Pharmaceutical Potential of Juniperus L. Metabolites. MEDICINES 2018; 5:medicines5030081. [PMID: 30065158 PMCID: PMC6165314 DOI: 10.3390/medicines5030081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 12/27/2022]
Abstract
Background: Plants and their derived natural compounds possess various biological and therapeutic properties, which turns them into an increasing topic of interest and research. Juniperus genus is diverse in species, with several traditional medicines reported, and rich in natural compounds with potential for development of new drugs. Methods: The research for this review were based in the Scopus and Web of Science databases using terms combining Juniperus, secondary metabolites names, and biological activities. This is not an exhaustive review of Juniperus compounds with biological activities, but rather a critical selection taking into account the following criteria: (i) studies involving the most recent methodologies for quantitative evaluation of biological activities; and (ii) the compounds with the highest number of studies published in the last four years. Results: From Juniperus species, several diterpenes, flavonoids, and one lignan were emphasized taking into account their level of activity against several targets. Antitumor activity is by far the most studied, being followed by antibacterial and antiviral activities. Deoxypodophyllotoxin and one dehydroabietic acid derivative appears to be the most promising lead compounds. Conclusions: This review demonstrates the Juniperus species value as a source of secondary metabolites with relevant pharmaceutical potential.
Collapse
Affiliation(s)
- Wilson R Tavares
- Faculty of Sciences and Technology, University of Azores, 9501-801 Ponta Delgada, Portugal.
| | - Ana M L Seca
- Department of Chemistry & QOPNA-Organic Chemistry, Natural Products and Food Stuffs, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
- cE3c-Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group & Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus, 9501-321 Ponta Delgada, Portugal.
| |
Collapse
|
35
|
Brandão GC, Rocha Missias FC, Arantes LM, Soares LF, Roy KK, Doerksen RJ, Braga de Oliveira A, Pereira GR. Antimalarial naphthoquinones. Synthesis via click chemistry, in vitro activity , docking to Pf DHODH and SAR of lapachol-based compounds. Eur J Med Chem 2018; 145:191-205. [DOI: 10.1016/j.ejmech.2017.12.051] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 11/29/2022]
|