1
|
Li B, Chen Y, Wang S, Jin B, Yang J, Niu Q, Hao G, Wang N, Zhang W, Zhao L, Wen J, Liu D. Discovery of 4,5-dihydro-benzo[g]indazole-based hydroxamic acids as HDAC3/BRD4 dual inhibitors and anti-tumor agents. Eur J Med Chem 2025; 285:117230. [PMID: 39764880 DOI: 10.1016/j.ejmech.2024.117230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/29/2024] [Indexed: 02/04/2025]
Abstract
Concurrent inhibition of HDAC and BRD4, two well-established epigenetic targets for anti-tumor therapy, demonstrates the potential to enhance anti-tumor effects synergistically. The present study involves the development of a series of novel HDAC3/BRD4 dual inhibitors, followed by evaluation of their antitumor efficacy against several tumor models. Guided by scaffold hopping strategy, key pharmacophore of BRD4 inhibitor I-BET-151 was incorporated into an in-house developed HDAC3-selective inhibitor 17h. A set of twenty-two compounds was synthesized and characterized. Most of these compounds demonstrated significant potency in inhibiting HDAC3 and exhibited selectivity over its closely-related isoform, HDAC1. The potent BRD4 inhibition of these compounds has been further confirmed through HTFR and thermal shift assays. Of which, compounds 26b and 26n demonstrated potent dual inhibition against HDAC3 and BRD4. Compound 26n demonstrated potent antiproliferative effects against a panel of cancer cells, with human pancreatic cancer cell line Capan-1 displaying the highest susceptibility. Compound 26n exhibited significant upregulation of Ac-H3 and downregulation of c-Myc at concentrations as low as 1 μM, suggesting proper target engagement in Capan-1 cells. Compound 26n demonstrated significant antitumor efficacy in Capan-1 CDX model, with a tumor growth inhibition rate of 71 % under the given dosing regimen. In summary, this research highlights the promising therapeutic potential of benzodihydroindazole derivatives as HDAC3/BRD4 dual inhibitors, warranting further investigation.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yibing Chen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Siyuan Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Bo Jin
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jinyu Yang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qun Niu
- Institute of Shandong Xinhua Pharmaceutical, Shandong Xinhua Pharmaceutical Co., Ltd., Zibo, 255000, China
| | - Guizhou Hao
- Shandong Engineering Research Center of Complex Injectables, Shangdong New Time Pharmaceutical Co., Ltd., Linyi, 273400, China
| | - Ning Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wenchao Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Linxiang Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiachen Wen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Dan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
2
|
Jia ZH, Pilkington LI, Barker D. Total Synthesis of the Furopyran Lignans Sumatranin A-D and the Proposed Structure of Sumatranin H. JOURNAL OF NATURAL PRODUCTS 2025; 88:563-576. [PMID: 39964090 DOI: 10.1021/acs.jnatprod.4c01466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Sumatranins A-D are lignans isolated from the twigs of Cleistanthus sumatranus that contain a previously unseen furopyran in a tetrahydro-furo[2,3-b]chromene tricyclic system. In this work, sumatranins A-D were enantioselectively synthesized utilizing an Evans aldol reaction followed by acid-catalyzed cyclization as key steps. Additionally, the proposed structure of dibenzylbutyrolactone lignan sumatranin H, an apparent biosynthetic precursor to the furopyran lignans, was synthesized but determined to be inconsistent with the previously isolated data. The synthetic routes developed allows for the construction of a wide range of sumatranin-type lignans or unnatural analogues.
Collapse
Affiliation(s)
- Zong Hao Jia
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Lisa I Pilkington
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
- Te Pu̅naha Matatini, Auckland 1010, New Zealand
| | - David Barker
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
3
|
He J, He Y, Qian Y, Du S, Sun R, Liu Y, Yu J, Ding Y, Zhou S, Jiang L, Wang S. Design, synthesis, and biological evaluation of novel artemisinin-based HDAC inhibitors with antitumor and antimalarial activities. Bioorg Chem 2025; 157:108312. [PMID: 40022850 DOI: 10.1016/j.bioorg.2025.108312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/15/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
In addition to the clinical applications as antimalarial agents, artemisinin and its derivatives have demonstrated significant potential in antitumor drug discovery. To enhance antitumor activity, a novel series of artemisinin-containing histone deacetylase (HDAC) inhibitors was designed using a hybrid strategy that fused the artemisinin moiety with HDAC inhibitory functionality. A triazole ring was incorporated into the linker region to improve water solubility. Among these derivatives, compound Hj-9 exhibited broad spectrum and especially potent antitumor activity against acute myelogenous leukemia cells MV4-11 (IC50 = 0.38 μM). Mechanism studies revealed that Hj-9 effectively arrests the cancer cell cycle at the G0/G1 phase and exhibits significant antiangiogenic activity. Further investigation demonstrated that Hj-9 induces cell autophagy, apoptosis, and mitochondrial membrane potential changes. Enzyme inhibitory activities against HDAC isoforms indicated that Hj-9 broadly inhibits multiple HDAC subtypes, especially showing particularly good inhibition of HDAC6. Furthermore, the antimalarial evaluation revealed derivatives Hj-1, Hj-2 and Hj-9 showed good antimalarial activity.
Collapse
Affiliation(s)
- Jin He
- School of Life Science and Medicine, Northwest University, Xi'an, Shaanxi Province, China; School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Youyou He
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, China
| | - Yunan Qian
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Shuaibo Du
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, China
| | - Ruikang Sun
- School of Life Science and Medicine, Northwest University, Xi'an, Shaanxi Province, China
| | - Yujiao Liu
- School of Life Science and Medicine, Northwest University, Xi'an, Shaanxi Province, China
| | - Jiping Yu
- School of Life Science and Medicine, Northwest University, Xi'an, Shaanxi Province, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Siyuan Zhou
- School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
| | - Lubin Jiang
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.
| | - Shengzheng Wang
- School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
4
|
Zhao Q, Liu H, Peng J, Niu H, Liu J, Xue H, Liu W, Liu X, Hao H, Zhang X, Wu J. HDAC8 as a target in drug discovery: Function, structure and design. Eur J Med Chem 2024; 280:116972. [PMID: 39427514 DOI: 10.1016/j.ejmech.2024.116972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/06/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
Histone deacetylases (HDACs) have emerged as prominent therapeutic targets in drug discovery. Among the members of the HDAC family, HDAC8 exhibits distinct structural and physiological features from other members of the class Ⅰ HDACs. In addition to histones, numerous non-histone substrates such as structural maintenance of chromosomes 3 (SMC3), p53, estrogen-related receptor alpha (ERRα), etc., have been identified for HDAC8, suggesting the involvement of HDAC8 in diverse biological processes. Studies have demonstrated that HDAC8 plays essential roles in certain disease development, e.g., acute myeloid leukemia (AML), neuroblastoma, and X-Linked disorders. Despite several HDAC8 inhibitors have been discovered, only one compound has progressed to clinical studies. Recently, novel strategies targeting HDAC8 have emerged, including identifying innovative zinc-chelating groups (ZBG), developing multi-target drugs, and HDAC8 PROTACs. This review aims to summarize recent progress in developing new HDAC8 inhibitors that incorporate novel strategies and provide an overview of the clinical improvements associated with HDAC8 inhibitors.
Collapse
Affiliation(s)
- Qianlong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Hongyan Liu
- The People's Hospital of Zhaoyuan City, No. 168 Yingbin Road, Zhaoyuan, 265400, Shandong Province, PR China
| | - Jie Peng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Haoqian Niu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Jingqian Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Haoyu Xue
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Wenjia Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Xinyu Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Huabei Hao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Xinbo Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Jingde Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China.
| |
Collapse
|
5
|
Spallotta F, Illi B. The Role of HDAC6 in Glioblastoma Multiforme: A New Avenue to Therapeutic Interventions? Biomedicines 2024; 12:2631. [PMID: 39595195 PMCID: PMC11591585 DOI: 10.3390/biomedicines12112631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Despite the great advances in basic research results, glioblastoma multiforme (GBM) still remains an incurable tumour. To date, a GBM diagnosis is a death sentence within 15-18 months, due to the high recurrence rate and resistance to conventional radio- and chemotherapy approaches. The effort the scientific community is lavishing on the never-ending battle against GBM is reflected by the huge number of clinical trials launched, about 2003 on 10 September 2024. However, we are still far from both an in-depth comprehension of the biological and molecular processes leading to GBM onset and progression and, importantly, a cure. GBM is provided with high intratumoral heterogeneity, immunosuppressive capacity, and infiltrative ability due to neoangiogenesis. These features impact both tumour aggressiveness and therapeutic vulnerability, which is further limited by the presence in the tumour core of niches of glioblastoma stem cells (GSCs) that are responsible for the relapse of this brain neoplasm. Epigenetic alterations may both drive and develop along GBM progression and also rely on changes in the expression of the genes encoding histone-modifying enzymes, including histone deacetylases (HDACs). Among them, HDAC6-a cytoplasmic HDAC-has recently gained attention because of its role in modulating several biological aspects of GBM, including DNA repair ability, massive growth, radio- and chemoresistance, and de-differentiation through primary cilia disruption. In this review article, the available information related to HDAC6 function in GBM will be presented, with the aim of proposing its inhibition as a valuable therapeutic route for this deadly brain tumour.
Collapse
Affiliation(s)
- Francesco Spallotta
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy;
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
| | - Barbara Illi
- Institute of Molecular Biology and Pathology, National Research Council (IBPM-CNR), 00185 Rome, Italy
| |
Collapse
|
6
|
Ali LS, Attia YAM, Mourad S, Halawa EM, Abd Elghaffar NH, Shokry S, Attia OM, Makram M, Wadan AHS, Negm WA, Elekhnawy E. The missing link between cancer stem cells and immunotherapy. Curr Med Res Opin 2024; 40:1963-1984. [PMID: 39316769 DOI: 10.1080/03007995.2024.2407963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Cancer stem cells (CSCs) are cancer cells that can self-renew and give rise to tumors. The multipotency of CSCs enables the generation of diverse cancer cell types and their potential for differentiation and resilience against chemotherapy and radiation. Additionally, specific biomarkers have been identified for them, such as CD24, CD34, CD44, CD47, CD90, and CD133. The CSC model suggests that a subset of CSCs within tumors is responsible for tumor growth. The tumor microenvironment (TME), including fibroblasts, immune cells, adipocytes, endothelial cells, neuroendocrine (NE) cells, extracellular matrix (ECM), and extracellular vesicles, has a part in shielding CSCs from the host immune response as well as protecting them against anticancer drugs. The regulation of cancer stem cell plasticity by cancer-associated fibroblasts (CAFs) occurs through specific signaling pathways that differ among various types of cancer, utilizing the IGF-II/IGF1R, FAK, and c-Met/FRA1/HEY1 signaling pathways. Due to the intricate dynamics of CSC proliferation, controlling their growth necessitates innovative approaches and much more research. Our current review speculates an outline of how the TME safeguards stem cells, their interaction with CSCs, and the involvement of the immune and inflammatory systems in CSC differentiation and maintenance. Several technologies have the ability to identify CSCs; however, each approach has limitations. We discuss how these methods can aid in recognizing CSCs in several cancer types, comprising brain, breast, liver, stomach, and colon cancer. Furthermore, we explore different immunotherapeutic strategies targeting CSCs, including stimulating cancer-specific T cells, modifying immunosuppressive TMEs, and antibody-mediated therapy targeting CSC markers.
Collapse
Affiliation(s)
- Lobna Safwat Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | | | - Sohaila Mourad
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Esraa M Halawa
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Seham Shokry
- Faculty of Science, Tanta University, Tanta, Egypt
| | - Omar M Attia
- Faculty of Medicine, Cairo University, Giza, Egypt
| | - Maha Makram
- Faculty of Science, Zagazig University, Zagazig, Egypt
| | | | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Engy Elekhnawy
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
7
|
Gu Z, Lin S, Yu J, Jin F, Zhang Q, Xia K, Chen L, Li Y, He B. Advances in dual-targeting inhibitors of HDAC6 for cancer treatment. Eur J Med Chem 2024; 275:116571. [PMID: 38857566 DOI: 10.1016/j.ejmech.2024.116571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Histone Deacetylase 6 (HDAC6) is an essential regulator of histone acetylation processes, exerting influence on a multitude of cellular functions such as cell motility, endocytosis, autophagy, apoptosis, and protein trafficking through its deacetylation activity. The significant implications of HDAC6 in diseases such as cancer, neurodegenerative disorders, and immune disorders have motivated extensive investigation into the development of specific inhibitors targeting this enzyme for therapeutic purposes. Single targeting drugs carry the risk of inducing drug resistance, thus prompting exploration of dual targeting therapy which offers the potential to impact multiple signaling pathways simultaneously, thereby lowering the likelihood of resistance development. While pharmacological studies have exhibited promise in combined therapy involving HDAC6, challenges related to potential drug interactions exist. In response to these challenges, researchers are investigating HDAC6 hybrid molecules which enable the concomitant targeting of HDAC6 and other key proteins, thus enhancing treatment efficacy while mitigating side effects and reducing the risk of resistance compared to traditional combination therapies. The published design strategies for dual targeting inhibitors of HDAC6 are summarized and discussed in this review. This will provide some valuable insights into more novel HDAC6 dual targeting inhibitors to meet the urgent need for innovative therapies in oncology and other related fields.
Collapse
Affiliation(s)
- Zhicheng Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Shuxian Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China; Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Junhui Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Fei Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Qingqing Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Keli Xia
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Yan Li
- School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
8
|
Patel P, Shrivastava SK, Sharma P, Kurmi BD, Shirbhate E, Rajak H. Hydroxamic acid derivatives as selective HDAC3 inhibitors: computer-aided drug design strategies. J Biomol Struct Dyn 2024; 42:362-383. [PMID: 36995068 DOI: 10.1080/07391102.2023.2192804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023]
Abstract
Histone deacetylases (HDACs) are critical epigenetic drug targets that have gained significant attention in the scientific community for the treatment of cancer. The currently marketed HDAC inhibitors lack selectivity for the various HDAC isoenzymes. Here, we describe our protocol for the discovery of novel potential hydroxamic acid based HDAC3 inhibitors through pharmacophore modeling, virtual screening, docking, molecular dynamics (MD) simulation and toxicity studies. The ten pharmacophore hypotheses were established, and their reliability was validated by different ROC (receiving operator curve) analysis. Among them, the best model (Hypothesis 9 or RRRA) was employed for searching SCHEMBL, ZINC and MolPort database to screen out hit molecules as selective HDAC3 inhibitors, followed by different docking stages. MD simulation (50 ns) and MMGBSA study were performed to study the stability of ligand binding modes and with the help of trajectory analysis, to calculate the ligand-receptor complex RMSD (root-mean-square deviation), RMSF (root-mean-square fluctuation) and H-bond distance, etc. Finally, in-silico toxicity studies were performed on top screened molecules and compared with reference drug SAHA and established structure-activity relationship (SAR). The results indicated that compound 31, with high inhibitory potency and less toxicity (probability value 0.418), is suitable for further experimental analysis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Preeti Patel
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Guru Ghasidas University, Bilaspur, Chhattisgarh, India
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Sushant Kumar Shrivastava
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Piyoosh Sharma
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Ekta Shirbhate
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Guru Ghasidas University, Bilaspur, Chhattisgarh, India
| | - Harish Rajak
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Guru Ghasidas University, Bilaspur, Chhattisgarh, India
| |
Collapse
|
9
|
Beljkas M, Ilic A, Cebzan A, Radovic B, Djokovic N, Ruzic D, Nikolic K, Oljacic S. Targeting Histone Deacetylases 6 in Dual-Target Therapy of Cancer. Pharmaceutics 2023; 15:2581. [PMID: 38004560 PMCID: PMC10674519 DOI: 10.3390/pharmaceutics15112581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Histone deacetylases (HDACs) are the major regulators of the balance of acetylation of histone and non-histone proteins. In contrast to other HDAC isoforms, HDAC6 is mainly involved in maintaining the acetylation balance of many non-histone proteins. Therefore, the overexpression of HDAC6 is associated with tumorigenesis, invasion, migration, survival, apoptosis and growth of various malignancies. As a result, HDAC6 is considered a promising target for cancer treatment. However, none of selective HDAC6 inhibitors are in clinical use, mainly because of the low efficacy and high concentrations used to show anticancer properties, which may lead to off-target effects. Therefore, HDAC6 inhibitors with dual-target capabilities represent a new trend in cancer treatment, aiming to overcome the above problems. In this review, we summarize the advances in tumor treatment with dual-target HDAC6 inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Katarina Nikolic
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (M.B.); (A.I.); (A.C.); (B.R.); (N.D.); (D.R.)
| | - Slavica Oljacic
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (M.B.); (A.I.); (A.C.); (B.R.); (N.D.); (D.R.)
| |
Collapse
|
10
|
Targeting histone deacetylases for cancer therapy: Trends and challenges. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
|
11
|
Zhao L, Liang Q, He Y, Liu M, Tong R, Jiang Z, Wang W, Shi J. HDAC/JAK dual target inhibitors of cancer-related targets: The success of nonclearable linked pharmacophore mode. Bioorg Chem 2022; 129:106181. [DOI: 10.1016/j.bioorg.2022.106181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/18/2022] [Accepted: 09/25/2022] [Indexed: 11/24/2022]
|
12
|
Fontana A, Cursaro I, Carullo G, Gemma S, Butini S, Campiani G. A Therapeutic Perspective of HDAC8 in Different Diseases: An Overview of Selective Inhibitors. Int J Mol Sci 2022; 23:ijms231710014. [PMID: 36077415 PMCID: PMC9456347 DOI: 10.3390/ijms231710014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Histone deacetylases (HDACs) are epigenetic enzymes which participate in transcriptional repression and chromatin condensation mechanisms by removing the acetyl moiety from acetylated ε-amino group of histone lysines and other non-histone proteins. In recent years, HDAC8, a class I HDAC, has emerged as a promising target for different disorders, including X-linked intellectual disability, fibrotic diseases, cancer, and various neuropathological conditions. Selective HDAC8 targeting is required to limit side effects deriving from the treatment with pan-HDAC inhibitors (HDACis); thus, many endeavours have focused on the development of selective HDAC8is. In addition, polypharmacological approaches have been explored to achieve a synergistic action on multi-factorial diseases or to enhance the drug efficacy. In this frame, proteolysis-targeting chimeras (PROTACs) might be regarded as a dual-targeting approach for attaining HDAC8 proteasomal degradation. This review highlights the most relevant and recent advances relative to HDAC8 validation in various diseases, providing a snapshot of the current selective HDAC8is, with a focus on polyfunctional modulators.
Collapse
Affiliation(s)
- Anna Fontana
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Ilaria Cursaro
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Gabriele Carullo
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
- Correspondence: ; Tel.: +39-057-723-4161
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
13
|
Bonomi RE, Girgenti M, Krystal JH, Cosgrove KP. A Role for Histone Deacetylases in the Biology and Treatment of Post-Traumatic Stress Disorder: What Do We Know and Where Do We Go from Here? Complex Psychiatry 2022; 8:13-27. [PMID: 36545044 PMCID: PMC9669946 DOI: 10.1159/000524079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/04/2022] [Indexed: 12/24/2022] Open
Abstract
Post-traumatic stress disorder is a prevalent disorder within the USA and worldwide with a yearly diagnosis rate of 2-4% and affecting women more than men. One of the primary methods for study of this stress disorder relies on animal models as there are few noninvasive methods and few replicated peripheral biomarkers for use in humans. One area of active research in psychiatric neuroscience is the field of epigenetics - how the chemical modifications of the genetic code regulate behavior. The dynamic changes in histone acetylation and deacetylation in the brain are not fully reflected by the study of peripheral biomarker. In this review, we aim to examine the role of histone acetylation and deacetylation in memory formation and fear memory learning. The studies discussed here focus largely on the role of histone deacetylases (HDACs) in animal models of trauma and fear response. Many studies used HDAC inhibitors to elucidate the effects after inhibition of these enzymes after trauma or stress. These studies of memory processing and cued fear extinction in animal can often shed light on human disorders of cued fear responses and memory dysregulation after stress or trauma such as in PTSD. These results provide strong evidence for a role of these enzymes in PTSD in humans. The few clinical studies that exist with HDAC inhibitors also suggest a fundamental role of these enzymes in the neurobiology of the stress response. Further study of these enzymes in both clinical and pre-clinical settings may help elucidate the neurobiology of stress-related pathology like PTSD and provide a foundation for novel therapy to treat these disorders.
Collapse
Affiliation(s)
- Robin E. Bonomi
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
- *Robin E. Bonomi,
| | - Matthew Girgenti
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
- National Center for PTSD, US Department of Veterans Affairs, West Haven, Connecticut, USA
| | - John H. Krystal
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
- National Center for PTSD, US Department of Veterans Affairs, West Haven, Connecticut, USA
| | - Kelly P. Cosgrove
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
- **Kelly P. Cosgrove,
| |
Collapse
|
14
|
Zhang Y, Andrade R, Hanna AA, Pflum MKH. Evidence that HDAC7 acts as an epigenetic "reader" of AR acetylation through NCoR-HDAC3 dissociation. Cell Chem Biol 2022; 29:1162-1173.e5. [PMID: 35709754 DOI: 10.1016/j.chembiol.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 11/30/2021] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
Abstract
Histone deacetylase (HDAC) proteins are epigenetic regulators that govern a wide variety of cellular events. With a role in cancer formation, HDAC inhibitors have emerged as anti-cancer therapeutics. Among the eleven metal-dependent class I, II, and IV HDAC proteins targeted by inhibitor drugs, class IIa HDAC4, -5, -7, and -9 harbor low deacetylase activity and are hypothesized to be "reader" proteins, which bind to post-translationally acetylated lysine. However, evidence linking acetyllysine binding to a downstream functional event is lacking. Here, we report for the first time that HDAC4, -5, and -7 dissociated from corepressor NCoR in the presence of an acetyllysine-containing peptide, consistent with reader function. Documenting the biological consequences of this possible reader function, mutation of a critical acetylation site regulated androgen receptor (AR) transcriptional activation function through HDAC7-NCoR-HDAC3 dissociation. The data document the first evidence consistent with epigenetic-reader functions of class IIa HDAC proteins.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | - Rafael Andrade
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | - Anthony A Hanna
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA.
| |
Collapse
|
15
|
Azetidin-2-one-based small molecules as dual hHDAC6/HDAC8 inhibitors: Investigation of their mechanism of action and impact of dual inhibition profile on cell viability. Eur J Med Chem 2022; 238:114409. [DOI: 10.1016/j.ejmech.2022.114409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 01/28/2023]
|
16
|
M JR, Ramalingam PS, Mathavan S, B.R.D. Yamajala R, Moparthi NR, Kurappalli RK, Manyam RR. Synthesis, in vitro and structural aspects of cap substituted Suberoylanilide hydroxamic acid analogs as potential inducers of apoptosis in Glioblastoma cancer cells via HDAC /microRNA regulation. Chem Biol Interact 2022; 357:109876. [DOI: 10.1016/j.cbi.2022.109876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023]
|
17
|
Singh D, Khan MA, Siddique HR. Specific targeting of cancer stem cells by immunotherapy: A possible stratagem to restrain cancer recurrence and metastasis. Biochem Pharmacol 2022; 198:114955. [PMID: 35181312 DOI: 10.1016/j.bcp.2022.114955] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs), the tumor-initiating cells playing a crucial role in cancer progression, recurrence, and metastasis, have the intrinsic property of self-renewal and therapy resistance. The tumorigenic properties of these cells include generation of cellular heterogeneity and immuno-suppressive tumor microenvironment (TME), conferring them the capability to resist a variety of anti-cancer therapeutics. Further, CSCs possess several unique immunological properties that help them escape recognition by the innate and adaptive immune system and shape a TME into a pro-tumorigenic and immunosuppressive landscape. In this context, immunotherapy is considered one of the best therapeutic options for eliminating CSCs to halt cancer recurrence and metastasis. In this review, we discuss the various immunomodulatory properties of CSCs and the interaction of CSCs with the immune system enabling immune evasion. In addition, we also highlight the present research update on immunotherapeutic targeting of CSCs and the possible further scope of research on this topic. We believe that a deeper understanding of CSCs' immunological properties and the crosstalk between CSCs and the immune system can develop better innovative immune-therapeutics and enhance the efficacy of current therapy-resistant cancer treatments.
Collapse
Affiliation(s)
- Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Afsar Khan
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
18
|
Kaur A, Gehlawat A, Prakash R, Pandey SK. Enantioselective Total Synthesis of Sacubitril. ChemistrySelect 2021. [DOI: 10.1002/slct.202102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Amanpreet Kaur
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147 001 India
| | - Anju Gehlawat
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147 001 India
| | - Ranjana Prakash
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147 001 India
| | - Satyendra Kumar Pandey
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147 001 India
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi 221 005 India
| |
Collapse
|
19
|
Padilla-Coley S, Rudebeck EE, Smith BD, Pfeffer FM. Intracellular fluorescence competition assay for inhibitor engagement of histone deacetylase. Bioorg Med Chem Lett 2021; 47:128207. [PMID: 34146703 DOI: 10.1016/j.bmcl.2021.128207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
An intracellular fluorescence competition assay was developed to assess the capability of inhibitor candidates to engage histone deacetylase (HDAC) inside living cells and thus diminish cell uptake and staining by the HDAC-targeted fluorescent probe APS. Fluorescence cell microscopy and flow cytometry showed that pre-incubation of living cells with candidate inhibitors led to diminished cell uptake of the fluorescent probe. The assay was effective because the fluorescent probe (APS) possessed the required performance properties, including bright fluorescence, ready membrane diffusion, selective intracellular HDAC affinity, and negligible acute cytotoxicity. The concept of an intracellular fluorescence competition assay is generalizable and has broad applicability since it obviates the requirement to use the isolated biomacromolecule target for screening of molecular candidates with target affinity.
Collapse
Affiliation(s)
- Sasha Padilla-Coley
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Elley E Rudebeck
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Frederick M Pfeffer
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| |
Collapse
|
20
|
Wang Y, Xie Q, Tan H, Liao M, Zhu S, Zheng LL, Huang H, Liu B. Targeting cancer epigenetic pathways with small-molecule compounds: Therapeutic efficacy and combination therapies. Pharmacol Res 2021; 173:105702. [PMID: 34102228 DOI: 10.1016/j.phrs.2021.105702] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/07/2021] [Accepted: 05/29/2021] [Indexed: 02/08/2023]
Abstract
Epigenetics mainly refers to covalent modifications to DNA or histones without affecting genomes, which ultimately lead to phenotypic changes in cells or organisms. Given the abundance of regulatory targets in epigenetic pathways and their pivotal roles in tumorigenesis and drug resistance, the development of epigenetic drugs holds a great promise for the current cancer therapy. However, lack of potent, selective, and clinically tractable small-molecule compounds makes the strategy to target cancer epigenetic pathways still challenging. Therefore, this review focuses on epigenetic pathways, small molecule inhibitors targeting DNA methyltransferase (DNMT) and small molecule inhibitors targeting histone modification (the main regulatory targets are histone acetyltransferases (HAT), histone deacetylases (HDACs) and histone methyltransferases (HMTS)), as well as the combination strategies of the existing epigenetic therapeutic drugs and more new therapies to improve the efficacy, which will shed light on a new clue on discovery of more small-molecule drugs targeting cancer epigenetic pathways as promising strategies in the future.
Collapse
Affiliation(s)
- Yi Wang
- Health Management Center, Sichuan Provincial People' Hospital, University of Electronic Science and Technology of China, Chengdu 610072, PR China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, PR China
| | - Qiang Xie
- Department of Stomatology, Sichuan Provincial People' Hospital, University of Electronic Science and Technology of China, Chengdu 610072, PR China
| | - Huidan Tan
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Minru Liao
- Department of Stomatology, Sichuan Provincial People' Hospital, University of Electronic Science and Technology of China, Chengdu 610072, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Shiou Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ling-Li Zheng
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Rd, Xindu Region, Chengdu 610500, PR China.
| | - Haixia Huang
- Oral & Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, 646000, PR China; Department of Prosthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, 646000, PR China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
21
|
Adewole KE, Ishola AA, Omolaso BO. Identification of potential histone deacetylase inhibitory biflavonoids from Garcinia kola (Guttiferae) using in silico protein-ligand interaction. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2020-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Overactivity of histone deacetylases (HDACs) is the underlying cause of some cancers, thus, inhibiting their overactivities is a rational treatment option. However, endeavors to employ current anti-HDACs agents in cancer treatment have yielded limited success. Consequently, there is need to explore anti-HDACs natural products, especially from plants sources, because of the intimate relationship plant products and drug discovery have enjoyed over the centuries. To identify possible HDACs inhibitors, Garcinia kola (Guttiferae) seed-derived compounds were screened in silico for HDAC-inhibitory tendencies because of their reported anticancer potentials. Fifteen G. kola-derived compounds and givinostat were docked with five selected HDACs using AutodockVina, while the binding interactions of the compounds with high binding affinities for the five HDACs were viewed with Discovery Studio Visualizer BIOVIA, 2016. Results indicated that four of the compounds studied, including amentoflavone, Garcinia biflavonoid 1, Garcinia biflavonoid 2 and kolaflavanone have higher binding propensity for all the five HDACs relative to givinostat, the standard HDAC inhibitor. This study indicated that inhibition of HDAC might be another key mechanism accountable for the bioactivities of G. kola and its intrinsic compounds. The results from this study implied that the compounds could be further investigated as drugable HDAC inhibitors with potential pharmacological applications in the treatment of cancers.
Collapse
Affiliation(s)
- Kayode E. Adewole
- Department of Biochemistry, Faculty of Basic Medical Sciences , University of Medical Sciences , Ondo City , Ondo State , Nigeria
| | - Ahmed A. Ishola
- Central Research Laboratories Limited , University Road , Ilorin , Kwara State , Nigeria
| | - Blessing O. Omolaso
- Department of Physiology, Faculty of Basic Medical Sciences , University of Medical Sciences , Ondo City , Ondo State , Nigeria
| |
Collapse
|
22
|
Ramaiah MJ, Tangutur AD, Manyam RR. Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci 2021; 277:119504. [PMID: 33872660 DOI: 10.1016/j.lfs.2021.119504] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/20/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022]
Abstract
The role of genetic and epigenetic factors in tumor initiation and progression is well documented. Histone deacetylases (HDACs), histone methyl transferases (HMTs), and DNA methyl transferases. (DNMTs) are the main proteins that are involved in regulating the chromatin conformation. Among these, histone deacetylases (HDAC) deacetylate the histone and induce gene repression thereby leading to cancer. In contrast, histone acetyl transferases (HATs) that include GCN5, p300/CBP, PCAF, Tip 60 acetylate the histones. HDAC inhibitors are potent drug molecules that can induce acetylation of histones at lysine residues and induce open chromatin conformation at tumor suppressor gene loci and thus resulting in tumor suppression. The key processes regulated by HDAC inhibitors include cell-cycle arrest, chemo-sensitization, apoptosis induction, upregulation of tumor suppressors. Even though FDA approved drugs are confined mainly to haematological malignancies, the research on HDAC inhibitors in glioblastoma multiforme and triple negative breast cancer (TNBC) are providing positive results. Thus, several combinations of HDAC inhibitors along with DNA methyl transferase inhibitors and histone methyl transferase inhibitors are in clinical trials. This review focuses on how HDAC inhibitors regulate the expression of coding and non-coding genes with specific emphasis on their anti-cancer potential.
Collapse
Affiliation(s)
- M Janaki Ramaiah
- Laboratory of Functional genomics and Disease Biology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India.
| | - Anjana Devi Tangutur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, Telangana, India
| | - Rajasekhar Reddy Manyam
- Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
| |
Collapse
|
23
|
Ge S, Zhong H, Ma X, Zheng Y, Zou Y, Wang F, Wang Y, Hu Y, Li Y, Liu W, Guo W, Xu Q, Lai Y. Discovery of secondary sulphonamides as IDO1 inhibitors with potent antitumour effects in vivo. J Enzyme Inhib Med Chem 2021; 35:1240-1257. [PMID: 32466694 PMCID: PMC7336998 DOI: 10.1080/14756366.2020.1765165] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) as a key rate-limiting enzyme in the kynurenine pathway of tryptophan metabolism plays an important role in tumour immune escape. Herein, a variety of secondary sulphonamides were synthesised and evaluated in the HeLa cell-based IDO1/kynurenine assay, leading to the identification of new IDO1 inhibitors. Among them, compounds 5d, 5l and 8g exhibited the strongest inhibitory effect with significantly improved activity over the hit compound BS-1. The in vitro results showed that these compounds could restore the T cell proliferation and inhibit the differentiation of naïve CD4+ T cell into highly immunosuppressive FoxP3+ regulatory T (Treg) cell without affecting the viability of HeLa cells and the expression of IDO1 protein. Importantly, the pharmacodynamic assay showed that compound 5d possessed potent antitumour effect in both CT26 and B16F1 tumours bearing immunocompetent mice but not in immunodeficient mice. Functionally, subsequent experiments demonstrated that compound 5d could effectively inhibit tumour cell proliferation, induce apoptosis, up-regulate the expression of IFN-γ and granzyme B, and suppress FoxP3+ Treg cell differentiation, thereby activate the immune system. Thus, compound 5d could be a potential and efficacious agent for further evaluation.
Collapse
Affiliation(s)
- Shushan Ge
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, PR China
| | - Haiqing Zhong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Xuewei Ma
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, PR China
| | - Yingbo Zheng
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, PR China
| | - Yi Zou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, PR China
| | - Fang Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, PR China
| | - Yan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Yue Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Yuezhen Li
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing, PR China
| | - Wen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Yisheng Lai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|
24
|
Dzobo K, Senthebane DA, Ganz C, Thomford NE, Wonkam A, Dandara C. Advances in Therapeutic Targeting of Cancer Stem Cells within the Tumor Microenvironment: An Updated Review. Cells 2020; 9:E1896. [PMID: 32823711 PMCID: PMC7464860 DOI: 10.3390/cells9081896] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 12/24/2022] Open
Abstract
Despite great strides being achieved in improving cancer patients' outcomes through better therapies and combinatorial treatment, several hurdles still remain due to therapy resistance, cancer recurrence and metastasis. Drug resistance culminating in relapse continues to be associated with fatal disease. The cancer stem cell theory posits that tumors are driven by specialized cancer cells called cancer stem cells (CSCs). CSCs are a subpopulation of cancer cells known to be resistant to therapy and cause metastasis. Whilst the debate on whether CSCs are the origins of the primary tumor rages on, CSCs have been further characterized in many cancers with data illustrating that CSCs display great abilities to self-renew, resist therapies due to enhanced epithelial to mesenchymal (EMT) properties, enhanced expression of ATP-binding cassette (ABC) membrane transporters, activation of several survival signaling pathways and increased immune evasion as well as DNA repair mechanisms. CSCs also display great heterogeneity with the consequential lack of specific CSC markers presenting a great challenge to their targeting. In this updated review we revisit CSCs within the tumor microenvironment (TME) and present novel treatment strategies targeting CSCs. These promising strategies include targeting CSCs-specific properties using small molecule inhibitors, immunotherapy, microRNA mediated inhibitors, epigenetic methods as well as targeting CSC niche-microenvironmental factors and differentiation. Lastly, we present recent clinical trials undertaken to try to turn the tide against cancer by targeting CSC-associated drug resistance and metastasis.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa; (D.A.S.); (C.G.)
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Dimakatso Alice Senthebane
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa; (D.A.S.); (C.G.)
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Chelene Ganz
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa; (D.A.S.); (C.G.)
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Nicholas Ekow Thomford
- Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (N.E.T.); (A.W.); (C.D.)
- Department of Medical Biochemistry, School of Medical Sciences, College of Health Sciences, University of Cape Coast, PMB, Cape Coast, Ghana
| | - Ambroise Wonkam
- Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (N.E.T.); (A.W.); (C.D.)
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (N.E.T.); (A.W.); (C.D.)
| |
Collapse
|
25
|
Kashyap K, Kakkar R. Pharmacophore-enabled virtual screening, molecular docking and molecular dynamics studies for identification of potent and selective histone deacetylase 8 inhibitors. Comput Biol Med 2020; 123:103850. [PMID: 32658783 DOI: 10.1016/j.compbiomed.2020.103850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 11/15/2022]
Abstract
Histone deacetylases (HDACs) play important roles in various biological processes, but are also notorious for their over-expression in numerous cancers and neurological disorders. Therefore, the development of isoform selective HDAC inhibitors is crucial in order to prevent any side effects of pan inhibition. This work focuses on identifying novel inhibitors for the selective inhibition of HDAC8, an isoform implicated in fatal diseases like T-cell lymphoma, colon cancer and childhood neuroblastoma. Virtual screening of the 'In-trials' subset of ZINC database has been carried out with the help of two pharmacophore models signifying potent and selective HDAC8 inhibition. A detailed molecular docking strategy, followed by molecular dynamics simulations and post-scoring with MM-GBSA calculations, has led to the identification of six promising molecules that have excellent binding with the HDAC8 active site. In order to establish the selectivity profile of these molecules, their binding to off-target HDAC isoforms has also been evaluated. Substitution analyses of the proposed inhibitors suggest that aromatic substituents that access the adjacent hydrophobic pocket of the HDAC8 active site have the potential to further enhance the HDAC8 selectivity.
Collapse
Affiliation(s)
- Kriti Kashyap
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Rita Kakkar
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
26
|
Zhang M, Ying JB, Wang SS, He D, Zhu H, Zhang C, Tang L, Lin R, Zhang Y. Exploring the binding mechanism of HDAC8 selective inhibitors: Lessons from the modification of Cap group. J Cell Biochem 2020; 121:3162-3172. [DOI: 10.1002/jcb.29583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Min Zhang
- Materia Medica Development Group, Institute of Medicinal ChemistryLanzhou University School of PharmacyLanzhou China
- Gansu Health Center HospitalLanzhou China
| | - Jun Biao Ying
- Materia Medica Development Group, Institute of Medicinal ChemistryLanzhou University School of PharmacyLanzhou China
- College of Pharmaceutical SciencesZhejiang UniversityHangzhou China
| | - Song Song Wang
- Materia Medica Development Group, Institute of Medicinal ChemistryLanzhou University School of PharmacyLanzhou China
- The Second Hospital of Hebei Medical UniversityShijiazhuang China
| | - Dian He
- Materia Medica Development Group, Institute of Medicinal ChemistryLanzhou University School of PharmacyLanzhou China
- Gansu Health Center HospitalLanzhou China
| | - Hongtian Zhu
- Materia Medica Development Group, Institute of Medicinal ChemistryLanzhou University School of PharmacyLanzhou China
| | - Chenghong Zhang
- Materia Medica Development Group, Institute of Medicinal ChemistryLanzhou University School of PharmacyLanzhou China
| | - Lei Tang
- Materia Medica Development Group, Institute of Medicinal ChemistryLanzhou University School of PharmacyLanzhou China
| | - Ruili Lin
- Materia Medica Development Group, Institute of Medicinal ChemistryLanzhou University School of PharmacyLanzhou China
| | - Yang Zhang
- Materia Medica Development Group, Institute of Medicinal ChemistryLanzhou University School of PharmacyLanzhou China
- School of Pharmaceutical SciencesChongqing UniversityChongqing China
| |
Collapse
|
27
|
Dzobo K. Epigenomics-Guided Drug Development: Recent Advances in Solving the Cancer Treatment "jigsaw puzzle". OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 23:70-85. [PMID: 30767728 DOI: 10.1089/omi.2018.0206] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The human epigenome plays a key role in determining cellular identity and eventually function. Drug discovery undertakings have focused mainly on the role of genomics in carcinogenesis, with the focus turning to the epigenome recently. Drugs targeting DNA and histone modifications are under development with some such as 5-azacytidine, decitabine, vorinostat, and panobinostat already approved by the Food and Drug Administration (FDA) and the European Medicines Agency (EMA). This expert review offers a critical analysis of the epigenomics-guided drug discovery and development and the opportunities and challenges for the next decade. Importantly, the coupling of epigenetic editing techniques, such as clustered regularly interspersed short palindromic repeat (CRISPR)-CRISPR-associated protein-9 (Cas9) and APOBEC-coupled epigenetic sequencing (ACE-seq) with epigenetic drug screens, will allow the identification of small-molecule inhibitors or drugs able to reverse epigenetic changes responsible for many diseases. In addition, concrete and sustainable innovation in cancer treatment ought to integrate epigenome targeting drugs with classic therapies such as chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Kevin Dzobo
- 1 International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,2 Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
28
|
Chen D, Soh CK, Goh WH, Wang Z, Wang H. Synthesis and biological evaluation of 6-phenylpurine linked hydroxamates as novel histone deacetylase inhibitors. Bioorg Chem 2020; 98:103724. [PMID: 32171983 DOI: 10.1016/j.bioorg.2020.103724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/23/2020] [Accepted: 03/02/2020] [Indexed: 12/14/2022]
Abstract
A series of 6-phenylpurine based hydroxamates have been designed, synthesized and evaluated. Compound 3b and its analogs are potent histone deacetylase (HDAC) but weak PI3K/mTOR inhibitors. These compounds demonstrated broad anti-cancer activities against 38 cancer cell lines with leukemia, lymphoma, and the majority of liver cancer cell lines exhibiting the most sensitivity towards these compounds. Compound 3b demonstrated modulation of HDAC targets in vitro in a dose-dependent manner. It has good in vitro ADME profile that translated into a greatly improved pharmacokinetic profile. 3b also demonstrated modulation of HDACs in tumors in a PC-3 xenograft model. It was further evaluated in combination therapies in vitro. It exhibited additive or synergistic growth inhibition effect in HepG2 cells when combined with a number of approved drugs such as sorafenib, sunitinib, and erlotinib. Hence, 3b has the potential to be combined with the above to treat advanced liver cancer. As such, current data warrant further evaluation, optimization, and subsequent in vivo validation of the potential combination therapies.
Collapse
Affiliation(s)
- Dizhong Chen
- Drug Development Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Chang Kai Soh
- Drug Development Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Wei Huang Goh
- Drug Development Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Zilong Wang
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30318, United States
| | - Haishan Wang
- Drug Development Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore; Probit Pharmaceuticals Pte. Ltd., 10 Anson Road #27-15, Singapore 079903, Republic of Singapore.
| |
Collapse
|
29
|
Yang T, Chen X, Rao W, Koh MJ. Broadly Applicable Directed Catalytic Reductive Difunctionalization of Alkenyl Carbonyl Compounds. Chem 2020. [DOI: 10.1016/j.chempr.2019.12.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Understanding Failure and Improving Treatment Using HDAC Inhibitors for Prostate Cancer. Biomedicines 2020; 8:biomedicines8020022. [PMID: 32019149 PMCID: PMC7168248 DOI: 10.3390/biomedicines8020022] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Novel treatment regimens are required for castration-resistant prostate cancers (CRPCs) that become unresponsive to standard treatments, such as docetaxel and enzalutamide. Histone deacetylase (HDAC) inhibitors showed promising results in hematological malignancies, but they failed in solid tumors such as prostate cancer, despite the overexpression of HDACs in CRPC. Four HDAC inhibitors, vorinostat, pracinostat, panobinostat and romidepsin, underwent phase II clinical trials for prostate cancers; however, phase III trials were not recommended due to a majority of patients exhibiting either toxicity or disease progression. In this review, the pharmacodynamic reasons for the failure of HDAC inhibitors were assessed and placed in the context of the advancements in the understanding of CRPCs, HDACs and resistance mechanisms. The review focuses on three themes: evolution of androgen receptor-negative prostate cancers, development of resistance mechanisms and differential effects of HDACs. In conclusion, advancements can be made in this field by characterizing HDACs in prostate tumors more extensively, as this will allow more specific drugs catering to the specific HDAC subtypes to be designed.
Collapse
|
31
|
Liu C, Wen K, Zeng X, Peng Y. Advances in Chemocatalytic Asymmetric Baeyer–Villiger Oxidations. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901178] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chao Liu
- Key Laboratory of Small Functional Organic Molecule, Ministry of EducationJiangxi Normal University, Nanchang Jiangxi 330022 People's Republic of China
| | - Kai‐Ge Wen
- Key Laboratory of Small Functional Organic Molecule, Ministry of EducationJiangxi Normal University, Nanchang Jiangxi 330022 People's Republic of China
| | - Xing‐Ping Zeng
- Key Laboratory of Small Functional Organic Molecule, Ministry of EducationJiangxi Normal University, Nanchang Jiangxi 330022 People's Republic of China
| | - Yi‐Yuan Peng
- Key Laboratory of Small Functional Organic Molecule, Ministry of EducationJiangxi Normal University, Nanchang Jiangxi 330022 People's Republic of China
| |
Collapse
|
32
|
Lu H, Bai L, Zhou Y, Lu Y, Jiang Z, Shi J. Recent Study of Dual HDAC/PARP Inhibitor for the Treatment of Tumor. Curr Top Med Chem 2019; 19:1041-1050. [PMID: 31161991 DOI: 10.2174/1568026619666190603092407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/27/2019] [Accepted: 04/08/2019] [Indexed: 12/25/2022]
Abstract
The occurrence and development of tumors are closely related to epigenetic instability which modulates gene expression through DNA methylation, histone modification, chromatin remodeling, and RNA-related silencing. Histone deacetylase (HDAC) and poly (ADP-ribose) polymerase (PARP) are targets of epigenetic regulation. Over the years, a large number of studies have shown that HDAC inhibitors and PARP inhibitors have synergistic effects in the treatment of tumors, and there are reports of related dual HDAC/PARP inhibitors. This review will give a brief summary of the synergistic mechanisms of HDAC inhibitors and PARP inhibitors and introduce the design of the first dual HDAC/PARP inhibitor, which may guide the design of more dual HDAC/PARP inhibitors for the treatment of tumors.
Collapse
Affiliation(s)
- Haiying Lu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanping Zhou
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yongping Lu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhongliang Jiang
- Miller School of Medicine, University of Miami, Miami, Florida, United States
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
33
|
Kassab SE, Mowafy S, Alserw AM, Seliem JA, El-Naggar SM, Omar NN, Awad MM. Structure-based design generated novel hydroxamic acid based preferential HDAC6 lead inhibitor with on-target cytotoxic activity against primary choroid plexus carcinoma. J Enzyme Inhib Med Chem 2019; 34:1062-1077. [PMID: 31072216 PMCID: PMC6522981 DOI: 10.1080/14756366.2019.1613987] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Histone deacetylase 6 (HDAC6) is an attractive target for cancer therapeutic intervention. Selective HDAC6 inhibitors is important to minimise the side effects of pan inhibition. Thus, new class of hydroxamic acid-based derivatives were designed on structural basis to perform preferential activity against HDAC6 targeting solid tumours. Interestingly, 1-benzylbenzimidazole-2-thio-N-hydroxybutanamide 10a showed impressive preference with submicromolar potency against HDAC6 (IC50 = 510 nM). 10a showed cytotoxic activity with interesting profile against CCHE-45 at (IC50 = 112.76 µM) when compared to standard inhibitor Tubacin (IC50 = 20 µM). Western blot analysis of acetylated-α-tubulin verified the HDAC6 inhibiting activity of 10a. Moreover, the insignificant difference in acetylated-α-tubulin induced by 10a and Tubacin implied the on-target cytotoxic activity of 10a. Docking of 10a in the binding site of HDAC6 attributed the activity of 10a to π-π stacking with the amino acids of the hydrophobic channel of HDAC6 and capture of zinc metal in bidentate fashion. The therapeutic usefulness besides the on-target activity may define 10a as an interesting safe-lead inhibitor for future development.
Collapse
Affiliation(s)
- Shaymaa E Kassab
- a Pharmaceutical Chemistry Department, Faulty of Pharmacy , Damanhour University , Damanhour , Egypt
| | - Samar Mowafy
- b Pharmaceutical Chemistry Department, Faculty of Pharmacy , Misr International University , Cairo , Egypt
| | - Aya M Alserw
- c Basic Research Unit, Department of Research , Children's Cancer Hospital in Egypt , Cairo , Egypt
| | - Joustin A Seliem
- c Basic Research Unit, Department of Research , Children's Cancer Hospital in Egypt , Cairo , Egypt
| | - Shahenda M El-Naggar
- c Basic Research Unit, Department of Research , Children's Cancer Hospital in Egypt , Cairo , Egypt
| | - Nesreen N Omar
- d Biochemistry Department, Faculty of Pharmacy , Modern University for Technology and Information , Cairo , Egypt
| | - Mohamed M Awad
- e Department of Pharmacology and Toxicology, Faculty of Pharmacy , Helwan University , Cairo , Egypt.,f Canadian Academy of Research and Development (CARD) , Mississauga , ON , Canada
| |
Collapse
|
34
|
Wu W, Cao W, Hu L, Su Z, Liu X, Feng X. Asymmetric Baeyer-Villiger oxidation: classical and parallel kinetic resolution of 3-substituted cyclohexanones and desymmetrization of meso-disubstituted cycloketones. Chem Sci 2019; 10:7003-7008. [PMID: 31588267 PMCID: PMC6676330 DOI: 10.1039/c9sc01563a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022] Open
Abstract
Classical kinetic resolution, parallel kinetic resolution and desymmetrization were achieved by asymmetric BV oxidation of 3-substituted and meso-disubstituted cycloketones.
Regioselectivity is a crucial issue in Baeyer–Villiger (BV) oxidation. To date, few reports have addressed asymmetric BV oxidation of 3-substituted cycloketones due to the high difficulty of controlling regio- and stereoselectivity. Herein, we report the asymmetric BV oxidation of 3-substituted and meso-disubstituted cycloketones with chiral N,N′-dioxide/Sc(iii) catalysts performed in three ways: classical kinetic resolution, parallel kinetic resolution and desymmetrization. The methodology was applied in the total and formal synthesis of bioactive compounds and natural products. Control experiments and calculations demonstrated that flexible and adjustable catalysts played a significant role in the chiral recognition of substrates.
Collapse
Affiliation(s)
- Wangbin Wu
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu 610064 , China . ;
| | - Weidi Cao
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu 610064 , China . ;
| | - Linfeng Hu
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu 610064 , China . ;
| | - Zhishan Su
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu 610064 , China . ;
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu 610064 , China . ;
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu 610064 , China . ;
| |
Collapse
|
35
|
The function of histone acetylation in cervical cancer development. Biosci Rep 2019; 39:BSR20190527. [PMID: 30886064 PMCID: PMC6465204 DOI: 10.1042/bsr20190527] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/19/2022] Open
Abstract
Cervical cancer is the fourth most common female cancer in the world. It is well known that cervical cancer is closely related to high-risk human papillomavirus (HPV) infection. However, epigenetics has increasingly been recognized for its role in tumorigenesis. Epigenetics refers to changes in gene expression levels based on non-gene sequence changes, primarily through transcription or translation of genes regulation, thus affecting its function and characteristics. Typical post-translational modifications (PTMs) include acetylation, propionylation, butyrylation, malonylation and succinylation, among which the acetylation modification of lysine sites has been studied more clearly so far. The acetylation modification of lysine residues in proteins is involved in many aspects of cellular life activities, including carbon metabolism, transcriptional regulation, amino acid metabolism and so on. In this review, we summarize the latest discoveries on cervical cancer development arising from the aspect of acetylation, especially histone acetylation.
Collapse
|
36
|
Design, synthesis and biological evaluation of novel indole derivatives as potential HDAC/BRD4 dual inhibitors and anti-leukemia agents. Bioorg Chem 2019; 84:410-417. [DOI: 10.1016/j.bioorg.2018.12.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/03/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022]
|
37
|
Kashyap K, Kakkar R. An insight into selective and potent inhibition of histone deacetylase 8 through induced-fit docking, pharmacophore modeling and QSAR studies. J Biomol Struct Dyn 2019; 38:48-65. [PMID: 30633630 DOI: 10.1080/07391102.2019.1567388] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Histone deacetylase 8 (HDAC8) has emerged as an important therapeutic target due to its involvement in various cancerous and neurodegenerative disease states. Since pan HDAC inhibition has been linked to various side effects, the need of the hour is to develop inhibitors truly selective for one isoform. This work attempts to explore the structural basis of selective HDAC8 inhibition by docking, pharmacophore and 3 D QSAR studies of 53 highly potent and highly selective triazol-based hydroxamic acid inhibitors. The binding modes of these novel inhibitors have been explored via Glide XP (Extra Precision) and induced-fit docking (IFD) strategies. The IFD poses of highly active and selective inhibitors showed conformational changes in active site residues like Trp141, Phe152 and Phe208, which were further verified by molecular dynamics simulations. A new CH-π interaction, which is atypical of HDAC inhibitors, was also observed in case of some highly selective inhibitors. Two pharmacophore models have been proposed; one highlights the structural basis of potency of these inhibitors and the other focuses on the selectivity. The corresponding QSAR models, obtained from alignment of the inhibitors as per the proposed pharmacophore models, are highly statistically significant. These models highlight the importance of size of the hydrophobic and aromatic groups present in the inhibitors and their contribution to activity of the inhibitors. The ADMET properties of the ligand library have also been analyzed and the predicted descriptors have been correlated with activity using principal components analysis to gain insight into the effect of pharmacokinetic properties on the activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kriti Kashyap
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Rita Kakkar
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
38
|
Fleming CL, Natoli A, Schreuders J, Devlin M, Yoganantharajah P, Gibert Y, Leslie KG, New EJ, Ashton TD, Pfeffer FM. Highly fluorescent and HDAC6 selective scriptaid analogues. Eur J Med Chem 2019; 162:321-333. [DOI: 10.1016/j.ejmech.2018.11.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/28/2018] [Accepted: 11/08/2018] [Indexed: 01/18/2023]
|
39
|
Sangwan R, Rajan R, Mandal PK. HDAC as onco target: Reviewing the synthetic approaches with SAR study of their inhibitors. Eur J Med Chem 2018; 158:620-706. [DOI: 10.1016/j.ejmech.2018.08.073] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/09/2018] [Accepted: 08/26/2018] [Indexed: 02/06/2023]
|