1
|
Das T, Khatun S, Jha T, Gayen S. HDAC9 as a Privileged Target: Reviewing its Role in Different Diseases and Structure-activity Relationships (SARs) of its Inhibitors. Mini Rev Med Chem 2024; 24:767-784. [PMID: 37818566 DOI: 10.2174/0113895575267301230919165827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 08/11/2023] [Indexed: 10/12/2023]
Abstract
HDAC9 is a histone deacetylase enzyme belonging to the class IIa of HDACs which catalyses histone deacetylation. HDAC9 inhibit cell proliferation by repairing DNA, arresting the cell cycle, inducing apoptosis, and altering genetic expression. HDAC9 plays a significant part in human physiological system and are involved in various type of diseases like cancer, diabetes, atherosclerosis and CVD, autoimmune response, inflammatory disease, osteoporosis and liver fibrosis. This review discusses the role of HDAC9 in different diseases and structure-activity relationships (SARs) of various hydroxamate and non-hydroxamate-based inhibitors. SAR of compounds containing several scaffolds have been discussed in detail. Moreover, structural requirements regarding the various components of HDAC9 inhibitor (cap group, linker and zinc-binding group) has been highlighted in this review. Though, HDAC9 is a promising target for the treatment of a number of diseases including cancer, a very few research are available. Thus, this review may provide useful information for designing novel HDAC9 inhibitors to fight against different diseases in the future.
Collapse
Affiliation(s)
- Totan Das
- Department of Pharmaceutical Technology, Laboratory of Drug Design and Discovery, Jadavpur University, Kolkata, 700032, India
| | - Samima Khatun
- Department of Pharmaceutical Technology, Laboratory of Drug Design and Discovery, Jadavpur University, Kolkata, 700032, India
| | - Tarun Jha
- Department of Pharmaceutical Technology, Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Shovanlal Gayen
- Department of Pharmaceutical Technology, Laboratory of Drug Design and Discovery, Jadavpur University, Kolkata, 700032, India
| |
Collapse
|
2
|
Patel P, Shrivastava SK, Sharma P, Kurmi BD, Shirbhate E, Rajak H. Hydroxamic acid derivatives as selective HDAC3 inhibitors: computer-aided drug design strategies. J Biomol Struct Dyn 2024; 42:362-383. [PMID: 36995068 DOI: 10.1080/07391102.2023.2192804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023]
Abstract
Histone deacetylases (HDACs) are critical epigenetic drug targets that have gained significant attention in the scientific community for the treatment of cancer. The currently marketed HDAC inhibitors lack selectivity for the various HDAC isoenzymes. Here, we describe our protocol for the discovery of novel potential hydroxamic acid based HDAC3 inhibitors through pharmacophore modeling, virtual screening, docking, molecular dynamics (MD) simulation and toxicity studies. The ten pharmacophore hypotheses were established, and their reliability was validated by different ROC (receiving operator curve) analysis. Among them, the best model (Hypothesis 9 or RRRA) was employed for searching SCHEMBL, ZINC and MolPort database to screen out hit molecules as selective HDAC3 inhibitors, followed by different docking stages. MD simulation (50 ns) and MMGBSA study were performed to study the stability of ligand binding modes and with the help of trajectory analysis, to calculate the ligand-receptor complex RMSD (root-mean-square deviation), RMSF (root-mean-square fluctuation) and H-bond distance, etc. Finally, in-silico toxicity studies were performed on top screened molecules and compared with reference drug SAHA and established structure-activity relationship (SAR). The results indicated that compound 31, with high inhibitory potency and less toxicity (probability value 0.418), is suitable for further experimental analysis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Preeti Patel
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Guru Ghasidas University, Bilaspur, Chhattisgarh, India
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Sushant Kumar Shrivastava
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Piyoosh Sharma
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Ekta Shirbhate
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Guru Ghasidas University, Bilaspur, Chhattisgarh, India
| | - Harish Rajak
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Guru Ghasidas University, Bilaspur, Chhattisgarh, India
| |
Collapse
|
3
|
Chu JC, Tseng HJ, Lee SB, Hsu KC, Hsin LW, Liang RH, Lin TE, Gao NC, Chen LC, Lu WH, Wang AHJ, Huang WJ. Synthesis and biological evaluation of C-4 substituted phenoxazine-bearing hydroxamic acids with potent class II histone deacetylase inhibitory activities. J Enzyme Inhib Med Chem 2023; 38:2212326. [PMID: 37190931 DOI: 10.1080/14756366.2023.2212326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Class II histone deacetylases (HDACs) are considered as potential targets to treat Alzheimer's disease (AD). Previously, C-3 substituted phenothiazine-containing compounds with class II HDAC-inhibiting activities was found to promote neurite outgrowth. This study replaced phenothiazine moiety with phenoxazine that contains many C-3 and C-4 substituents. Some resulting compounds bearing the C-4 substituent on a phenoxazine ring displayed potent class II HDAC inhibitory activities. Structure-activity relationship (SAR) of these compounds that inhibited HDAC isoenzymes was disclosed. Molecular modelling analysis demonstrates that the potent activities of C-4 substituted compounds probably arise from π-π stacked interactions between these compounds and class IIa HDAC enzymes. One of these, compound 7d exhibited the most potent class II HDAC inhibition (IC50= 3-870 nM). Notably, it protected neuron cells from H2O2-induced neuron damage at sub-μM concentrations, but with no significant cytotoxicity. These findings show that compound 7d is a lead compound for further development of anti-neurodegenerative agents.
Collapse
Affiliation(s)
- Jung-Chun Chu
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Hui-Ju Tseng
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States
| | - Sung-Bau Lee
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Kai-Cheng Hsu
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Ling-Wei Hsin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ru-Hao Liang
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Nain-Chu Gao
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Liang-Chieh Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States
| | - Wan-Hsun Lu
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Andrew H-J Wang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wei-Jan Huang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
4
|
Moinul M, Amin SA, Khatun S, Das S, Jha T, Gayen S. A detail survey and analysis of selectivity criteria for indole-based histone deacetylase 8 (HDAC8) inhibitors. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.133967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
5
|
Haider K, Sharma S, Pokharel YR, Das S, Joseph A, Najmi AK, Ahmad F, Yar MS. Synthesis, biological evaluation, and in silico studies of indole-tethered pyrazoline derivatives as anticancer agents targeting topoisomerase IIα. Drug Dev Res 2022; 83:1555-1577. [PMID: 35898169 DOI: 10.1002/ddr.21976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/10/2022]
Abstract
We herein report a new series of indole-tethered pyrazoline derivatives as potent anticancer agents. A total of 12 compounds were designed and synthesized by conventional as well as microwave-irradiated synthesis methods. The latter method results in a significant reduction in the duration of reaction along with improved yields. All synthesized derivatives (7a-7l) were evaluated for their cytotoxic activity against A431, HeLa, and MDAMB-231 cell lines. Compounds 7a and 7b were found most potent in the series and demonstrated an IC50 value of 3.17 and 5.16 µM against the A431 cell line, respectively, compared to the standard drug doxorubicin. Compounds 7a and 7b significantly suppress colony formation, migration, and S phase cell cycle arrest of A431 cells. Furthermore, compound 7a regulated the expression of apoptotic proteins causing the downregulation of procaspase 3/9, antiapoptotic protein Bcl-xL, and upregulation of proapoptotic protein Bax in a dose-dependent manner. Topoisomerase enzyme inhibition assay confirmed that compounds 7a and 7b can significantly inhibit topoisomerase IIα. In vivo oral acute toxicity of compounds 7a and 7b revealed that both compounds are safe compared to doxorubicin; cardiomyopathy studies showed normal architecture of cardiomyocytes and myofibrils. In addition, molecular docking studies revealed the possible interaction of compounds 7a and 7b within the active binding site of the topoisomerase enzyme. The 100 ns molecular dynamic simulation of compounds 7a and 7b proved that both compounds validate all screening parameters.
Collapse
Affiliation(s)
- Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shivani Sharma
- Faculty of Life Science and Biotechnology, South Asian University, New Delhi, India
| | - Yuba Raj Pokharel
- Faculty of Life Science and Biotechnology, South Asian University, New Delhi, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Faiz Ahmad
- Faculty of Life Science and Biotechnology, South Asian University, New Delhi, India
| | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
6
|
Jiang BE, Hu J, Liu H, Liu Z, Wen Y, Liu M, Zhang HK, Pang X, Yu LF. Design, synthesis, and biological evaluation of indole-based hydroxamic acid derivatives as histone deacetylase inhibitors. Eur J Med Chem 2022; 227:113893. [PMID: 34656899 DOI: 10.1016/j.ejmech.2021.113893] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 01/01/2023]
Abstract
The equilibrium between histone acetylation and deacetylation plays an important role in cancer initiation and progression. The histone deacetylases (HDACs) are a class of key regulators of gene expression that enzymatically remove an acetyl moiety from acetylated lysine ε-amino groups on histone tails. Therefore, HDAC inhibitors have recently emerged as a promising strategy for cancer therapy and several pan-HDAC inhibitors have globally been approved for clinical use. In the present study, we designed and synthesized a series of substituted indole-based hydroxamic acid derivatives that exhibited potent anti-proliferative activities in various tumor cell lines. Among the compounds tested, compound 4o, was found to be among the most potent in the inhibition of HDAC1 (half maximal inhibitory concentration, IC50 = 1.16 nM) and HDAC6 (IC50 = 2.30 nM). It also exhibited excellent in vitro anti-tumor proliferation activity. Additionally, compound 4o effectively increased the acetylation of histone H3 in a dose-dependent manner and inhibited cell proliferation by inducing cell cycle arrest and apoptosis. Moreover, compound 4o remarkably blocked colony formation in HCT116 cancer cells. Based on its favorable in vitro profile, compound 4o was further evaluated in an HCT116 xenograft mouse model, in which it demonstrated better in vivo efficacy than the clinically used HDAC inhibitor, suberanilohydroxamic acid. Interestingly, compound 4k was found to have a preference for the inhibition of HDAC6, with IC50 values of 115.20 and 5.29 nM against HDAC1 and HDAC6, respectively.
Collapse
Affiliation(s)
- Bei-Er Jiang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China; Navy Medical Research Institute, Second Military Medical University, Shanghai, 200433, PR China
| | - Jiaxin Hu
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Hao Liu
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Zhitao Liu
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Yu Wen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China
| | - Mingyao Liu
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Han-Kun Zhang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Xiufeng Pang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China.
| | - Li-Fang Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China.
| |
Collapse
|
7
|
Hsu KC, Chu JC, Tseng HJ, Liu CI, Wang HC, Lin TE, Lee HS, Hsin LW, Wang AHJ, Lin CH, Huang WJ. Synthesis and biological evaluation of phenothiazine derivative-containing hydroxamic acids as potent class II histone deacetylase inhibitors. Eur J Med Chem 2021; 219:113419. [PMID: 33845233 DOI: 10.1016/j.ejmech.2021.113419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/22/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
The pathogenesis of Alzheimer's disease (AD) has been associated with dysregulation of histone deacetylases (HDACs). Previously, acridine-based HDAC inhibitors have shown potential in ameliorating HDAC activity and enhancing neurite outgrowth. In this study, the acridine ring was modified using various phenothiazine derivatives. Several resulting compounds exhibited potent enzyme-inhibiting activity towards class II HDACs when compared to the clinically approved HDAC inhibitor SAHA. Compound 4f demonstrated the highest class II HDAC inhibition (IC50 = 4.6-600 nM), as well as promotion of neurite outgrowth. Importantly, compound 4f displayed no cytotoxicity against neuron cells. Compound 4f was further evaluated for cellular effects. Altogether, these findings show a potential strategy in HDAC inhibition for treatment of the neurological disease.
Collapse
Affiliation(s)
- Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taiwan; Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Jung-Chun Chu
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Hui-Ju Tseng
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chia-I Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hao-Ching Wang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Master Program in Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hong-Sheng Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ling-Wei Hsin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Andrew H-J Wang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Wei-Jan Huang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
8
|
Li S, Wang Z, Xiao H, Bian Z, Wang JJ. Enantioselective synthesis of indole derivatives by Rh/Pd relay catalysis and their anti-inflammatory evaluation. Chem Commun (Camb) 2021; 56:7573-7576. [PMID: 32510073 DOI: 10.1039/d0cc03158e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An efficient Rh/Pd relay catalyzed intermolecular and cascade intramolecular hydroamination for the synthesis of exclusive trans 1-indolyl dihydronaphthalenols (up to 88% yield, 99% ee) is described under mild conditions. Moreover, the in silico and in vitro screening showed that the novel 1-indolyl dihydronaphthalenol products are potent lead compounds for treating inflammation disease.
Collapse
Affiliation(s)
- Sifeng Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China. and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| | - Zihao Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China. and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| | - Haitao Xiao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518066, China
| | - Zhaoxiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| | - Jun Joelle Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
9
|
Chen D, Soh CK, Goh WH, Wang Z, Wang H. Synthesis and biological evaluation of 6-phenylpurine linked hydroxamates as novel histone deacetylase inhibitors. Bioorg Chem 2020; 98:103724. [PMID: 32171983 DOI: 10.1016/j.bioorg.2020.103724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/23/2020] [Accepted: 03/02/2020] [Indexed: 12/14/2022]
Abstract
A series of 6-phenylpurine based hydroxamates have been designed, synthesized and evaluated. Compound 3b and its analogs are potent histone deacetylase (HDAC) but weak PI3K/mTOR inhibitors. These compounds demonstrated broad anti-cancer activities against 38 cancer cell lines with leukemia, lymphoma, and the majority of liver cancer cell lines exhibiting the most sensitivity towards these compounds. Compound 3b demonstrated modulation of HDAC targets in vitro in a dose-dependent manner. It has good in vitro ADME profile that translated into a greatly improved pharmacokinetic profile. 3b also demonstrated modulation of HDACs in tumors in a PC-3 xenograft model. It was further evaluated in combination therapies in vitro. It exhibited additive or synergistic growth inhibition effect in HepG2 cells when combined with a number of approved drugs such as sorafenib, sunitinib, and erlotinib. Hence, 3b has the potential to be combined with the above to treat advanced liver cancer. As such, current data warrant further evaluation, optimization, and subsequent in vivo validation of the potential combination therapies.
Collapse
Affiliation(s)
- Dizhong Chen
- Drug Development Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Chang Kai Soh
- Drug Development Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Wei Huang Goh
- Drug Development Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Zilong Wang
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30318, United States
| | - Haishan Wang
- Drug Development Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore; Probit Pharmaceuticals Pte. Ltd., 10 Anson Road #27-15, Singapore 079903, Republic of Singapore.
| |
Collapse
|
10
|
Tseng HJ, Lin MH, Shiao YJ, Yang YC, Chu JC, Chen CY, Chen YY, Lin TE, Su CJ, Pan SL, Chen LC, Wang CY, Hsu KC, Huang WJ. Synthesis and biological evaluation of acridine-based histone deacetylase inhibitors as multitarget agents against Alzheimer's disease. Eur J Med Chem 2020; 192:112193. [PMID: 32151835 DOI: 10.1016/j.ejmech.2020.112193] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/16/2023]
Abstract
Multitarget agents simultaneously trigger molecules in functionally complementary pathways, and are therefore considered to have potential in effectively treating Alzheimer's disease (AD), which has a complex pathogenetic mechanism. In this study, the HDAC inhibitor core is incorporated into the acetylcholine esterase (ACE) inhibitor acridine-derived moiety and resulted in compounds that exhibited higher class IIa HDAC (4, 5, 7, and 9)- and class IIb HDAC6-inhibiting activity when compared to the pan-HDAC inhibitor SAHA in clinical practice. One of these compounds, 11b, displayed greater selectivity toward HDAC6 than other isoform enzymes. In contrast, the activity of compound 6a was selective toward class IIa HDAC and HDAC6. These two compounds exhibited strong activity against Aβ-aggregation as well as significantly disrupted Aβ-oligomer. Additionally, 11b and 6a strongly inhibited AChE. These experimental findings demonstrate that compounds 11b and 6a are HDAC-Aβ-aggregation-AChE inhibitors. Notably, they can enhance neurite outgrowth, but with no significant neurotoxicity. Further biological evaluation revealed the various cellular effects of multitarget compounds 11b and 6a, which have the potential to treat AD.
Collapse
Affiliation(s)
- Hui-Ju Tseng
- Ph.D. Program in Biotechnology Research and Development, Taipei Medical University, Taipei, Taiwan
| | - Mei-Hsiang Lin
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Young-Ji Shiao
- National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Ying-Chen Yang
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Jung-Chun Chu
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Chun-Yung Chen
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ying Chen
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Chih-Jou Su
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Shiow-Lin Pan
- Ph.D. Program in Biotechnology Research and Development, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Liang-Chieh Chen
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan; School of Life and Health Sciences and Warshel Institute for Computational Biology, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong, PR China
| | | | - Kai-Cheng Hsu
- Ph.D. Program in Biotechnology Research and Development, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| | - Wei-Jan Huang
- Ph.D. Program in Biotechnology Research and Development, Taipei Medical University, Taipei, Taiwan; School of Pharmacy, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
11
|
Arshad M. Design, computational, synthesis, characterization, antimicrobial, MTT and molecular docking assessment of bipyrimidine derivatives possessing indole moiety. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01855-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
QSAR analysis of coumarin-based benzamides as histone deacetylase inhibitors using CoMFA, CoMSIA and HQSAR methods. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.126961] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Kassab SE, Mowafy S, Alserw AM, Seliem JA, El-Naggar SM, Omar NN, Awad MM. Structure-based design generated novel hydroxamic acid based preferential HDAC6 lead inhibitor with on-target cytotoxic activity against primary choroid plexus carcinoma. J Enzyme Inhib Med Chem 2019; 34:1062-1077. [PMID: 31072216 PMCID: PMC6522981 DOI: 10.1080/14756366.2019.1613987] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Histone deacetylase 6 (HDAC6) is an attractive target for cancer therapeutic intervention. Selective HDAC6 inhibitors is important to minimise the side effects of pan inhibition. Thus, new class of hydroxamic acid-based derivatives were designed on structural basis to perform preferential activity against HDAC6 targeting solid tumours. Interestingly, 1-benzylbenzimidazole-2-thio-N-hydroxybutanamide 10a showed impressive preference with submicromolar potency against HDAC6 (IC50 = 510 nM). 10a showed cytotoxic activity with interesting profile against CCHE-45 at (IC50 = 112.76 µM) when compared to standard inhibitor Tubacin (IC50 = 20 µM). Western blot analysis of acetylated-α-tubulin verified the HDAC6 inhibiting activity of 10a. Moreover, the insignificant difference in acetylated-α-tubulin induced by 10a and Tubacin implied the on-target cytotoxic activity of 10a. Docking of 10a in the binding site of HDAC6 attributed the activity of 10a to π-π stacking with the amino acids of the hydrophobic channel of HDAC6 and capture of zinc metal in bidentate fashion. The therapeutic usefulness besides the on-target activity may define 10a as an interesting safe-lead inhibitor for future development.
Collapse
Affiliation(s)
- Shaymaa E Kassab
- a Pharmaceutical Chemistry Department, Faulty of Pharmacy , Damanhour University , Damanhour , Egypt
| | - Samar Mowafy
- b Pharmaceutical Chemistry Department, Faculty of Pharmacy , Misr International University , Cairo , Egypt
| | - Aya M Alserw
- c Basic Research Unit, Department of Research , Children's Cancer Hospital in Egypt , Cairo , Egypt
| | - Joustin A Seliem
- c Basic Research Unit, Department of Research , Children's Cancer Hospital in Egypt , Cairo , Egypt
| | - Shahenda M El-Naggar
- c Basic Research Unit, Department of Research , Children's Cancer Hospital in Egypt , Cairo , Egypt
| | - Nesreen N Omar
- d Biochemistry Department, Faculty of Pharmacy , Modern University for Technology and Information , Cairo , Egypt
| | - Mohamed M Awad
- e Department of Pharmacology and Toxicology, Faculty of Pharmacy , Helwan University , Cairo , Egypt.,f Canadian Academy of Research and Development (CARD) , Mississauga , ON , Canada
| |
Collapse
|
14
|
Design, synthesis and biological evaluation of novel indole derivatives as potential HDAC/BRD4 dual inhibitors and anti-leukemia agents. Bioorg Chem 2019; 84:410-417. [DOI: 10.1016/j.bioorg.2018.12.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/03/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022]
|
15
|
Jiang Z, You Q, Zhang X. Medicinal chemistry of metal chelating fragments in metalloenzyme active sites: A perspective. Eur J Med Chem 2019; 165:172-197. [PMID: 30684796 DOI: 10.1016/j.ejmech.2019.01.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/22/2018] [Accepted: 01/08/2019] [Indexed: 12/25/2022]
Abstract
Numerous metal-containing enzymes (metalloenzymes) have been considered as drug targets related to diseases such as cancers, diabetes, anemia, AIDS, malaria, bacterial infection, fibrosis, and neurodegenerative diseases. Inhibitors of the metalloenzymes have been developed independently, most of which are mimics of substrates of the corresponding enzymes. However, little attention has been paid to the interactions between inhibitors and active site metal ions. This review is focused on different metal binding fragments and their chelating properties in the metal-containing active binding pockets of metalloenzymes. We have enumerated over one hundred of inhibitors targeting various metalloenzymes and identified over ten kinds of fragments with different binding patterns. Furthermore, we have investigated the inhibitors that are undergoing clinical evaluation in order to help looking for more potential scaffolds bearing metal binding fragments. This review will provide deep insights for the rational design of novel inhibitors targeting the metal-containing binding sites of specific proteins.
Collapse
Affiliation(s)
- Zhensheng Jiang
- Sate Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Sate Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaojin Zhang
- Sate Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
16
|
Sangwan R, Rajan R, Mandal PK. HDAC as onco target: Reviewing the synthetic approaches with SAR study of their inhibitors. Eur J Med Chem 2018; 158:620-706. [DOI: 10.1016/j.ejmech.2018.08.073] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/09/2018] [Accepted: 08/26/2018] [Indexed: 02/06/2023]
|
17
|
Liang YY, Zhang CM, Liu ZP. Evaluation of WO2017018805: 1,3,4-oxadiazole sulfamide derivatives as selective HDAC6 inhibitors. Expert Opin Ther Pat 2018; 28:647-651. [PMID: 30073889 DOI: 10.1080/13543776.2018.1508451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION There are great potential in the development of selective HDAC6 inhibitors for the treatment of infectious diseases, neoplasms, endocrine diseases, and other diseases associated with HDAC6 activity. Areas covered: The application claims 1,3,4-oxadiazole sulfamide derivatives as selective HDAC6 inhibitors for the treatment of infectious diseases, neoplasms, endocrine, nutritional, and metabolic diseases; mental and behavioral disorders; neurological diseases; diseases of the eye and adnexa; cardiovascular diseases; respiratory diseases; digestive diseases; diseases of the skin and subcutaneous tissue; disease of the musculoskeletal system and connective tissue; or congenital malformations, deformations and chromosomal abnormalities. Many of the exemplified compounds showed nanomole potency against HDAC6 and were more than 5000-fold selectivity for HDAC6 over HDAC1. Expert opinion: These 1,3,4-oxadiazole sulfamide derivatives have a unique zinc-binding group (ZBG) that provide good leads for the discovery of potent selective HDAC6 inhibitors for the treatment of a variety of diseases associated with HDAC6 activity.
Collapse
Affiliation(s)
- Yuan-Yuan Liang
- a Institute of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , PR China
| | - Cheng-Mei Zhang
- a Institute of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , PR China
| | - Zhao-Peng Liu
- a Institute of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , PR China
| |
Collapse
|