1
|
Erande RD, Shivam S, Chavan KA, Chauhan ANS. Recent Advances in [3+2]-Cycloaddition-Enabled
Cascade Reactions: Application to
Synthesize Complex Organic Frameworks. Synlett 2022. [DOI: 10.1055/s-0042-1751369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractMany natural products and biologically important complex organic scaffolds have convoluted structures around their core skeleton. Interestingly, with just changing the outskirts, the core reflects new and unique degrees of various physical and chemical properties. A very common but intriguing core is a five-membered ring horning heaps of organic molecules crafts. The power of [3+2] cycloaddition reactions to generate five-membered ring systems allocate chemists to envision synthetic procedures of wonder molecules and if it is facilitating a cascade sequence, then the end product will imbibe significant level of complexity having applications in medicinal and pharmaceutical fields. This Account highlights the broad interest in assembling recent advances in cascade reactions involving [3+2] cycloaddition as the power tool in order to conceive breakthrough organic architectures reported in the last ten years. We foresee that our comprehensive collection of astonishing [3+2] cycloaddition enabled cascades will provide valuable insights to polycyclic molecular construction and perseverant approach towards nonconventional synthetic procedures to the organic community.1 Introduction2 Synthesis of Oxindoles Skeleton3 Synthesis of Oxazoles Skeleton4 Synthesis of Oxadiazoles Skeleton5 Synthesis of Nitrogen-Containing Heterocycles6 Synthesis via Formal [3+2] Cycloaddition7 Synthesis of Miscellaneous Scaffolds8 Conclusion
Collapse
|
2
|
Chang JS, Chen CY, Tikhomirov AS, Islam A, Liang RH, Weng CW, Wu WH, Shchekotikhin AE, Chueh PJ. Bis(chloroacetamidino)-Derived Heteroarene-Fused Anthraquinones Bind to and Cause Proteasomal Degradation of tNOX, Leading to c-Flip Downregulation and Apoptosis in Oral Cancer Cells. Cancers (Basel) 2022; 14:cancers14194719. [PMID: 36230644 PMCID: PMC9562014 DOI: 10.3390/cancers14194719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary New-generation anthraquinone derivatives attached with different heterocycles and bearing chloroacetamidines in the side chains have been synthesized to reduce side effects and drug resistance. In this study, we identified the cellular target of the studied compounds through ligand binding assays and in silico simulations. Our results illustrate that the studied compounds bound to and targeted the tumor-associated NADH oxidase (tNOX) in oral cancer cells. tNOX is a growth-related protein and is found to be expressed in cancer cells but not in non-transformed cells, and its knockdown by RNA interference in tumor cells overturns cancer phenotypes, supporting its role in cellular growth. We also identified that tNOX bound to the studied compounds and underwent degradation, which was correlated with apoptosis induction in oral cancer cells. Abstract Anthraquinone-based intercalating compounds, namely doxorubicin and mitoxantrone, have been used clinically based on their capacity to bind DNA and induce DNA damage. However, their applications have been limited by side effects and drug resistance. New-generation anthraquinone derivatives fused with different heterocycles have been chemically synthesized and screened for higher anticancer potency. Among the compounds reported in our previous study, 4,11-bis(2-(2-chloroacetamidine)ethylamino)anthra[2,3-b]thiophene-5,10-dione dihydrochloride (designated 2c) was found to be apoptotic, but the direct cellular target responsible for the cytotoxicity remained unknown. Here, we report the synthesis and anticancer properties of two other derivatives, 4,11-bis(2-(2-chloroacetamidine)ethylamino)naphtho[2,3-f]indole-5,10-dione dihydrochloride (2a) and 4,11-bis(2-(2-chloroacetamidine)ethylamino)-2-methylanthra[2,3-b]furan-5,10-dione dihydrochloride (2b). We sought to identify and validate the protein target(s) of these derivatives in oral cancer cells, using molecular docking simulations and cellular thermal shift assays (CETSA). Our CETSA results illustrate that these derivatives targeted the tumor-associated NADH oxidase (tNOX, ENOX2), and their direct binding downregulated tNOX in p53-functional SAS and p53-mutated HSC-3 cells. Interestingly, the compounds targeted and downregulated tNOX to reduce SIRT1 deacetylase activity and increase Ku70 acetylation, which triggers c-Flip ubiquitination and induces apoptosis in oral cancer cells. Together, our data highlight the potential value of these heteroarene-fused anthraquinones in managing cancer by targeting tNOX and augmenting apoptosis.
Collapse
Affiliation(s)
- Jeng Shiun Chang
- Department of Otolaryngology, Head and Neck Surgery, Jen-Ai Hospital, Taichung 41265, Taiwan
| | - Chien-Yu Chen
- Institute of Biomedical Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan
| | | | - Atikul Islam
- Institute of Biomedical Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan
| | - Ru-Hao Liang
- Institute of Biomedical Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan
| | - Chia-Wei Weng
- Institute of Biomedical Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Wei-Hou Wu
- Institute of Biomedical Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan
| | - Andrey E. Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia
- Correspondence: (A.E.S.); (P.J.C.); Tel.: +7-499-246-0228 (A.E.S.); +886-4-22840896 (P.J.C.)
| | - Pin Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
- Graduate Institute of Basic Medicine, China Medical University, Taichung 40402, Taiwan
- Correspondence: (A.E.S.); (P.J.C.); Tel.: +7-499-246-0228 (A.E.S.); +886-4-22840896 (P.J.C.)
| |
Collapse
|
3
|
Tikhomirov AS, Tsvetkov VB, Volodina YL, Litvinova VA, Andreeva DV, Dezhenkova LG, Kaluzhny DN, Treshalin ID, Shtil AA, Shchekotikhin AE. Heterocyclic ring expansion yields anthraquinone derivatives potent against multidrug resistant tumor cells. Bioorg Chem 2022; 127:105925. [PMID: 35728293 DOI: 10.1016/j.bioorg.2022.105925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022]
Abstract
Chemical modifications of anthraquiones are aimed at novel derivatives with improved antitumor properties. Emergence of multidrug resistance (MDR) due to overexpression of transmembrane ATP binding cassette transporters, in particular, MDR1/P-glycoprotein (Pgp), can limit the use of anthraquinone based drugs. Previously we have demonstrated that annelation of modified five-membered heterocyclic rings with the anthraquinone core yielded a series of compounds with optimized antitumor properties. In the present study we synthesized a series of anthraquinone derivatives with six-membered heterocycles. Selected new compounds showed the ability to kill parental and MDR tumor cell lines at low micromolar concentrations. Molecular docking into the human Pgp model revealed a stronger interaction of 2-methylnaphtho[2,3-g]quinoline-3-carboxamide 17 compared to naphtho[2,3-f]indole-3-carboxamide 3. The time course of intracellular accumulation of compound 17 in parental K562 leukemia cells and in Pgp-positive K562/4 subline was similar. In contrast, compound 3 was readily effluxed from K562/4 cells and was significantly less potent for this subline than for K562 cells. Together with reported strategies of drug optimization of the anthracycline core, these results add ring expansion to the list of perspective modifications of heteroarene-fused anthraquinones.
Collapse
Affiliation(s)
| | - Vladimir B Tsvetkov
- Sechenov First Moscow State Medical University, 8/2 Trubetskaya Street, 119146 Moscow, Russia; A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Avenue, 117912 Moscow, Russia; Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a M. Pirogovskaya Street, Moscow 119435, Russia
| | - Yulia L Volodina
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia; Blokhin Cancer Center, 24 Kashirskoye shosse, Moscow 115478, Russia
| | - Valeria A Litvinova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia
| | - Daria V Andreeva
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia
| | - Lyubov G Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia
| | - Dmitry N Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, 11991 Moscow, Russia
| | - Ivan D Treshalin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia
| | - Alexander A Shtil
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia; Blokhin Cancer Center, 24 Kashirskoye shosse, Moscow 115478, Russia
| | | |
Collapse
|
4
|
Huang Y, Wang J, Li J, Zhang Z, Chen JC. Total synthesis of MS-444: A myosin light chain kinase and HuR inhibitor from Micromonospora sp. KY7123. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Tikhomirov AS, Abdelhamid MAS, Nadysev GY, Zatonsky GV, Bykov EE, Chueh PJ, Waller ZAE, Shchekotikhin AE. Water-Soluble Heliomycin Derivatives to Target i-Motif DNA. JOURNAL OF NATURAL PRODUCTS 2021; 84:1617-1625. [PMID: 33974416 DOI: 10.1021/acs.jnatprod.1c00162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Heliomycin (also known as resistomycin) is an antibiotic with a broad spectrum of biological activities. However, low aqueous solubility and poor knowledge of its chemical properties have limited the development of this natural product. Here, we present an original scheme for the introduction of aminoalkylamine residues at positions 3, 5, and 7 of heliomycin and, using this, have prepared a series of novel water-soluble derivatives. The addition of side chains to the heliomycin scaffold significantly improves their interaction with different DNA secondary structures. One derivative, 7-deoxy-7-(2-aminoethyl)amino-10-O-methylheliomycin (8e), demonstrated affinity, stabilization potential, and good selectivity toward i-motif-forming DNA sequences over the duplex and G-quadruplex. Heliomycin derivatives therefore represent promising molecular scaffolds for further development as DNA-i-motif interacting ligands and potential chemotherapeutic agents.
Collapse
Affiliation(s)
- Alexander S Tikhomirov
- Laboratory of Chemical Transformation of Antibiotics, Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia
| | | | - Georgy Y Nadysev
- Laboratory of Chemical Transformation of Antibiotics, Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia
| | - George V Zatonsky
- Laboratory of Chemical Transformation of Antibiotics, Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia
| | - Eugene E Bykov
- Laboratory of Chemical Transformation of Antibiotics, Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia
| | - Pin Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Zoë A E Waller
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Andrey E Shchekotikhin
- Laboratory of Chemical Transformation of Antibiotics, Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia
| |
Collapse
|
6
|
Volodina YL, Tikhomirov AS, Dezhenkova LG, Ramonova AA, Kononova AV, Andreeva DV, Kaluzhny DN, Schols D, Moisenovich MM, Shchekotikhin AE, Shtil AA. Thiophene-2-carboxamide derivatives of anthraquinone: A new potent antitumor chemotype. Eur J Med Chem 2021; 221:113521. [PMID: 34082225 DOI: 10.1016/j.ejmech.2021.113521] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 02/01/2023]
Abstract
The anthraquinone scaffold has long been known as a source of efficacious antitumor drugs. In particular, the various chemical modifications of the side chains in this scaffold have yielded the compounds potent for the wild type tumor cells, their counterparts with molecular determinants of altered drug response, as well as in vivo settings. Further exploring the chemotype of anticancer heteroarene-fused anthraquinones, we herein demonstrate that derivative of anthra[2,3-b]thiophene-2-carboxamide, (compound 8) is highly potent against a panel of human tumor cell lines and their drug resistant variants. Treatment with submicromolar or low micromolar concentrations of 8 for only 30 min was sufficient to trigger lethal damage of K562 chronic myelogenous leukemia cells. Compound 8 (2.5 μM, 3-6 h) induced an apoptotic cell death as determined by concomitant activation of caspases 3 and 9, cleavage of poly(ADP-ribose) polymerase, increase of Annexin V/propidium iodide double stained cells, DNA fragmentation (subG1 fraction) and a decrease of mitochondrial membrane potential. Neither a significant interaction with double stranded DNA nor strong inhibition of the DNA dependent enzyme topoisomerase 1 by 8 were detectable in cell free systems. Laser scanning confocal microscopy revealed that some amount of 8 was detectable in mitochondria as early as 5 min after the addition to the cells; exposure for 1 h caused significant morphological changes and clustering of mitochondria. The bioisosteric analog 2 in which the thiophene ring was replaced with furan was less active although the patterns of cytotoxicity of both derivatives were similar. These results point at the specific role of the sulfur atom in the antitumor properties of carboxamide derivatives of heteroarene-fused anthraquinone.
Collapse
Affiliation(s)
- Yulia L Volodina
- Blokhin Cancer Center, 24 Kashirskoye Shosse, Moscow, 115478, Russia; Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | | | - Lyubov G Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Alla A Ramonova
- Faculty of Biology, Moscow State University, 1 Leninskie Gory, Moscow, Russia
| | - Anastasia V Kononova
- I.M. Sechenov First Moscow State Medical University, 2 B. Pirogovskaya Street Bld.4, Moscow, 119435, Russia
| | - Daria V Andreeva
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Dmitry N Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, 119991, Moscow, Russia
| | - Dominique Schols
- Rega Institute for Medical Research, K.U. Leuven, 3000, Leuven, Belgium
| | | | | | - Alexander A Shtil
- Blokhin Cancer Center, 24 Kashirskoye Shosse, Moscow, 115478, Russia; Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| |
Collapse
|
7
|
Shwetha B, Sudhanva MS, Jagadeesha GS, Thimmegowda NR, Hamse VK, Sridhar BT, Thimmaiah KN, Ananda Kumar CS, Shobith R, Rangappa KS. Furan-2-carboxamide derivative, a novel microtubule stabilizing agent induces mitotic arrest and potentiates apoptosis in cancer cells. Bioorg Chem 2021; 108:104586. [PMID: 33607574 DOI: 10.1016/j.bioorg.2020.104586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/12/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022]
Abstract
The vital role played by microtubules in the cell division process, marks them as a potential druggable target to decimate cancer. A novel furan-2-carboxamide based small molecule, is a selective microtubule stabilizing agent (MSA) with IC50 ranging from 4 µM to 8 µM in different cancer cell lines. Inhibition of tubulin polymerization or stabilization of tubulin polymers abrogates chromosomal segregation during cell division, results in cell cycle arrest and leads to cell death due to the delayed repair mechanism. A novel furan-2-carboxamide based small molecule exhibited potent anti-proliferative and anti-metastatic property In-Vitro against the panel of cancer cells. Annexin V-FITC/PI, double staining reveals potent cytotoxic effect of SH09 against HeLa cells. FACS analysis displays induction of G2/M arrest and accumulation of subG1 population of cells upon treatment with SH09. Molecular docking study unveils SH09 binding affinity to the Taxol binding pocket of tubulin proteins and MM-GBSA also confirms strong binding energies of SH09 with tubulin proteins.
Collapse
Affiliation(s)
- B Shwetha
- Department of Nanotechnology, CPGS, Visvesvaraya Technological University, Muddenahalli, Karnataka 562101, India
| | - M Srinivasa Sudhanva
- Adichunchanagiri Institute for Molecular Medicine, AIMS, Adichunchanagiri University, BG Nagara 571448, Karnataka 02, India; Faculty of Natural Sciences, Adichunchanagiri University, BG Nagara 571448, Karnataka, India
| | - G S Jagadeesha
- Department of Chemistry, Govt. S. K. S. J. Technological Institute (Affiliated to Visvesvaraya Technological University), K R Circle, Bangalore, Karnataka 560001, India
| | - N R Thimmegowda
- Department of Chemistry, Govt. S. K. S. J. Technological Institute (Affiliated to Visvesvaraya Technological University), K R Circle, Bangalore, Karnataka 560001, India
| | - Vivek K Hamse
- Faculty of Natural Sciences, Adichunchanagiri University, BG Nagara 571448, Karnataka, India
| | - B T Sridhar
- Department of Chemistry, Maharani's Science College for Women, Palace Road, Bangalore, Karnataka 560001, India
| | - K N Thimmaiah
- Division of Natural Science Northwest Mississippi Community College, University of Mississippi Campus, Desoto Centre, Southaven, MS 38671, USA
| | - C S Ananda Kumar
- Department of Nanotechnology, CPGS, Visvesvaraya Technological University, Muddenahalli, Karnataka 562101, India; Centre for Material Science, University of Mysore, Mysore, Karnataka 570006, India.
| | - Rangappa Shobith
- Adichunchanagiri Institute for Molecular Medicine, AIMS, Adichunchanagiri University, BG Nagara 571448, Karnataka 02, India.
| | - K S Rangappa
- Institution of Excellence, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India
| |
Collapse
|
8
|
The copper(II) complexes of new anthrahydrazone ligands: In vitro and in vivo antitumor activity and structure-activity relationship. J Inorg Biochem 2020; 212:111208. [DOI: 10.1016/j.jinorgbio.2020.111208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022]
|
9
|
A facile access to 2-substituted naphtho[2,3-g]quinoline-3-carboxylic acid esters via intramolecular cyclization and PyBOP-promoted functionalization. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Tikhomirov AS, Litvinova VA, Andreeva DV, Tsvetkov VB, Dezhenkova LG, Volodina YL, Kaluzhny DN, Treshalin ID, Schols D, Ramonova AA, Moisenovich MM, Shtil AA, Shchekotikhin AE. Amides of pyrrole- and thiophene-fused anthraquinone derivatives: A role of the heterocyclic core in antitumor properties. Eur J Med Chem 2020; 199:112294. [PMID: 32428792 DOI: 10.1016/j.ejmech.2020.112294] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/21/2022]
Abstract
Heteroarene-fused anthraquinone derivatives represent a class of perspective anticancer drug candidates capable of targeting multiple vital processes including drug resistance. Taking advantage of previously demonstrated potential of amide derivatives of heteroarene-fused anthraquinones, we herein dissected the role of the heterocyclic core in antitumor properties. A new series of naphtho[2,3-f]indole-3- and anthra[2,3-b]thiophene-3-carboxamides was synthesized via coupling the respective acids with cyclic diamines. New compounds demonstrated a submicromolar antiproliferative potency close to doxorubicin (Dox) against five tumor cell lines of various tissue origin. In contrast to Dox, the new compounds were similarly cytotoxic for HCT116 colon carcinoma cells (wild type p53) and their isogenic p53 knockout counterparts. Modification of the heterocyclic core changed the targeting properties: the best-in-series naphtho[2,3-f]indole-3-carboxamide 8 formed more affine complexes with DNA duplex than furan and thiophene analogs, a property that can be translated into a stronger inhibition of topoisomerase 1 mediated DNA unwinding. At tolerable doses the water soluble derivative 8 significantly inhibited tumor growth (up to 79%) and increased the lifespan (153%) of mice bearing P388 lymphoma transplants. Together with better solubility for parenteral administration and well tolerance by animals of the indole derivative 8 indicates prospects for further search of new antitumor drug candidates among the heteroarene-fused anthraquinones.
Collapse
Affiliation(s)
- Alexander S Tikhomirov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia; Mendeleyev University of Chemical Technology, 9 Miusskaya Square, Moscow, 125047, Russian Federation
| | - Valeria A Litvinova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Daria V Andreeva
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Vladimir B Tsvetkov
- Computational Oncology Group, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya, 119991, Moscow, Russia; Research and Clinical Center for Physical Chemical Medicine, 1A M. Pirogovskaya Street, Moscow, 119435, Russia
| | - Lyubov G Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Yulia L Volodina
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia; Blokhin National Medical Center of Oncology, 24 Kashirskoye Shosse, Moscow, 115478, Russia
| | - Dmitry N Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow, 119991, Russia
| | - Ivan D Treshalin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Dominique Schols
- Rega Institute for Medical Research, K.U. Leuven, 3000, Leuven, Belgium
| | - Alla A Ramonova
- Department of Biology, Moscow State University, 1 Leninskie Gory, Moscow, 119234, Russia
| | - Mikhail M Moisenovich
- Department of Biology, Moscow State University, 1 Leninskie Gory, Moscow, 119234, Russia
| | - Alexander A Shtil
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia; Blokhin National Medical Center of Oncology, 24 Kashirskoye Shosse, Moscow, 115478, Russia
| | | |
Collapse
|
11
|
Shchekotikhin AE, Treshalina HM, Treshchalin MI, Pereverzeva ER, Isakova HB, Tikhomirov AS. Experimental Evaluation of Anticancer Efficiency and Acute Toxicity of Anthrafuran for Oral Administration. Pharmaceuticals (Basel) 2020; 13:ph13050081. [PMID: 32353946 PMCID: PMC7281648 DOI: 10.3390/ph13050081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/21/2020] [Accepted: 04/26/2020] [Indexed: 12/26/2022] Open
Abstract
The new antitumor agent anthrafuran has demonstrated a consistent effect in murine tumor models when administered parenterally due to the simultaneous inhibition of multiple cellular targets such as topoisomerases I/II and protein kinases. In this study, we assessed the anticancer efficiency and acute toxicity of anthrafuran administered orally. The action of anthrafuran was studied on transplanted tumor models which included P388 leukemia, Ca755 mammary adenocarcinoma, LLC lung carcinoma, and T47D human breast cancer xenografts on Balb/c nude mice. A significant antitumor efficacy of oral anthrafuran was revealed for all tested tumor models as follows: T/Cmax = 219% for P388, TGImax = 91% for Ca755, TGImax = 84% with CRmax = 54% for LLC, and T/C = 38% for T47D. The optimal treatment schedule of orally administered anthrafuran was 70–100 mg/kg given daily for five days. The LD50 value of orally administered anthrafuran (306.7 mg/kg) in mice was six times higher than that for i.p. administration (52.5 mg/kg). The rates of antitumor efficacy and acute toxicity indicate the high potential for further research on anthrafuran as a new original oral anticancer multitarget agent with an expected satisfactory tolerability and bioavailability.
Collapse
Affiliation(s)
- Andrey E. Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia; (M.I.T.); (E.R.P.); (H.B.I.); (A.S.T.)
- Correspondence:
| | - Helen M. Treshalina
- Federal State Budgetary Institution «National Medical Research Center of Oncology of N.N.Blokhin», Ministry of Health of Russia, 24 Kashirskoye sh., Moscow 115548, Russia;
| | - Michael I. Treshchalin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia; (M.I.T.); (E.R.P.); (H.B.I.); (A.S.T.)
| | - Eleonora R. Pereverzeva
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia; (M.I.T.); (E.R.P.); (H.B.I.); (A.S.T.)
| | - Helen B. Isakova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia; (M.I.T.); (E.R.P.); (H.B.I.); (A.S.T.)
| | - Alexander S. Tikhomirov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia; (M.I.T.); (E.R.P.); (H.B.I.); (A.S.T.)
| |
Collapse
|
12
|
Roy S, Ali A, Kamra M, Muniyappa K, Bhattacharya S. Specific stabilization of promoter G-Quadruplex DNA by 2,6-disubstituted amidoanthracene-9,10-dione based dimeric distamycin analogues and their selective cancer cell cytotoxicity. Eur J Med Chem 2020; 195:112202. [PMID: 32302880 DOI: 10.1016/j.ejmech.2020.112202] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/19/2020] [Accepted: 03/01/2020] [Indexed: 10/24/2022]
Abstract
We have designed and synthesized anthraquinone containing compounds which have oligopyrrole side chains of varying lengths. These compounds stabilized the G-quadruplex DNA formed in the promoter regions of c-MYC oncogenes selectively over the duplex DNA. These observations were recorded using UV-vis spectroscopic titrations, fluorescence measurements and circular dichroism (CD) spectral titrations. The potency of the compounds to stabilize the G4 DNA has been shown from the thermal denaturation experiments. The compound interacts with c-MYC G-quadruplex DNA through stacking mode as obtained from ethidium bromide displacement assay, cyclic voltammetric titration, and docking experiments. Molecular modeling studies suggested that the stacking of the anthraquinone moiety over the G-tetrad of the G4 structures are responsible for the stability of such quadruplex secondary structure. Furthermore, polymerase stop assay also supported the formation of stable G4 structures in the presence of the above-mentioned compounds. The compounds have shown selective cancer cell (HeLa and HEK293T) cytotoxicity over normal cells (NIH3T3 and HDFa) under in vitro conditions as determined from MTT based cell viability assay. Apoptosis was found to be the mechanistic pathway underlying the cancer cell cytotoxicity as obtained from Annexin V-FITC and PI dual staining assay which was further substantiated by nuclear morphological changes as observed by AO/EB dual staining assay. Cellular morphological changes, as well as nuclear condensation and fragmentation upon treatment with these compounds, were observed under bright field and confocal microscopy.
Collapse
Affiliation(s)
- Soma Roy
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Asfa Ali
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Mohini Kamra
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India; School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India.
| |
Collapse
|
13
|
Farcas M, Gavrea AA, Gulei D, Ionescu C, Irimie A, Catana CS, Berindan-Neagoe I. SIRT1 in the Development and Treatment of Hepatocellular Carcinoma. Front Nutr 2019; 6:148. [PMID: 31608282 PMCID: PMC6773871 DOI: 10.3389/fnut.2019.00148] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/27/2019] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. Current treatment options for inoperable HCCs have decreased therapeutic efficacy and are associated with systemic toxicity and chemoresistance. Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide–dependent enzyme that is frequently overexpressed in HCC, where it promotes tumorigenicity, metastasis, and chemoresistance. SIRT1 also maintains the tumorigenic and self-renewal proprieties of liver cancer stem cells. Multiple tumor-suppressive microRNAs (miRNAs) are downregulated in HCC and, as a consequence, permit SIRT1-induced tumorigenicity. However, either directly targeting SIRT1, combining conventional chemotherapy with SIRT1 inhibitors, or upregulating tumor-suppressive miRNAs may improve therapeutic efficacy and patient outcomes. Here, we present the interaction between SIRT1, miRNAs, and liver cancer stem cells and discuss the consequences of their interplay for the development and treatment of HCC.
Collapse
Affiliation(s)
- Marius Farcas
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei-Alexandru Gavrea
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Calin Ionescu
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,5th Surgical Department, Municipal Hospital, Cluj-Napoca, Romania
| | - Alexandru Irimie
- 11th Department of Oncological Surgery and Gynecological Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania.,Department of Surgery, The Oncology Institute "Prof. Dr. Ion Chiricuţǎ", Cluj-Napoca, Romania
| | - Cristina S Catana
- Department of Medical Biochemistry, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof Dr. Ion Chiricuţǎ", Cluj-Napoca, Romania
| |
Collapse
|
14
|
Litvinova VA, Tikhomirov AS. Methods for the synthesis of benzofuran-3-carboxylate esters (microreview). Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02520-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Yurkov DI, Syromukov SV, Tatarskiy VV, Ivanova ES, Khamidullina AI, Yastrebova MA, Sysoev VI, Dobrov RV, Belousov AV, Morozov VN, Kolyvanova MA, Krusanov GA, Zverev VI, Shtil AA. A Unique Prototypic Device for Radiation Therapy: The p53-Independent Antiproliferative Effect of Neutron Radiation. Acta Naturae 2019; 11:99-102. [PMID: 31720022 PMCID: PMC6826147 DOI: 10.32607/20758251-2019-11-3-99-102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Radiation therapy with heavy particles including neutrons, an otherwise
therapeutically perspective because of its high tissue penetration and
efficient tumor damage, is currently limited by the lack of adequate equipment.
An NG-24 generator (140 kg, 42 × 110 cm, ~1011 particles/s, > 14 MeV)
has been designed and engineered to replace the huge and environmentally
harmful neutron reactors, cyclotrons, and accelerators with a compact,
portable, safe, and potent source of high-energy neutrons. We demonstrate that
the neutron beam produced by NG-24 causes a significant antiproliferative
effect on human tumor cell lines regardless of the status of the anti-apoptotic
p53 protein. Phosphorylation of histone 2A and increased amounts of p21, cyclin
D, and phospho-p53 were detectable in HCT116 colon carcinoma cells (wild-type
p53) irradiated with 4 Gy several days post-treatment, accompanied by G2/M
phase arrest. These treatments dramatically reduced the ability of single cells
to form colonies. In the HCT116p53KO subline (p53 -/-), the G2/M arrest was
independent of the aforementioned mechanisms. Hence, the NG-24 generator is a
source of a powerful, therapeutically relevant neutron flux that triggers a
p53-independent antiproliferative response in tumor cells.
Collapse
Affiliation(s)
- D. I. Yurkov
- N.L. Dukhov All-Russia Research Institute of Automatics, Sushchevskaya Str. 22, Moscow, 127055 , Russia
| | - S. V. Syromukov
- N.L. Dukhov All-Russia Research Institute of Automatics, Sushchevskaya Str. 22, Moscow, 127055 , Russia
| | - V. V. Tatarskiy
- Blokhin National Medical Center of Oncology, Kashirskoye Sh. 24, Moscow, 115478, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova Str. 34/5, Moscow, 119334, Russia
| | - E. S. Ivanova
- Blokhin National Medical Center of Oncology, Kashirskoye Sh. 24, Moscow, 115478, Russia
| | - A. I. Khamidullina
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova Str. 34/5, Moscow, 119334, Russia
| | - M. A. Yastrebova
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova Str. 34/5, Moscow, 119334, Russia
| | - V. I. Sysoev
- N.L. Dukhov All-Russia Research Institute of Automatics, Sushchevskaya Str. 22, Moscow, 127055 , Russia
| | - R. V. Dobrov
- N.L. Dukhov All-Russia Research Institute of Automatics, Sushchevskaya Str. 22, Moscow, 127055 , Russia
| | - A. V. Belousov
- A.I. Burnasyan Federal Medical Biophysical Center, Marshala Novikova Str. 23, Moscow, 123098, Russia
- Moscow State University, Department of Physics, Leninskie Gory Str. 1, bldg. 2, Moscow, 119234 , Russia
| | - V. N. Morozov
- N.L. Dukhov All-Russia Research Institute of Automatics, Sushchevskaya Str. 22, Moscow, 127055 , Russia
- A.I. Burnasyan Federal Medical Biophysical Center, Marshala Novikova Str. 23, Moscow, 123098, Russia
| | - M. A. Kolyvanova
- A.I. Burnasyan Federal Medical Biophysical Center, Marshala Novikova Str. 23, Moscow, 123098, Russia
| | - G. A. Krusanov
- A.I. Burnasyan Federal Medical Biophysical Center, Marshala Novikova Str. 23, Moscow, 123098, Russia
- D.V. Skobeltsyn Institute of Nuclear Physics at Moscow State University, Leninskie Gory Str. 1, bldg. 2, Moscow, 119234, Russia
| | - V. I. Zverev
- N.L. Dukhov All-Russia Research Institute of Automatics, Sushchevskaya Str. 22, Moscow, 127055 , Russia
| | - A. A. Shtil
- Blokhin National Medical Center of Oncology, Kashirskoye Sh. 24, Moscow, 115478, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova Str. 34/5, Moscow, 119334, Russia
| |
Collapse
|
16
|
Shao D, Zhang GN, Niu W, Li Z, Zhu M, Wang J, Li D, Wang Y. Design, Synthesis, and Cytotoxic Activity of 3-Aryl-N-hydroxy-2-(sulfonamido)propanamides in HepG2, HT-1080, KB, and MCF-7 Cells. Chem Biodivers 2019; 16:e1800646. [PMID: 30706997 DOI: 10.1002/cbdv.201800646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/01/2019] [Indexed: 01/12/2023]
Abstract
A new series of (sulfonamido)propanamides (6a1-6a13, 6b1-6b15, 7c1-7c5, 6d1-6d5, 6e1-6e6) was designed and synthesized. All the synthesized compounds were characterized by NMR and mass spectrometry. The target compounds were evaluated for their in vitro cytotoxic activity against hepatocellular carcinoma (HepG2), fibrosarcoma (HT-1080), mouth epidermal carcinoma (KB), and breast adenocarcinoma (MCF-7) cell lines with the sulforhodamine B (SRB) assay, with gemcitabine and mitomycin C as positive controls. Most of these compounds exhibit a more potent cytotoxic effect than the positive control group on various cancer cell lines and the most potent compound, 6a7, shows the IC50 values of 29.78±0.516 μm, 30.70±0.61 μm, and 64.89±3.09 μm in HepG2, HT-1080, KB, and MCF-7 cell lines, respectively. Thus, these compounds with potent cytotoxic activity have potential for development as new chemotherapy agents.
Collapse
Affiliation(s)
- Duanyang Shao
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121001, P. R. China
| | - Guo-Ning Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, P. R. China
| | - Weixiao Niu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, P. R. China
| | - Ziqiang Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, P. R. China
| | - Mei Zhu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, P. R. China
| | - Juxian Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, P. R. China
| | - Donghui Li
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121001, P. R. China
| | - Yucheng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, P. R. China
| |
Collapse
|
17
|
Lin CY, Islam A, Su CJ, Tikhomirov AS, Shchekotikhin AE, Chuang SM, Chueh PJ, Chen YL. Engagement with tNOX (ENOX2) to Inhibit SIRT1 and Activate p53-Dependent and -Independent Apoptotic Pathways by Novel 4,11-Diaminoanthra[2,3- b]furan-5,10-diones in Hepatocellular Carcinoma Cells. Cancers (Basel) 2019; 11:cancers11030420. [PMID: 30909652 PMCID: PMC6468551 DOI: 10.3390/cancers11030420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/13/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary malignancy of the liver and is among the top three causes of cancer-associated death worldwide. However, the clinical use of chemotherapy for HCC has been limited by various challenges, emphasizing the urgent need for novel agents with improved anticancer properties. We recently synthesized and characterized a series of 4,11-diaminoanthra[2,3-b]furan-5,10-dione derivatives that exhibit potent apoptotic activity against an array of cancer cell lines, including variants with multidrug resistance. Their effect on liver cancer cells, however, was unknown. Here, we investigated three selected 4,11-diaminoanthra[2,3-b]furan-5,10-dione derivatives (compounds 1–3) for their cytotoxicity and the underlying molecular mechanisms in wild-type or p53-deficient HCC cells. Cytotoxicity was determined by WST-1 assays and cell impedance measurements and apoptosis was analyzed by flow cytometry. The interaction between compounds and tumor-associated NADH oxidase (tNOX, ENOX2) was studied by cellular thermal shift assay (CETSA). We found that compound 1 and 2 induced significant cytotoxicity in both HepG2 and Hep3B lines. CETSA revealed that compounds 1 and 2 directly engaged with tNOX, leading to a decrease in the cellular NAD+/NADH ratio. This decreased the NAD+-dependent activity of Sirtuin 1 (SIRT1) deacetylase. In p53-wild-type HepG2 cells, p53 acetylation/activation was enhanced, possibly due to the reduction in SIRT1 activity, and apoptosis was observed. In p53-deficient Hep3B cells, the reduction in SIRT1 activity increased the acetylation of c-Myc, thereby reactivating the TRAIL pathway and, ultimately leading to apoptosis. These compounds thus trigger apoptosis in both cell types, but via different pathways. Taken together, our data show that derivatives 1 and 2 of 4,11-diaminoanthra[2,3-b]furan-5,10-diones engage with tNOX and inhibit its oxidase activity. This results in cytotoxicity via apoptosis through tNOX-SIRT1 axis to enhance the acetylation of p53 or c-Myc in HCC cells, depending on their p53 status.
Collapse
Affiliation(s)
- Chia-Yang Lin
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Atikul Islam
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Claire J Su
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
- Morrison Academy in Taichung, 216 Si Ping Road, Taichung 40679, Taiwan.
| | - Alexander S Tikhomirov
- Gause Institute of New Antibiotics, 11B. Pirogovskaya Street, Moscow 119021, Russia.
- Department of Organic Chemistry, Mendeleyev University of Chemical Technology, 9 Miusskaya Square, Moscow 125047, Russia.
| | - Andrey E Shchekotikhin
- Gause Institute of New Antibiotics, 11B. Pirogovskaya Street, Moscow 119021, Russia.
- Department of Organic Chemistry, Mendeleyev University of Chemical Technology, 9 Miusskaya Square, Moscow 125047, Russia.
| | - Show-Mei Chuang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Pin Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
- Graduate Institute of Basic Medicine, China Medical University, Taichung 40402, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan.
| | - Yao Li Chen
- tian Hospital, Changhua 50008, Taiwan.
- School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
18
|
Volodina YL, Dezhenkova LG, Tikhomirov AS, Tatarskiy VV, Kaluzhny DN, Moisenovich AM, Moisenovich MM, Isagulieva AK, Shtil AA, Tsvetkov VB, Shchekotikhin AE. New anthra[2,3-b]furancarboxamides: A role of positioning of the carboxamide moiety in antitumor properties. Eur J Med Chem 2019; 165:31-45. [DOI: 10.1016/j.ejmech.2018.12.068] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/09/2018] [Accepted: 12/25/2018] [Indexed: 01/10/2023]
|
19
|
Sha Q, Liu H, Li Y. Trifluoroacetic Acid Catalyzed Cascade Reactions of 2,3‐Diketoesters with Cyclohexane‐1,3‐diones: Strategy Towards 4‐Hydroxybenzofuran Derivatives. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Qiang Sha
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Haixuan Liu
- Sanhome R&D CentreNanjing Sanhome Pharmaceutical Co., Ltd. Nanjing 211135 People's Republic of China
| | - Yuan Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| |
Collapse
|
20
|
Heterocyclic analogs of 5,12-naphthacenequinone 15*. Synthesis of new anthra[2,3-b]thiophene-3(2)-carboxylic acids. Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2316-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|