1
|
Saxena A, Majee S, Ray D, Saha B. Inhibition of cancer cells by Quinoline-Based compounds: A review with mechanistic insights. Bioorg Med Chem 2024; 103:117681. [PMID: 38492541 DOI: 10.1016/j.bmc.2024.117681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
This article includes a thorough examination of the inhibitory potential of quinoline-based drugs on cancer cells, as well as an explanation of their modes of action. Quinoline derivatives, due to their various chemical structures and biological activity, have emerged as interesting candidates in the search for new anticancer drugs. The review paper delves into the numerous effects of quinoline-based chemicals in cancer progression, including apoptosis induction, cell cycle modification, and interference with tumor-growth signaling pathways. Mechanistic insights on quinoline derivative interactions with biological targets enlightens their therapeutic potential. However, obstacles such as poor bioavailability, possible off-target effects, and resistance mechanisms make it difficult to get these molecules from benchside to bedside. Addressing these difficulties might be critical for realizing the full therapeutic potential of quinoline-based drugs in cancer treatment.
Collapse
Affiliation(s)
- Anjali Saxena
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh
| | - Suman Majee
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh; Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh
| | - Devalina Ray
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh; Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh
| | - Biswajit Saha
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh.
| |
Collapse
|
2
|
Hu HC, Wang ZP, Liang L, Du XY, Li T, Feng J, Xiao TT, Jin ZM, Ding SY, Liu Q, Lu LQ, Xiao WJ, Wang W. Bottom-Up Construction of Ni(II)-Incorporated Covalent Organic Framework for Metallaphotoredox Catalysis. Chemistry 2024; 30:e202303476. [PMID: 38065837 DOI: 10.1002/chem.202303476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Indexed: 12/30/2023]
Abstract
The construction of an all-in-one catalyst, in which the photosensitizer and the transition metal site are close to each other, is important for improving the efficiency of metallaphotoredox catalysis. However, the development of convenient synthetic strategies for the precise construction of an all-in-one catalyst remains a challenging task due to the requirement of precise installation of the catalytic sites. Herein, we have successfully established a facile bottom-up strategy for the direct synthesis of Ni(II)-incorporated covalent organic framework (COF), named LZU-713@Ni, as a versatile all-in-one metallaphotoredox catalyst. LZU-713@Ni showed excellent activity and recyclability in the photoredox/nickel-catalyzed C-O, C-S, and C-P cross-coupling reactions. Notably, this catalyst displayed a better catalytic activity than its homogeneous analogues, physically mixed dual catalyst system, and, especially, LZU-713/Ni which was prepared through post-synthetic modification. The improved catalytic efficiency of LZU-713@Ni should be attributed to the implementation of bottom-up strategy, which incorporated the fixed, ordered, and abundant catalytic sites into its framework. This work sheds new light on the exploration of concise and effective strategies for the construction of multifunctional COF-based photocatalysts.
Collapse
Affiliation(s)
- Hai-Chao Hu
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Zhi-Peng Wang
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Lin Liang
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Xin-Yu Du
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Ting Li
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Jie Feng
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Tian-Tian Xiao
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Ze-Ming Jin
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - San-Yuan Ding
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Qiang Liu
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Liang-Qiu Lu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Wen-Jing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Wei Wang
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| |
Collapse
|
3
|
Wu G, Zhong H, Wang Y, Chen L, Sun J. Development of novel quinoline-NO donor hybrids inducing human breast cancer cells apoptosis via inhibition of topoisomerase I. Bioorg Med Chem 2023; 96:117530. [PMID: 37956506 DOI: 10.1016/j.bmc.2023.117530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
A number of NO-releasing quinoline derivatives have been designed and synthesized by introducing NO donor to quinoline carboxylic acid fragment. The anti-proliferation of all target compounds was evaluated against human cancer cell lines (HCT-116, MCF-7, and A549), MCF-7/ADR and normal cell (MCF-10A). Most compounds showed cytotoxic activity on cancer cells and drug-resistant cells with IC50 values in the range of 0.62-5.51 μM. Importantly, these compounds showed low toxicity to normal cells (4.21-34.08 μM). Further mechanism studies showed that the most potent compound 9 could release high concentration of NO and inhibit the activity of topoisomerase I. In addition, 9 regulated apoptosis-related proteins, generated ROS and blocked MCF-7 cells in G2/M phase to induce cell apoptosis. Furthermore, the P-gp-mediated transport was also influenced by 9. And 9 could significantly inhibit the growth of tumor in vivo without observable organ-related toxicities. Overall, as a novel NO-releasing quinoline derivative, 9 was worthy for further in-depth study.
Collapse
Affiliation(s)
- Guiying Wu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Hui Zhong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Ying Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Li Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| | - Jianbo Sun
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
4
|
Keller JG, Petersen KV, Mizielinski K, Thiesen C, Bjergbæk L, Reguera RM, Pérez-Pertejo Y, Balaña-Fouce R, Trejo A, Masdeu C, Alonso C, Knudsen BR, Tesauro C. Gel-Free Tools for Quick and Simple Screening of Anti-Topoisomerase 1 Compounds. Pharmaceuticals (Basel) 2023; 16:ph16050657. [PMID: 37242440 DOI: 10.3390/ph16050657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
With the increasing need for effective compounds against cancer or pathogen-borne diseases, the development of new tools to investigate the enzymatic activity of biomarkers is necessary. Among these biomarkers are DNA topoisomerases, which are key enzymes that modify DNA and regulate DNA topology during cellular processes. Over the years, libraries of natural and synthetic small-molecule compounds have been extensively investigated as potential anti-cancer, anti-bacterial, or anti-parasitic drugs targeting topoisomerases. However, the current tools for measuring the potential inhibition of topoisomerase activity are time consuming and not easily adaptable outside specialized laboratories. Here, we present rolling circle amplification-based methods that provide fast and easy readouts for screening of compounds against type 1 topoisomerases. Specific assays for the investigation of the potential inhibition of eukaryotic, viral, or bacterial type 1 topoisomerase activity were developed, using human topoisomerase 1, Leishmania donovani topoisomerase 1, monkeypox virus topoisomerase 1, and Mycobacterium smegmatis topoisomerase 1 as model enzymes. The presented tools proved to be sensitive and directly quantitative, paving the way for new diagnostic and drug screening protocols in research and clinical settings.
Collapse
Affiliation(s)
| | | | | | - Celine Thiesen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Lotte Bjergbæk
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Rosa M Reguera
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
| | - Yolanda Pérez-Pertejo
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
| | - Rafael Balaña-Fouce
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
| | - Angela Trejo
- Department of Organic Chemistry, Faculty of Pharmacy, University of Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Carme Masdeu
- Department of Organic Chemistry, Faculty of Pharmacy, University of Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Concepcion Alonso
- Department of Organic Chemistry, Faculty of Pharmacy, University of Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Birgitta R Knudsen
- VPCIR Biosciences ApS, 8000 Aarhus C, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | | |
Collapse
|
5
|
Bangaru M, Kumar Nukala S, Kannekanti PK, Sirassu N, Manchal R, Swamy Thirukovela N. Synthesis of Quinoline‐Thiazolidine‐2,4‐dione Coupled Pyrazoles as in vitro EGFR Targeting Anti‐Breast Cancer Agents and Their in silico Studies. ChemistrySelect 2023. [DOI: 10.1002/slct.202204414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
6
|
Lahyaoui M, El-Idrissi H, Saffaj T, Ihssane B, Saffaj N, Mamouni R, Kandri Rodi Y. QSAR modeling, molecular docking and Molecular Dynamic Simulation of phosphorus-substituted quinoline derivatives as topoisomerase I inhibitors. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
|
7
|
Lamba S, Roy A. Demystifying the potential of inhibitors targeting DNA topoisomerases in unicellular protozoan parasites. Drug Discov Today 2023; 28:103574. [PMID: 37003515 DOI: 10.1016/j.drudis.2023.103574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/09/2023] [Accepted: 03/25/2023] [Indexed: 04/01/2023]
Abstract
DNA topoisomerases are a group of enzymes omnipresent in all organisms. They maintain the DNA topology during replication, repair, recombination, and transcription. However, the structure of topoisomerase in protozoan parasites differs significantly from that of human topoisomerases; thus, this enzyme acts as a crucial target in drug development against parasitic diseases. Although the therapeutic potential of drugs targeting the parasitic topoisomerase is well known, to manage the shortcomings of currently available therapeutics and the emergence of drug resistance, the discovery of novel antiparasitic molecules is an urgent need. In this review, we describe various investigational and repurposed topoisomerase inhibitors developed against protozoan parasites over the past few years. Teaser: Fatal parasitic diseases are an increasing cause for concern; here, we provide a compilation of different inhibitors targeting DNA topoisomerases, enzymes that are essential for, and unique to, protozoan parasites; therefore, inhibitors are efficient and have few adverse effects.
Collapse
Affiliation(s)
- Swati Lamba
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India
| | - Amit Roy
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India.
| |
Collapse
|
8
|
Thakur D, Aggarwal T, Muskan, Sushmita, Verma AK. Unveiling the Three-Component Phosphonylation on Alkynylaldehydes: Toolbox toward Fluorescent Molecules. J Org Chem 2023; 88:2474-2486. [PMID: 36715609 DOI: 10.1021/acs.joc.2c02915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A regioselective tandem approach for annulated napthyridines/isoquinolines embedded with the phosphine oxide group under mild reaction conditions has been achieved in good to excellent yields. The designed strategy involves the triflate-induced formation of new C sp3-P and C sp2-N bond formation in one pot. This protocol was also well tolerated for the construction of densely functionalized organo-phosphorylated chromenes in good yields. Further, phosphino-derived sulfamethazine and sulfamethoxazole drugs were also successfully synthesized in good yields. The mechanistic studies revealed that the ionic pathway and the formation of regioselective 6-endo dig cyclized products were confirmed through X-ray crystallographic studies. Interestingly, photophysical studies of selectivity selected compounds revealed their stimulating fluorescence properties.
Collapse
Affiliation(s)
- Deepika Thakur
- Department of Chemistry, University of Delhi, Delhi110007, India
| | - Trapti Aggarwal
- Department of Chemistry, University of Delhi, Delhi110007, India
| | - Muskan
- Department of Chemistry, University of Delhi, Delhi110007, India
| | - Sushmita
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sec-3, Delhi110078, India
| | - Akhilesh K Verma
- Department of Chemistry, University of Delhi, Delhi110007, India
| |
Collapse
|
9
|
Trejo A, Masdeu C, Serrano-Pérez I, Pedrola M, Juanola N, Ghashghaei O, Jiménez-Galisteo G, Lavilla R, Palacios F, Alonso C, Viñas M. Efficient AntiMycolata Agents by Increasing the Lipophilicity of Known Antibiotics through Multicomponent Reactions. Antibiotics (Basel) 2023; 12:83. [PMID: 36671284 PMCID: PMC9854905 DOI: 10.3390/antibiotics12010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
New antibiotic agents were prepared using Povarov and Ugi multicomponent reactions upon the known drugs sulfadoxine and dapsone. The prepared derivatives, with increased lipophilicity, showed improved efficiency against Mycolata bacteria. Microbiological guidance for medicinal chemistry is a powerful tool to design new and effective antimicrobials. In this case, the readily synthesized compounds open new possibilities in the search for antimicrobials active on mycolic acid-containing bacteria.
Collapse
Affiliation(s)
- Angela Trejo
- Departamento de Química Orgánica I, Facultad de Farmacia, Universidad del País Vasco/Euskal Herriko, Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Carme Masdeu
- Departamento de Química Orgánica I, Facultad de Farmacia, Universidad del País Vasco/Euskal Herriko, Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Irene Serrano-Pérez
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Medical School, University of Barcelona and IDIBELL, Feixa Llarga, s/n, 08907 Hospitalet de Llobregat, Spain
| | - Marina Pedrola
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Av. de Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Narcís Juanola
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Av. de Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Ouldouz Ghashghaei
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Av. de Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Guadalupe Jiménez-Galisteo
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Medical School, University of Barcelona and IDIBELL, Feixa Llarga, s/n, 08907 Hospitalet de Llobregat, Spain
| | - Rodolfo Lavilla
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Av. de Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Francisco Palacios
- Departamento de Química Orgánica I, Facultad de Farmacia, Universidad del País Vasco/Euskal Herriko, Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Concepción Alonso
- Departamento de Química Orgánica I, Facultad de Farmacia, Universidad del País Vasco/Euskal Herriko, Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Miguel Viñas
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Medical School, University of Barcelona and IDIBELL, Feixa Llarga, s/n, 08907 Hospitalet de Llobregat, Spain
| |
Collapse
|
10
|
Pradhan V, Salahuddin, Kumar R, Mazumder A, Abdullah MM, Shahar Yar M, Ahsan MJ, Ullah Z. Molecular Target Interactions of Quinoline Derivatives as Anticancer Agents: A Review. Chem Biol Drug Des 2022; 101:977-997. [PMID: 36533867 DOI: 10.1111/cbdd.14196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/23/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
One of the leading causes of death worldwide is cancer, which poses substantial risks to both society and an individual's life. Cancer therapy is still challenging, despite developments in the field and continued research into cancer prevention. The search for novel anticancer active agents with a broader cytotoxicity range is therefore continuously ongoing. The benzene ring gets fused to a pyridine ring at two carbon atoms close to one another to form the double ring structure of the heterocyclic aromatic nitrogen molecule known as quinoline (1-azanaphthalene). Quinoline derivatives contain a wide range of pharmacological activities, including antitubercular, antifungal, antibacterial, and antimalarial properties. Quinoline derivatives have also been shown to have anticancer properties. There are many quinoline derivatives widely available as anticancer drugs that act via a variety of mechanisms on various molecular targets, such as inhibition of topoisomerase, inhibition of tyrosine kinases, inhibition of heat shock protein 90 (Hsp90), inhibition of histone deacetylases (HDACs), inhibition of cell cycle arrest and apoptosis, and inhibition of tubulin polymerization.
Collapse
Affiliation(s)
- Vikas Pradhan
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida
| | - Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida
| | - Rajnish Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida
| | - Avijit Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida
| | | | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, New Delhi
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur, Rajasthan, India
| | - Zabih Ullah
- Department of Pharmaceutical Sciences, College of Dentistry and Pharmacy, Buraydah Colleges, Al-Qassim, Saudi Arabia
| |
Collapse
|
11
|
Ilakiyalakshmi M, Arumugam Napoleon A. Review on recent development of quinoline for anticancer activities. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
12
|
Jiménez-Aberásturi X, Palacios F, de Los Santos JM. Sc(OTf) 3-Mediated [4 + 2] Annulations of N-Carbonyl Aryldiazenes with Cyclopentadiene to Construct Cinnoline Derivatives: Azo-Povarov Reaction. J Org Chem 2022; 87:11583-11592. [PMID: 35972474 PMCID: PMC9447289 DOI: 10.1021/acs.joc.2c01224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We disclose the first accomplishment of the azo-Povarov reaction involving Sc(OTf)3-catalyzed [4 + 2] annulations of N-carbonyl aryldiazenes with cyclopentadiene in chloroform, in which N-carbonyl aryldiazenes act as 4π-electron donors. Hence, this protocol offers a rapid access to an array of cinnoline derivatives in moderate to good yields for substrates over a wide scope. The synthetic potential of the protocol was achieved by the gram-scale reaction and further derivatization of the obtained polycyclic product.
Collapse
Affiliation(s)
- Xabier Jiménez-Aberásturi
- Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria 01006, Spain
| | - Francisco Palacios
- Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria 01006, Spain
| | - Jesús M de Los Santos
- Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria 01006, Spain
| |
Collapse
|
13
|
Design, synthesis and biological evaluation of 3-arylisoquinoline derivatives as topoisomerase I and II dual inhibitors for the therapy of liver cancer. Eur J Med Chem 2022; 237:114376. [DOI: 10.1016/j.ejmech.2022.114376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 11/21/2022]
|
14
|
Abstract
A 2,4-diarylquinoline derivative, 2-(4-chlorophenyl)-4-(3,4-dimethoxyphenyl)-6-methoxy-3-methylquinoline, was synthesized in a conventional two-step procedure from p-anisidine, p-chlorobenzaldehyde and methyl isoeugenol as available starting reagents through a sequence of BF3·OEt2-catalyzed Povarov cycloaddition reaction/oxidative dehydrogenation aromatization processes under microwave irradiation conditions in the presence of a green oxidative I2-DMSO system. The structure of the compound was fully characterized by FT-IR, 1H and 13C-NMR, ESI-MS, and elemental analysis. Its physicochemical parameters (Lipinski’s descriptors) were also calculated using the Molinspiration Cheminformatics software. The diarylquinoline molecule obtained is an interesting model with increased lipophilicity and thus permeability, an important descriptor for quinoline-based drug design. Such types of derivatives are known for their anticancer, antitubercular, antifungal, and antiviral activities.
Collapse
|
15
|
Govindarao K, Srinivasan N, Suresh R, Raheja R, Annadurai S, Bhandare RR, Shaik AB. Quinoline conjugated 2-azetidinone derivatives as prospective anti-breast cancer agents: In vitro antiproliferative and anti-EGFR activities, molecular docking and in-silico drug likeliness studies. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Martín-Encinas E, Selas A, Palacios F, Alonso C. The design and discovery of topoisomerase I inhibitors as anticancer therapies. Expert Opin Drug Discov 2022; 17:581-601. [PMID: 35321631 DOI: 10.1080/17460441.2022.2055545] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Cancer has been identified as one of the leading causes of death worldwide. The biological target of some anticancer agents is topoisomerase I, an enzyme involved in the relaxation of supercoiled DNA. The synthesis of new compounds with antiproliferative effect and behaving as topoisomerase I inhibitors has become an active field of research. Depending on their mechanism of inhibition, they can be classified as catalytic inhibitors or poisons. AREAS COVERED This review article summarizes the state of the art for the development of selective topoisomerase I inhibitors. Collected compounds showed inhibition of the enzyme, highlighting those approved for clinical use, the combination therapies developed, as well as related drawbacks and future focus. EXPERT OPINION Research related to topoisomerase I inhibitors in cancer therapy started with camptothecin (CPT). This compound was first selected as a good anticancer agent and then topoisomerase I was identified as its therapeutic target. Derivatives of CPT irinotecan, topotecan, and belotecan are the only clinically approved inhibitors. Currently, their limitations are being addressed by different stretegies. Future studies should focus not only on developing other active molecules but also on improving the bioavailability and pharmacokinetics of potent synthetic derivatives.
Collapse
Affiliation(s)
- Endika Martín-Encinas
- Departamento de Química Orgánica I - Centro de Investigación Lascaray, Facultad de Farmacia, Universidad del País Vasco, Paseo de la Universidad 7, 01006 Vitoria, Spain
| | - Asier Selas
- Departamento de Química Orgánica I - Centro de Investigación Lascaray, Facultad de Farmacia, Universidad del País Vasco, Paseo de la Universidad 7, 01006 Vitoria, Spain
| | - Francisco Palacios
- Departamento de Química Orgánica I - Centro de Investigación Lascaray, Facultad de Farmacia, Universidad del País Vasco, Paseo de la Universidad 7, 01006 Vitoria, Spain
| | - Concepción Alonso
- Departamento de Química Orgánica I - Centro de Investigación Lascaray, Facultad de Farmacia, Universidad del País Vasco, Paseo de la Universidad 7, 01006 Vitoria, Spain
| |
Collapse
|
17
|
Clerigué J, Ramos MT, Menéndez JC. Enantioselective catalytic Povarov reactions. Org Biomol Chem 2022; 20:1550-1581. [PMID: 34994760 DOI: 10.1039/d1ob02270a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic asymmetric Povarov protocols have undergone an explosive growth, especially in the last ten years, since the first example was published in 1996. The use of chiral Lewis and Brønsted acids and dual strategies based on their combination with catalysts acting by hydrogen bond formation, as well as covalent aminocatalysis, are reviewed. More recent variations such as the nitroso Povarov reaction and interrupted Povarov reactions as a route to chiral scaffolds other than tetrahydroquinolines are also discussed.
Collapse
Affiliation(s)
- José Clerigué
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain.
| | - M Teresa Ramos
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain.
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain.
| |
Collapse
|
18
|
Deng X, Luo T, Li Z, Wen H, Zhang H, Yang X, Lei F, Liu D, Shi T, Zhao Q, Wang Z. Design, synthesis and anti-hepatocellular carcinoma activity of 3-arylisoquinoline alkaloids. Eur J Med Chem 2022; 228:113985. [PMID: 34802836 DOI: 10.1016/j.ejmech.2021.113985] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 02/08/2023]
Abstract
This article describes the syntheses and biological activity of five 3-arylisoquinoline natural products corydamine (1), N-formyl Corydamine (2), hypecumine (3), Decumbenine B (XW) and 2-(1,3-dioxolo [4,5-h]isoquinolin-7-yl)-4,5-dimethoxy-N-methyl-Benzeneethanamine (A), and twelve analogues. Among them, 1, 2, and A were synthesized for the first time. In vitro screening for anti-proliferative activity showed that derivative 1a could significantly inhibit the proliferation of HCC cells (IC50 = 9.82 μM on Huh7 cells and 6.83 μM on LM9 cells), and arrest cell cycle at G2/M phase. The mechanistic studies further suggested compound 1a was a dual inhibitor of Topo I and Topo II, and Topo II inhibitory activity was superior to etoposide. In addition, 1a could significantly inhibit the invasion and migration of cancer cells by inhibiting the expression of MMP-9, and induce apoptosis through inhibiting the activation of the PI3K/Akt/mTOR signaling pathway. Moreover, in vivo studies demonstrated 1a could obviously reduce the growth of xenograft tumor and possessed good pharmacokinetic parameters, which indicated the potential value of 1a in treating liver cancer.
Collapse
Affiliation(s)
- Xuemei Deng
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Tian Luo
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Zhao Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Huaixiu Wen
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Xining, 810008, PR China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Fang Lei
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Dan Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Tao Shi
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Quanyi Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Zhen Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
19
|
Hosseini A, Motavalizadehkakhky A, Ghobadi N, Gholamzadeh P. Aza-Diels-Alder reactions in the synthesis of tetrahydroquinoline structures. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Synthesis of hybrid phosphorated indenoquinolines and biological evaluation as topoisomerase I inhibitors and antiproliferative agents. Bioorg Med Chem Lett 2021; 57:128517. [PMID: 34952177 DOI: 10.1016/j.bmcl.2021.128517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 01/28/2023]
Abstract
This work describes the first synthesis of diethyl 6,6a,7,11b-tetrahydro-5H-indeno[2,1-c]quinolinylphosphonates 5, diethyl 7H-indeno[2,1-c]quinolinylphosphonates 6 and diethyl 7-oxo-7H-indeno[2,1-c]quinolinylphosphonates 7, which were prepared in good to high overall yields. The synthetic route involves a multicomponent reaction of 2-phosphonateaniline, aldehydes and indene as olefin and allows the selective generation of three stereogenic centres in a short, efficient and reliable manner. The selective dehydrogenation of 1,2,3,4-tetrahydroindenoquinolines leads to the formation of corresponding indenoquinolines, and subsequent oxidation of methylene group of the indenoquinolines allows the access to indenoquinolinones.
Collapse
|
21
|
Van de Walle T, Cools L, Mangelinckx S, D'hooghe M. Recent contributions of quinolines to antimalarial and anticancer drug discovery research. Eur J Med Chem 2021; 226:113865. [PMID: 34655985 DOI: 10.1016/j.ejmech.2021.113865] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022]
Abstract
Quinoline, a privileged scaffold in medicinal chemistry, has always been associated with a multitude of biological activities. Especially in antimalarial and anticancer research, quinoline played (and still plays) a central role, giving rise to the development of an array of quinoline-containing pharmaceuticals in these therapeutic areas. However, both diseases still affect millions of people every year, pointing to the necessity of new therapies. Quinolines have a long-standing history as antimalarial agents, but established quinoline-containing antimalarial drugs are now facing widespread resistance of the Plasmodium parasite. Nevertheless, as evidenced by a massive number of recent literature contributions, they are still of great value for future developments in this field. On the other hand, the number of currently approved anticancer drugs containing a quinoline scaffold are limited, but a strong increase and interest in quinoline compounds as potential anticancer agents can be seen in the last few years. In this review, a literature overview of recent contributions made by quinoline-containing compounds as potent antimalarial or anticancer agents is provided, covering publications between 2018 and 2020.
Collapse
Affiliation(s)
- Tim Van de Walle
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Lore Cools
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Sven Mangelinckx
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| |
Collapse
|
22
|
Petersen KV, Selas A, Hymøller KM, Mizielinski K, Thorsager M, Stougaard M, Alonso C, Palacios F, Pérez-Pertejo Y, Reguera RM, Balaña-Fouce R, Knudsen BR, Tesauro C. Simple and Fast DNA Based Sensor System for Screening of Small-Molecule Compounds Targeting Eukaryotic Topoisomerase 1. Pharmaceutics 2021; 13:1255. [PMID: 34452216 PMCID: PMC8401307 DOI: 10.3390/pharmaceutics13081255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Eukaryotic topoisomerase 1 is a potential target of anti-parasitic and anti-cancer drugs. Parasites require topoisomerase 1 activity for survival and, consequently, compounds that inhibit topoisomerase 1 activity may be of interest. All effective topoisomerase 1 drugs with anti-cancer activity act by inhibiting the ligation reaction of the enzyme. Screening for topoisomerase 1 targeting drugs, therefore, should involve the possibility of dissecting which step of topoisomerase 1 activity is affected. Methods: Here we present a novel DNA-based assay that allows for screening of the effect of small-molecule compounds targeting the binding/cleavage or the ligation steps of topoisomerase 1 catalysis. This novel assay is based on the detection of a rolling circle amplification product generated from a DNA circle resulting from topoisomerase 1 activity. Results: We show that the binding/cleavage and ligation reactions of topoisomerase 1 can be investigated separately in the presented assay termed REEAD (C|L) and demonstrate that the assay can be used to investigate, which of the individual steps of topoisomerase 1 catalysis are affected by small-molecule compounds. The assay is gel-free and the results can be detected by a simple colorimetric readout method using silver-on-gold precipitation rendering large equipment unnecessary. Conclusion: REEAD (C|L) allows for easy and quantitative investigations of topoisomerase 1 targeting compounds and can be performed in non-specialized laboratories.
Collapse
Affiliation(s)
- Kamilla Vandsø Petersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (K.V.P.); (K.M.H.); (B.R.K.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Asier Selas
- Department of Organic Chemistry, University of Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (A.S.); (C.A.); (F.P.)
| | - Kirstine Mejlstrup Hymøller
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (K.V.P.); (K.M.H.); (B.R.K.)
| | | | - Maria Thorsager
- VPCIR Biosciences ApS., 8000 Aarhus, Denmark; (K.M.); (M.T.)
| | - Magnus Stougaard
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
- VPCIR Biosciences ApS., 8000 Aarhus, Denmark; (K.M.); (M.T.)
- Department of Pathology, Aarhus University Hospital, 8000 Aarhus, Denmark
| | - Concepcion Alonso
- Department of Organic Chemistry, University of Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (A.S.); (C.A.); (F.P.)
| | - Francisco Palacios
- Department of Organic Chemistry, University of Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (A.S.); (C.A.); (F.P.)
| | - Yolanda Pérez-Pertejo
- Department of Biomedical Sciences, University of Leon (ULE), 24071 Leon, Spain; (Y.P.-P.); (R.M.R.); (R.B.-F.)
| | - Rosa M. Reguera
- Department of Biomedical Sciences, University of Leon (ULE), 24071 Leon, Spain; (Y.P.-P.); (R.M.R.); (R.B.-F.)
| | - Rafael Balaña-Fouce
- Department of Biomedical Sciences, University of Leon (ULE), 24071 Leon, Spain; (Y.P.-P.); (R.M.R.); (R.B.-F.)
| | - Birgitta R. Knudsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (K.V.P.); (K.M.H.); (B.R.K.)
- VPCIR Biosciences ApS., 8000 Aarhus, Denmark; (K.M.); (M.T.)
| | - Cinzia Tesauro
- VPCIR Biosciences ApS., 8000 Aarhus, Denmark; (K.M.); (M.T.)
| |
Collapse
|
23
|
Selas A, Fuertes M, Melcón-Fernández E, Pérez-Pertejo Y, Reguera RM, Balaña-Fouce R, Knudsen BR, Palacios F, Alonso C. Hybrid Quinolinyl Phosphonates as Heterocyclic Carboxylate Isosteres: Synthesis and Biological Evaluation against Topoisomerase 1B (TOP1B). Pharmaceuticals (Basel) 2021; 14:ph14080784. [PMID: 34451880 PMCID: PMC8399847 DOI: 10.3390/ph14080784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 02/05/2023] Open
Abstract
This work describes, for the first time, the synthesis of dialkyl (2-arylquinolin-8-yl)phosphonate derivatives. The preparation was carried out through a direct and simple process as a multicomponent Povarov reaction of aminophenylphosphonates, aldehydes, and styrenes and subsequent oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) or, alternatively, by a cycloaddition reaction between phosphonate aldimines and acetylenes. Based on phosphonate group structural characteristics, considered as phosphorous isosteres of carboxylic heterocycles, they may present interesting biological properties related to cell proliferation. In the current report, a new series of dialkyl (2-arylquinolin-8-yl)phosphonates have been synthesized and their antiproliferative effect evaluated on different human cancer and embryonic cells, as well as on Leishmania infantum parasites, a eukaryotic protist responsible for visceral leishmaniasis. Thereby, the antitumor effect was assessed in human lung adenocarcinoma cells (A549), human ovarian carcinoma cells (SKOV3), and human embryonic kidney cells (HEK293) versus the non-cancerous lung fibroblasts cell line (MRC5). On the other hand, the antileishmanial activity was tested against both stages of L. infantum cell cycle, namely free-living promastigotes and intramacrophage amastigotes, using a primary culture of Balb/c splenocytes to calculate the selectivity index. Besides the antiproliferative and antileishmanial capacities, their behavior as topoisomerase 1B inhibitors has been evaluated as a possible mechanism of action.
Collapse
Affiliation(s)
- Asier Selas
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray, Universidad del País Vasco (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.); (M.F.); (F.P.)
| | - María Fuertes
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray, Universidad del País Vasco (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.); (M.F.); (F.P.)
| | - Estela Melcón-Fernández
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, 24071 León, Spain; (E.M.-F.); (Y.P.-P.); (R.M.R.)
| | - Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, 24071 León, Spain; (E.M.-F.); (Y.P.-P.); (R.M.R.)
| | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, 24071 León, Spain; (E.M.-F.); (Y.P.-P.); (R.M.R.)
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, 24071 León, Spain; (E.M.-F.); (Y.P.-P.); (R.M.R.)
- Correspondence: (R.B.-F.); (C.A.)
| | - Birgitta R. Knudsen
- Department of Molecular Biology, Genetics and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus, Denmark;
| | - Francisco Palacios
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray, Universidad del País Vasco (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.); (M.F.); (F.P.)
| | - Concepcion Alonso
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray, Universidad del País Vasco (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.); (M.F.); (F.P.)
- Correspondence: (R.B.-F.); (C.A.)
| |
Collapse
|
24
|
A Multicomponent Protocol for the Synthesis of Highly Functionalized γ-Lactam Derivatives and Their Applications as Antiproliferative Agents. Pharmaceuticals (Basel) 2021; 14:ph14080782. [PMID: 34451879 PMCID: PMC8400033 DOI: 10.3390/ph14080782] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 01/13/2023] Open
Abstract
An efficient synthetic methodology for the preparation of 3-amino 1,5-dihydro-2H-pyrrol-2-ones through a multicomponent reaction of amines, aldehydes, and pyruvate derivatives is reported. In addition, the densely substituted lactam substrates show in vitro cytotoxicity, inhibiting the growth of carcinoma human tumor cell lines HEK293 (human embryonic kidney), MCF7 (human breast adenocarcinoma), HTB81 (human prostate carcinoma), HeLa (human epithelioid cervix carcinoma), RKO (human colon epithelial carcinoma), SKOV3 (human ovarian carcinoma), and A549 (carcinomic human alveolar basal epithelial cell). Given the possibilities in the diversity of the substituents that offer the multicomponent synthetic methodology, an extensive structure-activity profile is presented. In addition, both enantiomers of phosphonate-derived γ-lactam have been synthesized and isolated and a study of the cytotoxic activity of the racemic substrate vs. its two enantiomers is also presented. Cell morphology analysis and flow cytometry assays indicate that the main pathway by which our compounds induce cytotoxicity is based on the activation of the intracellular apoptotic mechanism.
Collapse
|
25
|
A Dual-Sensor-Based Screening System for In Vitro Selection of TDP1 Inhibitors. SENSORS 2021; 21:s21144832. [PMID: 34300575 PMCID: PMC8309759 DOI: 10.3390/s21144832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022]
Abstract
DNA sensors can be used as robust tools for high-throughput drug screening of small molecules with the potential to inhibit specific enzymes. As enzymes work in complex biological pathways, it is important to screen for both desired and undesired inhibitory effects. We here report a screening system utilizing specific sensors for tyrosyl-DNA phosphodiesterase 1 (TDP1) and topoisomerase 1 (TOP1) activity to screen in vitro for drugs inhibiting TDP1 without affecting TOP1. As the main function of TDP1 is repair of TOP1 cleavage-induced DNA damage, inhibition of TOP1 cleavage could thus reduce the biological effect of the TDP1 drugs. We identified three new drug candidates of the 1,5-naphthyridine and 1,2,3,4-tetrahydroquinolinylphosphine sulfide families. All three TDP1 inhibitors had no effect on TOP1 activity and acted synergistically with the TOP1 poison SN-38 to increase the amount of TOP1 cleavage-induced DNA damage. Further, they promoted cell death even with low dose SN-38, thereby establishing two new classes of TDP1 inhibitors with clinical potential. Thus, we here report a dual-sensor screening approach for in vitro selection of TDP1 drugs and three new TDP1 drug candidates that act synergistically with TOP1 poisons.
Collapse
|
26
|
Lauria A, La Monica G, Bono A, Martorana A. Quinoline anticancer agents active on DNA and DNA-interacting proteins: From classical to emerging therapeutic targets. Eur J Med Chem 2021; 220:113555. [PMID: 34052677 DOI: 10.1016/j.ejmech.2021.113555] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/25/2022]
Abstract
Quinoline is one of the most important and versatile nitrogen heterocycles embodied in several biologically active molecules. Within the numerous quinolines developed as antiproliferative agents, this review is focused on compounds interfering with DNA structure or with proteins/enzymes involved in the regulation of double helix functional processes. In this light, a special focus is given to the quinoline compounds, acting with classical/well-known mechanisms of action (DNA intercalators or Topoisomerase inhibitors). In particular, the quinoline drugs amsacrine and camptothecin (CPT) have been studied as key lead compounds for the development of new agents with improved PK and tolerability properties. Moreover, notable attention has been paid to the quinoline molecules, which are able to interfere with emerging targets involved in cancer progression, as G-quadruplexes or the epigenetic ones (e.g.: histone deacetylase, DNA and histones methyltransferase). The antiproliferative and the enzymatic inhibition data of the reviewed compounds have been analyzed. Furthermore, concerning the SAR (structure-activity relationship) aspects, the most recurrent ligand-protein interactions are summarized, underling the structural requirements for each kind of mechanism of action.
Collapse
Affiliation(s)
- Antonino Lauria
- Dipartimento di Scienze e Technologie Biologiche Chimiche e Farmaceutiche "STEBICEF" - University of Palermo, Via Archirafi - 32, 90123, Palermo, Italy
| | - Gabriele La Monica
- Dipartimento di Scienze e Technologie Biologiche Chimiche e Farmaceutiche "STEBICEF" - University of Palermo, Via Archirafi - 32, 90123, Palermo, Italy
| | - Alessia Bono
- Dipartimento di Scienze e Technologie Biologiche Chimiche e Farmaceutiche "STEBICEF" - University of Palermo, Via Archirafi - 32, 90123, Palermo, Italy
| | - Annamaria Martorana
- Dipartimento di Scienze e Technologie Biologiche Chimiche e Farmaceutiche "STEBICEF" - University of Palermo, Via Archirafi - 32, 90123, Palermo, Italy.
| |
Collapse
|
27
|
Selas A, Martin-Encinas E, Fuertes M, Masdeu C, Rubiales G, Palacios F, Alonso C. A patent review of topoisomerase I inhibitors (2016-present). Expert Opin Ther Pat 2021; 31:473-508. [PMID: 33475439 DOI: 10.1080/13543776.2021.1879051] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Topoisomerases are important targets for therapeutic improvement in the treatment of some diseases, including cancer. Inhibitors and poisons of topoisomerase I can limit the activity of this enzyme in its enzymatic cycle. This fact implies an anticancer effect of these drugs, since most cancer cells are characterized by both a higher activity of topoisomerase I and a higher replication rate compared to non-cancerous cells. Clinically approved inhibitors include camptothecin (CPT) and its derivatives. However, their limitations have encouraged different research groups to prepare new compounds, proof of which are the numerous research works and patents, some of them in the last five years. AREAS COVERED This review covers patent literature on topoisomerase I inhibitors and their application published between 2016-present. EXPERT OPINION The highest contribution toward patent development has been obtained from academics or small biotechnology companies. The most important fields of innovation include the preparation of prodrugs or inhibitors combined with other agents, as biocompatible polymers or antibodies. A promising development of topoisomerase I inhibitors is expected in the next years, directed to the treatment of diverse diseases, specifically toward different types of cancer and infectious diseases, among others.
Collapse
Affiliation(s)
- Asier Selas
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Endika Martin-Encinas
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Maria Fuertes
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Carme Masdeu
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Gloria Rubiales
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Francisco Palacios
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Concepción Alonso
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| |
Collapse
|
28
|
Martín-Encinas E, Rubiales G, Knudsen BR, Palacios F, Alonso C. Fused chromeno and quinolino[1,8]naphthyridines: Synthesis and biological evaluation as topoisomerase I inhibitors and antiproliferative agents. Bioorg Med Chem 2021; 40:116177. [PMID: 33962152 DOI: 10.1016/j.bmc.2021.116177] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 01/18/2023]
Abstract
The synthesis of 1,8-naphthyridine derivatives fused with other heterocycles, such as chromenes and quinolines, as well as their behaviour as topoisomerase I inhibitors is studied. The preparation is carried out through a direct and simple process as an intramolecular [4 + 2] cycloaddition reaction between functionalized aldimines, obtained by the condensation of 2-aminopyridine and unsaturated aldehydes, and olefins. In particular, while no clear inhibitory activity is observed for chromeno[4,3-b][1,8]naphthyridine fused heterocycles, a very different result is observed for quinolino[4,3-b][1,8]naphthyridine derivatives. Experimental assays indicated that quinolino[4,3-b][1,8]naphthyridines inhibited the topoisomerase I enzymatic reaction behaving like a poison, as occurs with the natural TopI inhibitor, camptothecin. Furthermore, the cytotoxic effect on cell lines derived from human lung adenocarcinoma (A549), human ovarian carcinoma (SKOV3), and on non-cancerous lung fibroblasts cell line (MRC5) was also screened.
Collapse
Affiliation(s)
- Endika Martín-Encinas
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Gloria Rubiales
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Birgitta R Knudsen
- Department of Molecular Biology and Genetics and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus 8000, Denmark
| | - Francisco Palacios
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| | - Concepción Alonso
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| |
Collapse
|
29
|
|
30
|
Sharma S, Singh A, Sharma S, Sharma R, Singh J, Kinarivala N, Nepali K, Liou JP. Tailored Quinolines Demonstrate Flexibility to Exert Antitumor Effects through Varied Mechanisms-A Medicinal Perspective. Anticancer Agents Med Chem 2021; 21:288-315. [PMID: 32900354 DOI: 10.2174/1871520620666200908104303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/24/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Quinoline is considered to be a privileged heterocyclic ring owing to its presence in diverse scaffolds endowed with promising activity profiles. In particular, quinoline containing compounds have exhibited substantial antiproliferative effects through the diverse mechanism of actions, which indicates that the heteroaryl unit is flexible as well as accessible to subtle structural changes that enable its inclusion in chemically distinct anti-tumor constructs. METHODS Herein, we describe a medicinal chemistry perspective on quinolines as anticancer agents by digging into the peer-reviewed literature as well as patents published in the past few years. RESULTS This review will serve as a guiding tool for medicinal chemists and chemical biologists to gain insights about the benefits of quinoline ring installation to tune the chemical architectures for inducing potent anticancer effects. CONCLUSION Quinoline ring containing anticancer agents presents enough optimism and promise in the field of drug discovery to motivate the researchers towards the continued explorations on such scaffolds. It is highly likely that adequate efforts in this direction might yield some potential cancer therapeutics in the future.
Collapse
Affiliation(s)
- Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Arshdeep Singh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jagjeet Singh
- School of Pharmacy, University of Queensland, Brisbane, QLD, Australia
| | - Nihar Kinarivala
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jing P Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
31
|
Elbadawi MM, Eldehna WM, Wang W, Agama KK, Pommier Y, Abe M. Discovery of 4-alkoxy-2-aryl-6,7-dimethoxyquinolines as a new class of topoisomerase I inhibitors endowed with potent in vitro anticancer activity. Eur J Med Chem 2021; 215:113261. [PMID: 33631697 DOI: 10.1016/j.ejmech.2021.113261] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/11/2021] [Accepted: 01/28/2021] [Indexed: 02/08/2023]
Abstract
In our attempt to develop potential anticancer agents targeting Topoisomerase I (TOP1), two novel series of 4-alkoxy-2-arylquinolines 14a-p and 19a-c were designed and synthesized based on structure activity relationships of the reported TOP1 inhibitors and structural features required for stabilization of TOP1-DNA cleavage complexes (TOP1ccs). The in vitro anticancer activity of these two series of compounds was evaluated at one dose level using NCI-60 cancer cell lines panel. Compounds 14e-h and 14m-p, with p-substituted phenyl at C2 and propyl linker at C4, were the most potent and were selected for assay at five doses level in which they exhibited potent anticancer activity at sub-micromolar level against diverse cancer cell lines. Compound 14m was the most potent with full panel GI50 MG-MID 1.26 μM and the most sensitive cancers were colon cancer, leukemia and melanoma with GI50 MG-MID 0.875, 0.904 and 0.926 μM, respectively. Melanoma (LOX IMVI) was the most sensitive cell line to all tested compounds displaying GI50 from 0.116 to 0.227 μM, TGI from 0.275 to 0.592 μM and LC50 at sub-micromolar concentration against almost of the tested compounds. Compounds 14e-h and 14m-p were assayed using TOP1-mediated DNA cleavage assay to evaluate their ability to stabilize TOP1ccs resulting in cancer cell death. The morpholino analogs 14h and 14p exhibited moderate TOP1 inhibitory activity compared to 1 μM camptothecin suggesting their use as lead compounds that can be optimized for the development of more potent anticancer agents with potential TOP1 inhibitory activity. Finally, Swiss ADME online web tool predicted that compounds 14h and 14p possessed good oral bioavailability and druglikeness characteristics.
Collapse
Affiliation(s)
- Mostafa M Elbadawi
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Wenjie Wang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Keli K Agama
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Manabu Abe
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
32
|
Yadav P, Shah K. Quinolines, a perpetual, multipurpose scaffold in medicinal chemistry. Bioorg Chem 2021; 109:104639. [PMID: 33618829 DOI: 10.1016/j.bioorg.2021.104639] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
Quinoline is a versatile pharmacophore, a privileged scaffold and an outstanding fused heterocyclic compound with a wide range of pharmacological prospective such as anticancer, anti-inflammatory, antibacterial, antiviral drug and superlative moiety in drug discovery. The quinoline hybrids have already been shown excellent results with new targets with a different mode of actions as an inhibitor of cell proliferation by cell cycle arrest, apoptosis, angiogenesis, disruption of cell migration and modulation. This review emphasized the mode of action, structure activity relationship and molecular docking to reveal the various active pharmacophores of quinoline hybrids accountable for novel anticancer, anti-inflammatory, antibacterial and miscellaneous activities. Therefore, several quinoline candidates are under clinical trials for the treatment of certain diseases, for example ferroquine (antimalarial), dactolisib (antitumor) and pelitinib (EGFR TK inhibitors) etc. Plenty of research has been summarized the recent advances of quinoline derivatives and explore the various therapeutic prospects of this moiety. This review would help the researchers to strategically design diverse novel quinoline derivatives for the development of clinically viable drug candidates for the treatment of incurable diseases.
Collapse
Affiliation(s)
- Pratibha Yadav
- Institute of Pharmaceutical Research, GLA University, Mathura, UP 281406, India
| | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura, UP 281406, India.
| |
Collapse
|
33
|
Acar Çevik U, Sağlık BN, Osmaniye D, Levent S, Kaya Çavuşoğlu B, Karaduman AB, Atlıd Ö, Atlı Eklioğlu Ö, Kaplancıklı ZA. Synthesis, anticancer evaluation and molecular docking studies of new benzimidazole- 1,3,4-oxadiazole derivatives as human topoisomerase types I poison. J Enzyme Inhib Med Chem 2020; 35:1657-1673. [PMID: 32811204 PMCID: PMC7470102 DOI: 10.1080/14756366.2020.1806831] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, some benzimidazole-oxadiazole derivatives were synthesised and tested for their in vitro anticancer activities on five cancer cell lines, including HeLa, MCF7, A549, HepG2 and C6. Their structures were elucidated by IR, 1H-NMR, 13C-NMR, 2 D-NMR and HRMS spectroscopic methods. Among all screened compounds; 5a, 5b, 5d, 5e, 5k, 5l, 5n and 5o exhibited potent selective cytotoxic activities against various tested cancer cell lines. Especially, compounds 5l and 5n exhibited the most antiproliferative activity than Hoechst 33342 and doxorubicin against HeLa cell line, with IC50 of 0.224 ± 0.011 µM and 0.205 ± 0.010 µM, respectively. Furthermore, these potent lead cytotoxic agents were evaluated in terms of their inhibition potency against Topoisomerase I and it was determined that selected compounds inhibited the Topoisomerase I. Docking studies were performed and probable interactions in the DNA-Topo I enzyme complex was determined.
Collapse
Affiliation(s)
- Ulviye Acar Çevik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Begüm Nurpelin Sağlık
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Derya Osmaniye
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Serkan Levent
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Betül Kaya Çavuşoğlu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Abdullah Burak Karaduman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Özlem Atlıd
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Özlem Atlı Eklioğlu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
34
|
Synthesis of novel hybrid quinolino[4,3-b][1,5]naphthyridines and quinolino[4,3-b][1,5]naphthyridin-6(5H)-one derivatives and biological evaluation as topoisomerase I inhibitors and antiproliferatives. Eur J Med Chem 2020; 195:112292. [DOI: 10.1016/j.ejmech.2020.112292] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/28/2020] [Accepted: 03/28/2020] [Indexed: 12/18/2022]
|
35
|
Ebrahimiasl H, Azarifar D, Rakhtshah J, Keypour H, Mahmoudabadi M. Application of novel and reusable Fe3O4@CoII(macrocyclic Schiff base ligand) for multicomponent reactions of highly substituted thiopyridine and 4H‐chromene derivatives. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | - Davood Azarifar
- Department of ChemistryBu‐Ali Sina University Hamedan 65178 Iran
| | | | - Hassan Keypour
- Department of ChemistryBu‐Ali Sina University Hamedan 65178 Iran
| | | |
Collapse
|
36
|
del Corte X, López-Francés A, Maestro A, Martinez de Marigorta E, Palacios F, Vicario J. Brönsted Acid Catalyzed Multicomponent Synthesis of Phosphorus and Fluorine-Derived γ-Lactam Derivatives. J Org Chem 2020; 85:14369-14383. [DOI: 10.1021/acs.joc.0c00280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xabier del Corte
- Departamento de Química Orgánica I, Centro de Investigación y Estudios Avanzados “Lucio Lascaray”- Facultad de Farmacia, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Adrián López-Francés
- Departamento de Química Orgánica I, Centro de Investigación y Estudios Avanzados “Lucio Lascaray”- Facultad de Farmacia, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Aitor Maestro
- Departamento de Química Orgánica I, Centro de Investigación y Estudios Avanzados “Lucio Lascaray”- Facultad de Farmacia, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Edorta Martinez de Marigorta
- Departamento de Química Orgánica I, Centro de Investigación y Estudios Avanzados “Lucio Lascaray”- Facultad de Farmacia, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Francisco Palacios
- Departamento de Química Orgánica I, Centro de Investigación y Estudios Avanzados “Lucio Lascaray”- Facultad de Farmacia, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Javier Vicario
- Departamento de Química Orgánica I, Centro de Investigación y Estudios Avanzados “Lucio Lascaray”- Facultad de Farmacia, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
37
|
Sun SZ, Shang M, Xu H, Cheng TJ, Li MH, Dai HX. Copper mediated C(sp 2)-H amination and hydroxylation of phosphinamides. Chem Commun (Camb) 2020; 56:1444-1447. [PMID: 31915765 DOI: 10.1039/c9cc08879b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Copper mediated C(sp2)-H amination and hydroxylation of arylphosphinic acid are accomplished by adopting phosphinamide as the directing group. This method is distinguished by its wide substrate scope and excellent functional group tolerance, thus allowing for the rapid preparation of organophosphorus compounds in organic synthesis.
Collapse
Affiliation(s)
- Shang-Zheng Sun
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | | | | | | | | | | |
Collapse
|
38
|
Insuasty D, Castillo J, Becerra D, Rojas H, Abonia R. Synthesis of Biologically Active Molecules through Multicomponent Reactions. Molecules 2020; 25:E505. [PMID: 31991635 PMCID: PMC7038231 DOI: 10.3390/molecules25030505] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 02/02/2023] Open
Abstract
Focusing on the literature progress since 2002, the present review explores the highly significant role that multicomponent reactions (MCRs) have played as a very important tool for expedite synthesis of a vast number of organic molecules, but also, highlights the fact that many of such molecules are biologically active or at least have been submitted to any biological screen. The selected papers covered in this review must meet two mandatory requirements: (1) the reported products should be obtained via a multicomponent reaction; (2) the reported products should be biologically actives or at least tested for any biological property. Given the diversity of synthetic approaches utilized in MCRs, the highly diverse nature of the biological activities evaluated for the synthesized compounds, and considering their huge structural variability, much of the reported data are organized into concise schemes and tables to facilitate comparison, and to underscore the key points of this review.
Collapse
Affiliation(s)
- Daniel Insuasty
- Grupo de Investigación en Química y Biología, Departamento de Química y Biología, Universidad del Norte, Km 5 vía Puerto Colombia 1569, Barranquilla Atlántico 081007, Colombia;
| | - Juan Castillo
- Grupo de Catálisis, Escuela de Ciencias Químicas, Universidad Pedagógica y Tecnológica de Colombia UPTC, Avenida Central del Norte 39-115, Tunja 150003, Colombia; (J.C.); (D.B.); (H.R.)
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| | - Diana Becerra
- Grupo de Catálisis, Escuela de Ciencias Químicas, Universidad Pedagógica y Tecnológica de Colombia UPTC, Avenida Central del Norte 39-115, Tunja 150003, Colombia; (J.C.); (D.B.); (H.R.)
| | - Hugo Rojas
- Grupo de Catálisis, Escuela de Ciencias Químicas, Universidad Pedagógica y Tecnológica de Colombia UPTC, Avenida Central del Norte 39-115, Tunja 150003, Colombia; (J.C.); (D.B.); (H.R.)
| | - Rodrigo Abonia
- Research Group of Heterocyclic Compounds, Department of Chemistry, Universidad del Valle, Cali A. A. 25360, Colombia
| |
Collapse
|
39
|
Martín-Encinas E, Conejo-Rodríguez V, Miguel JA, Martínez-Ilarduya JM, Rubiales G, Knudsen BR, Palacios F, Alonso C. Novel phosphine sulphide gold(i) complexes: topoisomerase I inhibitors and antiproliferative agents. Dalton Trans 2020; 49:7852-7861. [DOI: 10.1039/d0dt01467b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold(i) increases the cytotoxicity of phosphine sulfide quinolines against cancer cell lines, while heterocycles maintain the TopI inhibitory activity.
Collapse
Affiliation(s)
- Endika Martín-Encinas
- Department of Organic Chemistry I
- Faculty of Pharmacy
- University of Basque Country (UPV/EHU)
- Vitoria-Gasteiz
- Spain
| | | | - Jesús A. Miguel
- IU CINQUIMA/Química Inorgánica
- Faculty of Science
- University of Valladolid
- Valladolid
- Spain
| | | | - Gloria Rubiales
- Department of Organic Chemistry I
- Faculty of Pharmacy
- University of Basque Country (UPV/EHU)
- Vitoria-Gasteiz
- Spain
| | - Birgitta R. Knudsen
- Department of Molecular Biology and Genetics and Interdisciplinary Nanoscience Center (iNANO)
- University of Aarhus
- Aarhus
- Denmark
| | - Francisco Palacios
- Department of Organic Chemistry I
- Faculty of Pharmacy
- University of Basque Country (UPV/EHU)
- Vitoria-Gasteiz
- Spain
| | - Concepción Alonso
- Department of Organic Chemistry I
- Faculty of Pharmacy
- University of Basque Country (UPV/EHU)
- Vitoria-Gasteiz
- Spain
| |
Collapse
|
40
|
Yuan JM, Chen NY, Liao HR, Zhang GH, Li XJ, Gu ZY, Pan CX, Mo DL, Su GF. 3-(Benzo[d]thiazol-2-yl)-4-aminoquinoline derivatives as novel scaffold topoisomerase I inhibitor via DNA intercalation: design, synthesis, and antitumor activities. NEW J CHEM 2020. [DOI: 10.1039/c9nj05846j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Twenty-seven 3-(benzo[d]thiazol-2-yl)-4-aminoquinoline derivatives have been designed and synthesized as topoisomerase I inhibitors.
Collapse
Affiliation(s)
- Jing-Mei Yuan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Nan-Ying Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Hao-Ran Liao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Guo-Hai Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Xiao-Juan Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Zi-Yu Gu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Cheng-Xue Pan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Dong-Liang Mo
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Gui-Fa Su
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| |
Collapse
|
41
|
Anticancer, antimicrobial activities of quinoline based hydrazone analogues: Synthesis, characterization and molecular docking. Bioorg Chem 2019; 94:103406. [PMID: 31718889 DOI: 10.1016/j.bioorg.2019.103406] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 11/22/2022]
Abstract
Based on the biologically active heterocycle quinoline, a series (18a-p) of quinoline hydrazone analogues were prepared, starting from 6-bromo/6-chloro-2-methyl-quinolin-4-yl-hydrazines. For all the newly synthesized compounds cytotoxic activities were carried out at the National Cancer Institute (NCI), USA, against full NCI 60 human cancer cell lines. Amongst all the tested compounds, nine compounds (18b, 18d, 18e, 18f, 18g, 18h, 18i, 18j, 18l) exhibited important anti-proliferative activity at 10 µM concentration and were further screened at 10-fold dilutions of five different concentrations (0.01, 0.1, 1, 10 and 100 µM) with GI50 values ranging from 0.33 to 4.87 µM and LC50 values ranging from 4.67 µM to >100j µM. Further, the mean values of GI50, TGI and LC50 of the most potent compound 18j were compared with the clinically used anticancer agents bendamustine and chlorambucil, revealed that the quinolyl hydrazones holds promise as a potential anticancer agents. Further all the newly prepared compounds were screened for their antimicrobial activity. All the quinolyl hydrazones displayed good to excellent antimicrobial activity with MIC values ranging from 6.25 to 100 µg/mL against the tested pathogenic strains. Molecular docking of the synthesized compounds into the active binding site of human DNA topoisomerase I (htopoI) was carried out to predict the binding mode to the DNA topoisomerase I inhibitors. Hopefully in future, compounds based on quinoline core could be used as a lead compounds for designing new anticancer agents.
Collapse
|
42
|
Carramiñana V, Ochoa de Retana AM, de Los Santos JM, Palacios F. First synthesis of merged hybrids phosphorylated azirino[2,1-b]benzo[e][1,3]oxazine derivatives as anticancer agents. Eur J Med Chem 2019; 185:111771. [PMID: 31671309 DOI: 10.1016/j.ejmech.2019.111771] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 10/25/2022]
Abstract
This work describes a straightforward diastereoselective synthetic access to azirino[2,1-b]benzo[e][1,3]oxazines containing phosphorus substituents such as phosphonate or phosphine oxide, by means of nucleophilic addition of functionalized phenols to the C-N double bond of 2H-azirine derivatives. In addition, the cytotoxic effect on cell lines derived from human lung adenocarcinoma (A549) and human embryonic kidney (HEK293) was also screened. Some azirino[2,1-b]benzo[e][1,3]oxazines 4 and 6 exhibited very good activity against the A549 cell line in vitro. Furthermore, selectivity towards cancer cell (A549) over (HEK293), and non-malignant cells (MCR-5) has been detected.
Collapse
Affiliation(s)
- Victor Carramiñana
- Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria, Spain
| | - Ana M Ochoa de Retana
- Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria, Spain
| | - Jesús M de Los Santos
- Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria, Spain.
| | - Francisco Palacios
- Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria, Spain.
| |
Collapse
|
43
|
de Marigorta EM, Santos JMDL, Ochoa de Retana AM, Vicario J, Palacios F. Multicomponent reactions (MCRs): a useful access to the synthesis of benzo-fused γ-lactams. Beilstein J Org Chem 2019; 15:1065-1085. [PMID: 31164944 PMCID: PMC6541321 DOI: 10.3762/bjoc.15.104] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/17/2019] [Indexed: 12/17/2022] Open
Abstract
Benzo-fused γ-lactam rings such as isoindolin-2-ones and 2-oxindoles are part of the structure of many pharmaceutically active molecules. They can be often synthesized by means of multicomponent approaches and recent contributions in this field are summarized in this review. Clear advantages of these methods include the efficiency in saving raw materials and working time. However, there is still a need of new catalytic systems to allow the enantioselective preparation of these heterocycles by multicomponent reactions.
Collapse
Affiliation(s)
- Edorta Martínez de Marigorta
- Departamento de Química Orgánica I, Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Jesús M de Los Santos
- Departamento de Química Orgánica I, Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Ana M Ochoa de Retana
- Departamento de Química Orgánica I, Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Javier Vicario
- Departamento de Química Orgánica I, Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Francisco Palacios
- Departamento de Química Orgánica I, Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| |
Collapse
|
44
|
Liang X, Wu Q, Luan S, Yin Z, He C, Yin L, Zou Y, Yuan Z, Li L, Song X, He M, Lv C, Zhang W. A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade. Eur J Med Chem 2019; 171:129-168. [PMID: 30917303 DOI: 10.1016/j.ejmech.2019.03.034] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 01/28/2023]
Abstract
The topoisomerase enzymes play an important role in DNA metabolism, and searching for enzyme inhibitors is an important target in the search for new anticancer drugs. Discovery of new anticancer chemotherapeutical capable of inhibiting topoisomerase enzymes is highlighted in anticancer research. Therefore, biologists, organic chemists and medicinal chemists all around the world have been identifying, designing, synthesizing and evaluating a variety of novel bioactive molecules targeting topoisomerase. This review summarizes types of topoisomerase inhibitors in the past decade, and divides them into nine classes by structural characteristics, including N-heterocycles compounds, quinone derivatives, flavonoids derivatives, coumarin derivatives, lignan derivatives, polyphenol derivatives, diterpenes derivatives, fatty acids derivatives, and metal complexes. Then we discussed the application prospect and development of these anticancer compounds, as well as concluded parts of their structural-activity relationships. We believe this review would be invaluable in helping to further search potential topoisomerase inhibition as antitumor agent in clinical usage.
Collapse
Affiliation(s)
- Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Qiang Wu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shangxian Luan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhixiang Yuan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Min He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Wei Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| |
Collapse
|
45
|
Tejería A, Pérez-Pertejo Y, Reguera RM, Carbajo-Andrés R, Balaña-Fouce R, Alonso C, Martin-Encinas E, Selas A, Rubiales G, Palacios F. Antileishmanial activity of new hybrid tetrahydroquinoline and quinoline derivatives with phosphorus substituents. Eur J Med Chem 2018; 162:18-31. [PMID: 30408746 DOI: 10.1016/j.ejmech.2018.10.065] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/24/2018] [Accepted: 10/29/2018] [Indexed: 12/11/2022]
Abstract
Heterocyclic compounds, such as hybrid tetrahydroquinoline and quinoline derivatives with phosphorated groups, have been prepared by multicomponent cycloaddition reaction between phosphorus-substituted anilines, aldehydes and styrenes. The antileishmanial activity of these compounds has been evaluated on both promastigotes and intramacrophagic amastigotes of Leishmania infantum. Good antileishmanial activity of functionalized tetrahydroquinolines 4a, 5a, 6b and quinoline 8b has been observed with similar activity than the standard drug amphotericin B and close selective index (SI between 43 and 57) towards L. infantum amastigotes to amphotericin B. Special interest shows tetrahydroquinolylphosphine sulfide 5a with an EC50 value (0.61 ± 0.18 μM) similar to the standard drug amphotericin B (0.32 ± 0.05 μM) and selective index (SI = 56.87). In addition, compound 4c shows remarkable inhibition on Leishmania topoisomerase IB. Parallel theoretical study of stereoelectronic properties, application of docking-based virtual screening methods, along with molecular electrostatic potential and predictive druggability analyses are also reported.
Collapse
Affiliation(s)
- Ana Tejería
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Rosa M Reguera
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Rubén Carbajo-Andrés
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Concepción Alonso
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Endika Martin-Encinas
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Asier Selas
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Gloria Rubiales
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Francisco Palacios
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain.
| |
Collapse
|
46
|
Maestro A, Martín-Encinas E, Alonso C, Martinez de Marigorta E, Rubiales G, Vicario J, Palacios F. Synthesis of novel antiproliferative hybrid bis-(3-indolyl)methane phosphonate derivatives. Eur J Med Chem 2018; 158:874-883. [PMID: 30253344 DOI: 10.1016/j.ejmech.2018.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 12/24/2022]
Abstract
An efficient synthetic methodology for the preparation of phosphorus substituted bis-(3-indolyl)methane through a double nucleophilic addition of indole derivatives to an in situ generated α-iminophosphonate is reported. In addition, bis-(3-indolyl)methane substrates showed in vitro cytotoxicity, inhibiting the growth of carcinoma human tumor cell lines A549 (carcinomic human alveolar basal epithelial cell) and SKOV03 (human ovarian carcinoma).
Collapse
|
47
|
Ghashghaei O, Masdeu C, Alonso C, Palacios F, Lavilla R. Recent advances of the Povarov reaction in medicinal chemistry. DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 29:71-79. [PMID: 30471676 DOI: 10.1016/j.ddtec.2018.08.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/23/2018] [Accepted: 08/07/2018] [Indexed: 12/14/2022]
Abstract
The Povarov multicomponent reaction consists on the condensation of an aniline, an aldehyde, and an activated olefin to generate a tetrahydroquinoline adduct with 3 diversity points. Hereby, we report the main features of this transformation and its uses in medicinal chemistry. Relevant examples of the impact of Povarov adducts in different therapeutic areas are provided.
Collapse
Affiliation(s)
- Ouldouz Ghashghaei
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Av. de Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Carme Masdeu
- Departamento de Química Orgánica I, Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Concepción Alonso
- Departamento de Química Orgánica I, Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Francisco Palacios
- Departamento de Química Orgánica I, Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| | - Rodolfo Lavilla
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Av. de Joan XXIII, 27-31, 08028 Barcelona, Spain.
| |
Collapse
|
48
|
Li D, Bheemanaboina RRY, Battini N, Tangadanchu VKR, Fang XF, Zhou CH. Novel organophosphorus aminopyrimidines as unique structural DNA-targeting membrane active inhibitors towards drug-resistant methicillin-resistant Staphylococcus aureus. MEDCHEMCOMM 2018; 9:1529-1537. [PMID: 30288226 DOI: 10.1039/c8md00301g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/29/2018] [Indexed: 12/18/2022]
Abstract
A series of novel unique structural organophosphorus aminopyrimidines were developed as potential DNA-targeting membrane active inhibitors through an efficient one-pot procedure from aldehydes, phosphonate and aminopyrimidine. The biological assay revealed that some of the prepared compounds displayed antibacterial activities. In particular, imidazole derivative 2c exhibited more potent inhibitory activity against MRSA with an MIC value of 4 μg mL-1 in comparison with the clinical drugs chloromycin and norfloxacin. Experiments revealed that the active molecule 2c had the ability to rapidly kill the tested strains without obviously triggering the development of bacterial resistance, showed low toxicity to L929 cells and could disturb the cell membrane. The molecular docking study discovered that compound 2c could bind with DNA gyrase via hydrogen bonds and other weak interactions. Further exploration disclosed that the active molecule 2c could also effectively intercalate into MRSA DNA and form a steady 2c-DNA supramolecular complex, which might further block DNA replication to exert powerful antibacterial effects.
Collapse
Affiliation(s)
- Di Li
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Rammohan R Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Vijai Kumar Reddy Tangadanchu
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Xian-Fu Fang
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| |
Collapse
|