1
|
Neves SP, Bomfim LM, Kataura T, Carvalho SG, Nogueira ML, Dias RB, Valverde LDF, Gurgel Rocha CA, Soares MBP, Silva MMD, Batista AA, Korolchuk VI, Bezerra DP. Ruthenium complex containing 1,3-thiazolidine-2-thione inhibits hepatic cancer stem cells by suppressing Akt/mTOR signalling and leading to apoptotic and autophagic cell death. Biomed Pharmacother 2024; 177:117059. [PMID: 38955086 DOI: 10.1016/j.biopha.2024.117059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
Hepatic cancer is one of the main causes of cancer-related death worldwide. Cancer stem cells (CSCs) are a unique subset of cancer cells that promote tumour growth, maintenance, and therapeutic resistance, leading to recurrence. In the present work, the ability of a ruthenium complex containing 1,3-thiazolidine-2-thione (RCT), with the chemical formula [Ru(tzdt)(bipy)(dppb)]PF6, to inhibit hepatic CSCs was explored in human hepatocellular carcinoma HepG2 cells. RCT exhibited potent cytotoxicity to solid and haematological cancer cell lines and reduced the clonogenic potential, CD133+ and CD44high cell percentages and tumour spheroid growth of HepG2 cells. RCT also inhibited cell motility, as observed in the wound healing assay and transwell cell migration assay. RCT reduced the levels of Akt1, phospho-Akt (Ser473), phospho-Akt (Thr308), phospho-mTOR (Ser2448), and phospho-S6 (Ser235/Ser236) in HepG2 cells, indicating that interfering with Akt/mTOR signalling is a mechanism of action of RCT. The levels of active caspase-3 and cleaved PARP (Asp214) were increased in RCT-treated HepG2 cells, indicating the induction of apoptotic cell death. In addition, RCT modulated the autophagy markers LC3B and p62/SQSTM1 in HepG2 cells and increased mitophagy in a mt-Keima-transfected mouse embryonic fibroblast (MEF) cell model, and RCT-induced cytotoxicity was partially prevented by autophagy inhibitors. Furthermore, mutant Atg5-/- MEFs and PentaKO HeLa cells (human cervical adenocarcinoma with five autophagy receptor knockouts) were less sensitive to RCT cytotoxicity than their parental cell lines, indicating that RCT induces autophagy-mediated cell death. Taken together, these data indicate that RCT is a novel potential anti-liver cancer drug with a suppressive effect on CSCs.
Collapse
Affiliation(s)
- Sara P Neves
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Larissa M Bomfim
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Tetsushi Kataura
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Sabrine G Carvalho
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Mateus L Nogueira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil; Department of Propedeutics, School of Dentistry of the Federal University of Bahia, Salvador, Bahia, 40110-909, Brazil; Department of Biological Sciences, State University of Feira de Santana, Feira de Santana, Bahia, 44036-900, Brazil
| | - Ludmila de F Valverde
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil; Department of Dentistry, Federal University of Sergipe, Lagarto, Sergipe, 49400-000, Brazil
| | - Clarissa A Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil; Department of Propedeutics, School of Dentistry of the Federal University of Bahia, Salvador, Bahia, 40110-909, Brazil; Center for Biotechnology and Cell Therapy, D'Or Institute for Research and Education (IDOR), Salvador, Bahia, 41253-190, Brazil
| | - Milena B P Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil; SENAI Institute of Innovation (ISI) in Health Advanced Systems, University Center SENAI/CIMATEC, Salvador, Bahia, 41650-010, Brazil
| | - Monize M da Silva
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13561-901 Brazil
| | - Alzir A Batista
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13561-901 Brazil
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil.
| |
Collapse
|
2
|
Park J, Purushothaman B, Hong S, Choi M, Jegal KH, Park M, Song JM, Kang KW. GRP78 blockade overcomes acquired resistance to EGFR-tyrosine kinase inhibitors in non-small cell lung cancer. Life Sci 2024; 348:122681. [PMID: 38697281 DOI: 10.1016/j.lfs.2024.122681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 05/04/2024]
Abstract
AIMS While significant upregulation of GRP78 has been documented in lung cancer patients, its association with resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) remains underexamined. Our study aimed to elucidate the functional importance of GRP78 in acquired resistance to EGFR-TKIs in non-small cell lung cancer (NSCLC) and to evaluate its potential as a therapeutic target. MAIN METHODS Immunoblot analysis or flow cytometry was employed to assess several markers for endoplasmic reticulum (ER) stress and apoptosis. Ru(II) complex I and HA15, two known GRP78 inhibitors, were used to evaluate the functional role of GRP78. A Xenograft assay was performed to evaluate the in vivo anti-cancer effects of the GRP78 inhibitors. KEY FINDINGS We validated a significant increase in GRP78 protein levels in HCC827-GR, H1993-GR, and H1993-ER cells. The EGFR-TKI-resistant cells overexpressing GRP78 exhibited significantly higher cell proliferation rates than did their parental counterparts. Notably, GRP78 inhibition resulted in a more profound anti-proliferative and apoptotic response via heightened ER stress and subsequent reactive oxygen species (ROS) production in EGFR-TKI-resistant cell lines compared with their parental cells. In xenograft models implanted with HCC827-GR, both Ru(II) complex I and HA15 significantly suppressed tumor growth and reduced tumor weight. Additionally, we confirmed that GRP78 plays a critical role in the proliferation of H1975, an EGFR-TKI-resistant T790M-mutant cell line, relative to other NSCLC cell lines. SIGNIFICANCE Our findings strongly support targeting of GRP78 as a promising therapeutic strategy for NSCLC patients with acquired resistance to EGFR-TKIs.
Collapse
Affiliation(s)
- Jaewoo Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Baskaran Purushothaman
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sera Hong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Munkyung Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung Hwan Jegal
- Department of Korean Medical Classics, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Miso Park
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Joon Myong Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Bomfim LM, Neves SP, Coelho AMRM, Nogueira ML, Dias RB, Valverde LDF, Rocha CAG, Soares MBP, Batista AA, Correa RS, Bezerra DP. Ru(II)-based complexes containing 2-thiouracil derivatives suppress liver cancer stem cells by targeting NF-κB and Akt/mTOR signaling. Cell Death Discov 2024; 10:270. [PMID: 38830859 PMCID: PMC11148080 DOI: 10.1038/s41420-024-02036-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Cancer stem cells (CSCs) are defined as a rare population of cancer cells related to tumor initiation and maintenance. These cells are primarily responsible for tumor growth, invasion, metastasis, recurrence, and resistance to chemotherapy. In this paper, we demonstrated the ability of Ru(II)-based complexes containing 2-thiouracil derivatives with the chemical formulas trans-[Ru(2TU)(PPh3)2(bipy)]PF6 (1) and trans-[Ru(6m2TU)(PPh3)2(bipy)]PF6 (2) (where 2TU = 2-thiouracil and 6m2TU = 6-methyl-2-thiouracil) to suppress liver CSCs by targeting NF-κB and Akt/mTOR signaling. Complexes 1 and 2 displayed potent cytotoxic effects on cancer cell lines and suppressed liver CSCs from HepG2 cells. Increased phosphatidylserine exposure, loss of mitochondrial transmembrane potential, increased PARP (Asp214) cleavage, DNA fragmentation, chromatin condensation and cytoplasmic shrinkage were detected in HepG2 cells treated with these complexes. Mechanistically, complexes 1 and 2 target NF-κB and Akt/mTOR signaling in HepG2 cells. Cell motility inhibition was also detected in HepG2 cells treated with these complexes. Complexes 1 and 2 also inhibited tumor progression in mice with HepG2 cell xenografts and exhibited tolerable systemic toxicity. Taken together, these results indicate that these complexes are new anti-HCC drug candidates that can suppress liver CSCs.
Collapse
Affiliation(s)
- Larissa M Bomfim
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Sara P Neves
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Amanda M R M Coelho
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Mateus L Nogueira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
- Department of Propedeutics, School of Dentistry of the Federal University of Bahia, Salvador, Bahia, 40110-909, Brazil
- Department of Biological Sciences, State University of Feira de Santana, Feira de Santana, Bahia, 44036-900, Brazil
| | - Ludmila de F Valverde
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
- Department of Dentistry, Federal University of Sergipe, Lagarto, Sergipe, 49400-000, Brazil
| | - Clarissa A G Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
- Department of Propedeutics, School of Dentistry of the Federal University of Bahia, Salvador, Bahia, 40110-909, Brazil
- Department of Pathology, School of Medicine of the Federal University of Bahia, Salvador, Bahia, 40110-909, Brazil
- Center for Biotechnology and Cell Therapy, D'Or Institute for Research and Education (IDOR), Salvador, Bahia, 41253-190, Brazil
| | - Milena B P Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
- SENAI Institute of Innovation (ISI) in Health Advanced Systems, University Center SENAI/CIMATEC, Salvador, Bahia, 41650-010, Brazil
| | - Alzir A Batista
- Department of Chemistry, Federal University of São Carlos, São Paulo, São Carlos, 13561-901, Brazil
| | - Rodrigo S Correa
- Department of Chemistry, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil.
| |
Collapse
|
4
|
Bareth D, Jain S, Kumawat J, Kishore D, Dwivedi J, Hashmi SZ. Synthetic and pharmacological developments in the hybrid s-triazine moiety: A review. Bioorg Chem 2024; 143:106971. [PMID: 38016395 DOI: 10.1016/j.bioorg.2023.106971] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
This article summarizes the most recent advancements in the synthetic and pharmacological approaches along with the structure activity relationship towards the s-triazine and its derivatives. Much attention has been given to s-triazine core due to its facile synthesis, interesting pharmacology, high reactivity, and binding characteristics towards various enzymes. An array of biological applications has been demonstrated by s-triazines including antimalarial, anti-HIV, anti-viral, antimicrobial, anti-tuberculosis to name a few. In the present investigation s-triazine based molecular structures have been assembled in respect to their synthesis and medicinal properties. Further, the competence of s-triazine has been correlated and compared with the other heterocyclic moieties to substantiates-triazine a privileged scaffold. From the literature it is revealed that nucleophilic substitution at 2, 4, and 6 positions is significant for various biological applications. This article would help in assisting the chemists in designing novel molecular entities with high medicinal value.
Collapse
Affiliation(s)
- Diksha Bareth
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India
| | - Sonika Jain
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India
| | - Jyoti Kumawat
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India
| | - Dharma Kishore
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India
| | - Sonia Zeba Hashmi
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India.
| |
Collapse
|
5
|
Silva VR, Santos LDS, de Castro MVL, Dias RB, Valverde LDF, Rocha CAG, Soares MBP, Quadros CA, Correa RS, Batista AA, Bezerra DP. A novel ruthenium complex with 5-fluorouracil suppresses colorectal cancer stem cells by inhibiting Akt/mTOR signaling. Cell Death Discov 2023; 9:460. [PMID: 38104089 PMCID: PMC10725484 DOI: 10.1038/s41420-023-01759-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023] Open
Abstract
[Ru(5-FU)(PPh3)2(bipy)]PF6 (Ru/5-FU) is a novel ruthenium complex with 5-fluorouracil with promising potential against colorectal cancer (CRC). In the present study, we investigated the molecular mechanism of Ru/5-FU action in HCT116 CRC cells. Ru/5-FU exhibited potent cytotoxicity on a panel of cancer cell lines and on primary cancer cells and induced apoptosis in HCT116 CRC cells. Ru/5-FU reduced AKT1 gene transcripts, as well as the expression of Akt1 and Akt (pS473) and downstream Akt proteins mTOR (pS2448), S6 (pS235/pS236), 4EBP1 (pT36/pT45), GSK-3β (pS9) and NF-κB p65 (pS529), but not Akt upstream proteins Hsp90 and PI3K p85/p55 (pT458/pT199), indicating an inhibitory action of Akt/mTOR signaling. Ru/5-FU increased LC3B expression and reduced p62/SQSTM1 levels, indicating autophagy induction. Curiously, the autophagy inhibitors 3-methyladenine and chloroquine increased Ru/5-FU-induced cell death, indicating an induction of cytoprotective autophagy by this compound. Ru/5-FU also reduced clonogenic survival, as well as the percentage of CD133+ cells and colonosphere formation, indicating that Ru/5-FU can suppress stem cells in HCT116 cells. Ru/5-FU inhibited cell migration and invasion in wound healing assays and Transwell cell invasion assays, along with a reduction in vimentin expression and an increase in E-cadherin levels, indicating that Ru/5-FU can interfere with epithelial-mesenchymal transition. Ru/5-FU also inhibited in vivo HCT116 cell development and experimental lung metastases in mouse xenograft models. Altogether, these results indicate that Ru/5-FU is an anti-CRC chemotherapy drug candidate with the ability to suppress stemness in CRC cells by inhibiting Akt/mTOR signaling.
Collapse
Affiliation(s)
- Valdenizia R Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Luciano de S Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Maria V L de Castro
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
- Department of Propedeutics, School of Dentistry of the Federal University of Bahia, Salvador, Bahia, 40110-909, Brazil
| | - Ludmila de F Valverde
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Clarissa A G Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
- Department of Propedeutics, School of Dentistry of the Federal University of Bahia, Salvador, Bahia, 40110-909, Brazil
| | - Milena B P Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
- SENAI Institute of Innovation (ISI) in Health Advanced Systems, University Center SENAI/CIMATEC, Salvador, Bahia, 41650-010, Brazil
| | - Claudio A Quadros
- São Rafael Hospital, Rede D'Or/São Luiz, Salvador, Bahia, 41253-190, Brazil
- Bahia State University, Salvador, Bahia, 41150-000, Brazil
| | - Rodrigo S Correa
- Department of Chemistry, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Alzir A Batista
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13561-901, Brazil
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil.
| |
Collapse
|
6
|
Santos LDS, Silva VR, de Castro MVL, Dias RB, Valverde LDF, Rocha CAG, Soares MBP, Quadros CA, Dos Santos ER, Oliveira RMM, Carlos RM, Nogueira PCL, Bezerra DP. New ruthenium-xanthoxylin complex eliminates colorectal cancer stem cells by targeting the heat shock protein 90 chaperone. Cell Death Dis 2023; 14:832. [PMID: 38102125 PMCID: PMC10724293 DOI: 10.1038/s41419-023-06330-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023]
Abstract
In this work, we describe a novel ruthenium-xanthoxylin complex, [Ru(phen)2(xant)](PF6) (RXC), that can eliminate colorectal cancer (CRC) stem cells by targeting the chaperone Hsp90. RXC exhibits potent cytotoxicity in cancer cell lines and primary cancer cells, causing apoptosis in HCT116 CRC cells, as observed by cell morphology, YO-PRO-1/PI staining, internucleosomal DNA fragmentation, mitochondrial depolarization, and PARP cleavage (Asp214). Additionally, RXC can downregulate the HSP90AA1 and HSP90B1 genes and the expression of HSP90 protein, as well as the expression levels of its downstream/client elements Akt1, Akt (pS473), mTOR (pS2448), 4EBP1 (pT36/pT45), GSK-3β (pS9), and NF-κB p65 (pS529), implying that these molecular chaperones can be molecular targets for RXC. Moreover, this compound inhibited clonogenic survival, the percentage of the CRC stem cell subpopulation, and colonosphere formation, indicating that RXC can eliminate CRC stem cells. RXC reduced cell migration and invasion, decreased vimentin and increased E-cadherin expression, and induced an autophagic process that appeared to be cytoprotective, as autophagy inhibitors enhanced RXC-induced cell death. In vivo studies showed that RXC inhibits tumor progression and experimental metastasis in mice with CRC HCT116 cell xenografts. Taken together, these results highlight the potential of the ruthenium complex RXC in CRC therapy with the ability to eliminate CRC stem cells by targeting the chaperone Hsp90.
Collapse
Affiliation(s)
- Luciano de S Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil
| | - Valdenizia R Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil
| | - Maria V L de Castro
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil
- Department of Propedeutics, School of Dentistry of the Federal University of Bahia, Salvador, BA, 40110-909, Brazil
| | - Ludmila de F Valverde
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil
| | - Clarissa A G Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil
- Department of Propedeutics, School of Dentistry of the Federal University of Bahia, Salvador, BA, 40110-909, Brazil
| | - Milena B P Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil
- SENAI Institute of Innovation (ISI) in Health Advanced Systems, University Center SENAI/CIMATEC, Salvador, BA, 41650-010, Brazil
| | - Claudio A Quadros
- São Rafael Hospital, Rede D'Or/São Luiz, Salvador, BA, 41253-190, Brazil
- Bahia State University, Salvador, BA, 41150-000, Brazil
| | - Edjane R Dos Santos
- Institute of Natural, Human and Social Sciences, Federal University of Mato Grosso, Sinop, MT, 78557-267, Brazil
| | - Regina M M Oliveira
- Coordination of Science and Technology, Balsas Science Center, Federal University of Maranhão, Balsas, MA, 65800-000, Brazil
| | - Rose M Carlos
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13561-901, Brazil
| | - Paulo C L Nogueira
- Department of Chemistry, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil.
| |
Collapse
|
7
|
Kumari P, Ghosh S, Acharya S, Mitra P, Roy S, Ghosh S, Maji M, Singh S, Mukherjee A. Cytotoxic Imidazolyl-Mesalazine Ester-Based Ru(II) Complexes Reduce Expression of Stemness Genes and Induce Differentiation of Oral Squamous Cell Carcinoma. J Med Chem 2023; 66:14061-14079. [PMID: 37831489 DOI: 10.1021/acs.jmedchem.3c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The aggressiveness and recurrence of cancer is linked to cancer stem cells (CSCs), but drugs targeting CSCs may not succeed in the clinic due to the lack of a distinct CSC subpopulation. Clinical Pt(II) drugs can increase stemness. We screened 15 RuII or IrIII complexes with mesalazine or 3-aminobenzoate Schiff bases of the general formulas [Ru(p-cym)L]+, [Ru(p-cym)L], and [Ir(Cp*)L]+ (L = L1-L9) and found three complexes (2, 12, and 13) that are active against oral squamous cell carcinoma (OSCC) CSCs. There is a putative oncogenic role of transcription factors (viz. NOTCH1, SOX2, c-MYC) to enhance the stemness. Our work shows that imidazolyl-mesalazine ester-based RuII complexes inhibit growth of CSC-enriched OSCC 3D spheroids at low micromolar doses (2 μM). Complexes 2, 12, and 13 reduce stemness gene expression and induce differentiation markers (Involucrin, CK10) in OSCC 3D cultures. The imidazolyl-mesalazine ester-based RuII complex 13 shows the strongest effect. Downregulating c-MYC suggests that RuII complexes may target c-MYC-driven cancers.
Collapse
Affiliation(s)
- Pragya Kumari
- Department of Chemical Sciences and Centre for Advance Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, West Bengal, India
| | - Subhashis Ghosh
- National Institute of Biomedical Genomics, Kalyani-741251, West Bengal, India
| | - Sourav Acharya
- Department of Chemical Sciences and Centre for Advance Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, West Bengal, India
| | - Paromita Mitra
- National Institute of Biomedical Genomics, Kalyani-741251, West Bengal, India
| | - Souryadip Roy
- Department of Chemical Sciences and Centre for Advance Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, West Bengal, India
| | - Shilpendu Ghosh
- Department of Chemical Sciences and Centre for Advance Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, West Bengal, India
| | - Moumita Maji
- Department of Chemical Sciences and Centre for Advance Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, West Bengal, India
| | - Sandeep Singh
- National Institute of Biomedical Genomics, Kalyani-741251, West Bengal, India
| | - Arindam Mukherjee
- Department of Chemical Sciences and Centre for Advance Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, West Bengal, India
| |
Collapse
|
8
|
Ćwiklińska-Jurkowska M, Wiese-Szadkowska M, Janciauskiene S, Paprocka R. Disparities in Cisplatin-Induced Cytotoxicity-A Meta-Analysis of Selected Cancer Cell Lines. Molecules 2023; 28:5761. [PMID: 37570731 PMCID: PMC10421281 DOI: 10.3390/molecules28155761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Cisplatin is a classic anticancer drug widely used as a reference drug to test new metal complex drug candidates. We found an unexpected diversity in cisplatin-related cytotoxicity values, expressed as IC50 (the half-maximal inhibitory concentration) in tumour cell lines, such as MCF-7, HepG2 and HeLa. We reviewed the data published from 2018 to 2022. A total of 41 articles based on 56 in vitro experiments met our eligibility criteria. Using a meta-analysis based on a random effect model, we evaluated the cytotoxicity of cisplatin (IC50) after 48- or 72-h cell exposure. We found large differences between studies using a particular cell line. According to the random effect model, the 95% confidence intervals for IC50 were extremely wide. The heterogeneity of cisplatin IC50, as measured by the I2 index for all cancer cell lines, was over 99.7% at culture times of 48 or 72 h. Therefore, the variability between studies is due to experimental heterogeneity rather than chance. Despite the higher IC50 values after 48 h than after 72 h, the heterogeneity between the two culture periods did not differ significantly. This indicates that the duration of cultivation is not the main cause of heterogeneity. Therefore, the available data is diverse and not useful as a reference. We discuss possible reasons for the IC50 heterogeneity and advise researchers to conduct preliminary testing before starting experiments and not to solely rely on the published data. We hope that this systematic meta-analysis will provide valuable information for researchers searching for new cancer drugs using cisplatin as a reference drug.
Collapse
Affiliation(s)
- Małgorzata Ćwiklińska-Jurkowska
- Department of Biostatistics and Biomedical Systems Theory, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, Jagiellońska Str. 15, 87-067 Bydgoszcz, Poland;
| | - Małgorzata Wiese-Szadkowska
- Department of Immunology, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, M. Curie-Sklodowska Str. 9, 85-094 Bydgoszcz, Poland
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany;
| | - Renata Paprocka
- Department of Organic Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
| |
Collapse
|
9
|
El-Gendy ZA, Taher RF, Elgamal AM, Serag A, Hassan A, Jaleel GAA, Farag MA, Elshamy AI. Metabolites Profiling and Bioassays Reveal Bassia indica Ethanol Extract Protective Effect against Stomach Ulcers Development via HMGB1/TLR-4/NF-κB Pathway. Antioxidants (Basel) 2023; 12:1263. [PMID: 37371993 DOI: 10.3390/antiox12061263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Clinical manifestation of gastric ulcers is frequent, in addition to their costly drug regimens, warranting the development of novel drugs at lower costs. Although Bassia indica is well characterized for its anti-inflammatory and antioxidant potential, capacity of its ethanol extract (BIEE) to prevent stomach ulcers' progression has not been reported. A nuclear protein termed high-mobility group box 1 (HMGB1) plays a key role in the formation of stomach ulcers by triggering a number of inflammatory responses. The main purpose of the current investigation was to evaluate the in vivo anti-inflammatory and anti-ulcerogenic capabilities of BIEE against ethanol-induced gastric ulcers in rats via the HMGB1/TLR-4/NF-B signaling pathway. HMGB1 and Nuclear factor kappa (NF-B) expression, IL-1β and Nrf2 contents showed an increase along with ulcer development, concurrent with an increase in immunohistochemical TLR-4 level. In contrast, pre-treatment with BIEE significantly reduced HMGB1 and Nuclear factor kappa (NF-B) expression levels, IL-1β and Nrf2 contents and ulcer index value. Such protective action was further confirmed based on histological and immunohistochemical TLR-4 assays. Untargeted analysis via UPLC-ESI-Qtof-MS has allowed for the comprehensive characterization of 40 metabolites in BIEE mostly belonged to two main chemical classes, viz., flavonoids and lipids. These key metabolites, particularly flavonoids, suggesting a mediation for the anti-inflammatory and anti-ulcerogenic properties of BIEE, pose it as a promising natural drug regimen for treatment of stomach ulcers.
Collapse
Affiliation(s)
- Zeinab A El-Gendy
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Rehab F Taher
- Department of Natural Compounds Chemistry, National Research Center, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Abdelbaset M Elgamal
- Department of Chemistry of Microbial and Natural Products, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Ahmed Serag
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt
| | - Azza Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Gehad A Abdel Jaleel
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt
| | - Abdelsamed I Elshamy
- Department of Natural Compounds Chemistry, National Research Center, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
10
|
Rainho MDA, Siqueira PB, de Amorim ÍSS, Mencalha AL, Thole AA. Mitochondria in colorectal cancer stem cells - a target in drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:273-283. [PMID: 37457136 PMCID: PMC10344721 DOI: 10.20517/cdr.2022.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/15/2023] [Accepted: 04/24/2023] [Indexed: 07/18/2023]
Abstract
Colorectal cancer (CRC) is the third most diagnosed cancer and the second most deadly type of cancer worldwide. In late diagnosis, CRC can resist therapy regimens in which cancer stem cells (CSCs) are intimately related. CSCs are a subpopulation of tumor cells responsible for tumor initiation and maintenance, metastasis, and resistance to conventional treatments. In this scenario, colorectal cancer stem cells (CCSCs) are considered an important key for therapeutic failure and resistance. In its turn, mitochondria is an organelle involved in many mechanisms in cancer, including chemoresistance of cytotoxic drugs due to alterations in mitochondrial metabolism, apoptosis, dynamics, and mitophagy. Therefore, it is crucial to understand the mitochondrial role in CCSCs regarding CRC drug resistance. It has been shown that enhanced anti-apoptotic protein expression, mitophagy rate, and addiction to oxidative phosphorylation are the major strategies developed by CCSCs to avoid drug insults. Thus, new mitochondria-targeted drug approaches must be explored to mitigate CRC chemoresistance via the ablation of CCSCs.
Collapse
Affiliation(s)
- Mateus de Almeida Rainho
- Laboratory of Stem Cell Research, Histology and Embryology Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Priscyanne Barreto Siqueira
- Laboratory of Cancer Biology, Biometry and Biophysics Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Ísis Salviano Soares de Amorim
- Laboratory of Cancer Biology, Biometry and Biophysics Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Andre Luiz Mencalha
- Laboratory of Cancer Biology, Biometry and Biophysics Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Alessandra Alves Thole
- Laboratory of Stem Cell Research, Histology and Embryology Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| |
Collapse
|
11
|
Chang MR, Rusanov DA, Arakelyan J, Alshehri M, Asaturova AV, Kireeva GS, Babak MV, Ang WH. Targeting emerging cancer hallmarks by transition metal complexes: Cancer stem cells and tumor microbiome. Part I. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
12
|
Liang JL, Chen QN, Zhang JX, Lian WQ, Qiu YX, Xie HY, Liu WT, Xie WT, Xu WQ. A novel triazene-based cadmium metal–organic framework as a selective fluorescent sensor for Hg2+. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Zhang SH, Wang ZF, Tan H. Novel zinc(II)−curcumin molecular probes bearing berberine and jatrorrhizine derivatives as potential mitochondria-targeting anti-neoplastic drugs. Eur J Med Chem 2022; 243:114736. [DOI: 10.1016/j.ejmech.2022.114736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 11/04/2022]
|
14
|
Maciel D, Nunes N, Santos F, Fan Y, Li G, Shen M, Tomás H, Shi X, Rodrigues J. New insights into ruthenium( ii) metallodendrimers as anticancer drug nanocarriers: from synthesis to preclinic behaviour. J Mater Chem B 2022; 10:8945-8959. [PMID: 36278302 DOI: 10.1039/d2tb01280d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pre-clinical results highlight the potential of the low-generation poly(alkylidenamine)-based dendrimers as ruthenium metallodrug nanocarriers.
Collapse
Affiliation(s)
- Dina Maciel
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Nádia Nunes
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Francisco Santos
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Yu Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Gaoming Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Helena Tomás
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Xiangyang Shi
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - João Rodrigues
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
15
|
|
16
|
Li Y, Liu B, Shi H, Wang Y, Sun Q, Zhang Q. Metal complexes against breast cancer stem cells. Dalton Trans 2021; 50:14498-14512. [PMID: 34591055 DOI: 10.1039/d1dt02909f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the highest incidence, breast cancer is the leading cause of cancer deaths among women in the world. Tumor metastasis is the major contributor of high mortality in breast cancer, and the existence of cancer stem cells (CSCs) has been proven to be the cause of tumor metastasis. CSCs are a small proportion of tumor cells, and they are associated with self-renewal and tumorigenic potential. Given the significance of CSCs in tumor initiation, expansion, relapse, resistance, and metastasis, studies should investigate and discover effective anticancer agents that can not only inhibit the proliferation of differentiated tumor cells but also reduce the tumorigenic capability of CSCs. Thus, new therapies must be discovered to treat and prevent this severely hazardous disease of human beings. The success of platinum complexes in cancer treatment has laid the basic foundation for the utilization of metal complexes in the treatment of malignant cancers, in particular the highly aggressive triple-negative breast cancer. Importantly, metal complexes currently have diverse and versatile competences in the therapeutic targeting of CSCs. The anti-CSC properties provide a strong impetus for the development of novel metal-based compounds for the targeting of CSCs and treatment of chemotherapy-resistant and relapsed tumors. In this review, we provide the latest advances in metal complexes including platinum, ruthenium, osmium, iridium, manganese, cobalt, nickel, copper, zinc, palladium, and tin complexes against breast CSCs obtained over the past decade, with pertinent literature including those published until 2021.
Collapse
Affiliation(s)
- Yingsi Li
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, China.
| | - Boxin Liu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, China.
| | - Hongdong Shi
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Yi Wang
- Key Laboratory for Advanced Materials of MOE, School of Chemistry & Molecular Engineering, East China University of Science and Technology Shanghai, 200237, P. R. China
| | - Qi Sun
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, China.
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| |
Collapse
|
17
|
Cao J, Bhatnagar S, Wang J, Qi X, Prabha S, Panyam J. Cancer stem cells and strategies for targeted drug delivery. Drug Deliv Transl Res 2021; 11:1779-1805. [PMID: 33095384 PMCID: PMC8062588 DOI: 10.1007/s13346-020-00863-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 12/23/2022]
Abstract
Cancer stem cells (CSCs) are a small proportion of cancer cells with high tumorigenic activity, self-renewal ability, and multilineage differentiation potential. Standard anti-tumor therapies including conventional chemotherapy, radiation therapy, and molecularly targeted therapies are not effective against CSCs, and often lead to enrichment of CSCs that can result in tumor relapse. Therefore, it is hypothesized that targeting CSCs is key to increasing the efficacy of cancer therapies. In this review, CSC properties including CSC markers, their role in tumor growth, invasiveness, metastasis, and drug resistance, as well as CSC microenvironment are discussed. Further, CSC-targeted strategies including the use of targeted drug delivery systems are examined.
Collapse
Affiliation(s)
- Jin Cao
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Shubhmita Bhatnagar
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA
| | - Jiawei Wang
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA
| | - Xueyong Qi
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Swayam Prabha
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- Cancer Research & Molecular Biology and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jayanth Panyam
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
- School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
18
|
Nudelman A. Dimeric Drugs. Curr Med Chem 2021; 29:2751-2845. [PMID: 34375175 DOI: 10.2174/0929867328666210810124159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
This review intends to summarize the structures of an extensive number of symmetrical-dimeric drugs, having two monomers linked via a bridging entity while emphasizing the large versatility of biologically active substances reported to possess dimeric structures. The largest number of classes of these compounds consist of anticancer agents, antibiotics/antimicrobials, and anti-AIDS drugs. Other symmetrical-dimeric drugs include antidiabetics, antidepressants, analgesics, anti-inflammatories, drugs for the treatment of Alzheimer's disease, anticholesterolemics, estrogenics, antioxidants, enzyme inhibitors, anti-Parkisonians, laxatives, antiallergy compounds, cannabinoids, etc. Most of the articles reviewed do not compare the activity/potency of the dimers to that of their corresponding monomers. Only in limited cases, various suggestions have been made to justify unexpected higher activity of the dimers vs. the corresponding monomers. These suggestions include statistical effects, the presence of dimeric receptors, binding of a dimer to two receptors simultaneously, and others. It is virtually impossible to predict which dimers will be preferable to their respective monomers, or which linking bridges will lead to the most active compounds. It is expected that the extensive number of articles summarized, and the large variety of substances mentioned, which display various biological activities, should be of interest to many academic and industrial medicinal chemists.
Collapse
Affiliation(s)
- Abraham Nudelman
- Chemistry Department, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
19
|
Barakat A, El‐Faham A, Haukka M, Al‐Majid AM, Soliman SM. s
‐Triazine pincer ligands: Synthesis of their metal complexes, coordination behavior, and applications. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6317] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Assem Barakat
- Department of Chemistry, College of Science King Saud University PO Box 2455 Riyadh 11451 Saudi Arabia
- Department of Chemistry, Faculty of Science Alexandria University PO Box 426, Ibrahimia Alexandria 21321 Egypt
| | - Ayman El‐Faham
- Department of Chemistry, College of Science King Saud University PO Box 2455 Riyadh 11451 Saudi Arabia
- Department of Chemistry, Faculty of Science Alexandria University PO Box 426, Ibrahimia Alexandria 21321 Egypt
| | - Matti Haukka
- Department of Chemistry University of Jyväskylä PO Box 35 Jyväskylä FI‐40014 Finland
| | | | - Saied M. Soliman
- Department of Chemistry, Faculty of Science Alexandria University PO Box 426, Ibrahimia Alexandria 21321 Egypt
| |
Collapse
|
20
|
Allemailem KS, Almatroudi A, Alrumaihi F, Almatroodi SA, Alkurbi MO, Basfar GT, Rahmani AH, Khan AA. Novel Approaches of Dysregulating Lysosome Functions in Cancer Cells by Specific Drugs and Its Nanoformulations: A Smart Approach of Modern Therapeutics. Int J Nanomedicine 2021; 16:5065-5098. [PMID: 34345172 PMCID: PMC8324981 DOI: 10.2147/ijn.s321343] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023] Open
Abstract
The smart strategy of cancer cells to bypass the caspase-dependent apoptotic pathway has led to the discovery of novel anti-cancer approaches including the targeting of lysosomes. Recent discoveries observed that lysosomes perform far beyond just recycling of cellular waste, as these organelles are metabolically very active and mediate several signalling pathways to sense the cellular metabolic status. These organelles also play a significant role in mediating the immune system functions. Thus, direct or indirect lysosome-targeting with different drugs can be considered a novel therapeutic approach in different disease including cancer. Recently, some anticancer lysosomotropic drugs (eg, nortriptyline, siramesine, desipramine) and their nanoformulations have been engineered to specifically accumulate within these organelles. These drugs can enhance lysosome membrane permeabilization (LMP) or disrupt the activity of resident enzymes and protein complexes, like v-ATPase and mTORC1. Other anticancer drugs like doxorubicin, quinacrine, chloroquine and DQ661 have also been used which act through multi-target points. In addition, autophagy inhibitors, ferroptosis inducers and fluorescent probes have also been used as novel theranostic agents. Several lysosome-specific drug nanoformulations like mixed charge and peptide conjugated gold nanoparticles (AuNPs), Au-ZnO hybrid NPs, TPP-PEG-biotin NPs, octadecyl-rhodamine-B and cationic liposomes, etc. have been synthesized by diverse methods. These nanoformulations can target cathepsins, glucose-regulated protein 78, or other lysosome specific proteins in different cancers. The specific targeting of cancer cell lysosomes with drug nanoformulations is quite recent and faces tremendous challenges like toxicity concerns to normal tissues, which may be resolved in future research. The anticancer applications of these nanoformulations have led them up to various stages of clinical trials. Here in this review article, we present the recent updates about the lysosome ultrastructure, its cross-talk with other organelles, and the novel strategies of targeting this organelle in tumor cells as a recent innovative approach of cancer management.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammad O Alkurbi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghaiyda Talal Basfar
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
21
|
Hao J, Zhang H, Tian L, Yang L, Zhou Y, Zhang Y, Liu Y, Xing D. Evaluation of anticancer effects in vitro of new iridium(III) complexes targeting the mitochondria. J Inorg Biochem 2021; 221:111465. [PMID: 33989986 DOI: 10.1016/j.jinorgbio.2021.111465] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/18/2021] [Accepted: 04/18/2021] [Indexed: 12/12/2022]
Abstract
Iridium(III) complexes have the potential to serve as novel therapeutic drugs for treating tumor. In this work, three new complexes [Ir(ppy)2(cdppz)](PF6) (1) (ppy = 2-phenylpyridine, cdppz = 11-chlorodipyrido[3,2-a,2',3'-c]phenazine), [Ir(bzq)2(cdppz)](PF6) (2) (bzq = benzo[h]quinolone) and [Ir(piq)2(cdppz)](PF6) (3) (piq = 1-phenylisoquinoline) were prepared as well as characterized. MTT (3-(4,5-dimethylthiazole)-2,5-diphenyltetraazolium bromide) assay revealed that the complex 2 exerted potent cytotoxicity against to various cancer cells lines and particularly for SGC-7901 cells. Meanwhile, the complexes could suppress cell colonies formation and migration ability. Apoptosis assays of AO/EB staining as well as flow cytometry revealed that the synthesized complexes may cause apoptosis of SGC-7901 cells. Moreover, the decline of mitochondrial membrane potential (MMP), elevation of intracellular reactive oxygen species (ROS) levels and release of cytochrome c demonstrated the complexes could cause apoptosis mainly through the mitochondrial death pathway and arrest cell at G0/G1 phase. Additionally, the complexes have significant influence on the expression of proteins which is interrelated to cell apoptosis. In summary, our studies provided fundamental information regarding the further study of the possible anticancer mechanisms of iridium (III) complexes.
Collapse
Affiliation(s)
- Jing Hao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Huiwen Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Li Tian
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Linlin Yang
- Department of Pediatrics, Guangdong Women and Children Hospital, Guangzhou 510000, PR China.
| | - Yi Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuanyuan Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Degang Xing
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
22
|
Majeed Ganai A, Khan Pathan T, Hampannavar GA, Pawar C, Obakachi VA, Kushwaha B, Deshwar Kushwaha N, Karpoormath R. Recent Advances on the s‐Triazine Scaffold with Emphasis on Synthesis, Structure‐Activity and Pharmacological Aspects: A Concise Review. ChemistrySelect 2021. [DOI: 10.1002/slct.202004591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ab Majeed Ganai
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Tabasum Khan Pathan
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Girish A. Hampannavar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
- Department of Pharmaceutical Chemistry K.L.E.U's College of Pharmacy Vidyanagar, Hubli 580031, Karnataka India
| | - Chandrakant Pawar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Vincent A. Obakachi
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Babita Kushwaha
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Narva Deshwar Kushwaha
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| |
Collapse
|
23
|
Purushothaman B, Lee J, Hong S, Song JM. Multifunctional TPP-PEG-biotin self-assembled nanoparticle drug delivery-based combination therapeutic approach for co-targeting of GRP78 and lysosome. J Nanobiotechnology 2020; 18:102. [PMID: 32690101 PMCID: PMC7372800 DOI: 10.1186/s12951-020-00661-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
Background In this study, a multifunctional tetraphenylporphyrin (TPP) conjugated polyethylene glycol with biotin (TPP-PEG-biotin) as a photo-dynamic therapy (PDT) material encapsulating a ruthenium complex 1 (Ru-1) was fabricated as self-assembled nanoparticle (Ru-1@TPP-PEG-biotin SAN) to co-target glucose-regulated protein 78 (GRP78) and the lysosome as a new anti-cancer therapeutic strategy. Results The MTT assay results reveals the enhanced anticancer activity of the Ru-1@TPP-PEG-biotin SANs due to the co-targeting of the GRP78 and lysosome. The Ru-1@TPP-PEG-biotin reduced level of GRP78 and lysosomal ceramide that contributed to the stability of the lysosomal membrane. The endoplasmic reticulum (ER) stress concomitant with the inhibition of GRP78 was clearly monitored by the phosphorylation of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), and inositol-requiring enzyme 1 α (IRE1α) kinases to indicate the activation of the unfolded protein response (UPR) signaling using immunofluorescence assay. On the other hand, the degradation of the lysosome was observed through PDT action by the Ru-1@TPP-PEG-biotin SAN treatment. This was confirmed by the co-localization assay showing the disappearance of cathepsin D and lysosomal-associated membrane protein 1 (LAMP1) in the lysosome. Conclusions Considering lysosome-mediated autophagy is an effective cancer cell survival mechanism, the degradation of the lysosome along with GRP78 inhibition by the Ru-1@TPP-PEG-biotin SAN combination therapy is suggested as a new co-targeting cancer treatment.![]()
Collapse
Affiliation(s)
| | - Jeongmin Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Sera Hong
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Joon Myong Song
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
24
|
Acharya S, Ghosh S, Maji M, Parambil ARU, Singh S, Mukherjee A. Inhibition of 3D colon cancer stem cell spheroids by cytotoxic Ru II-p-cymene complexes of mesalazine derivatives. Chem Commun (Camb) 2020; 56:5421-5424. [PMID: 32292957 DOI: 10.1039/d0cc00472c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The Ru(ii) complex of an imidazole-mesalazine Schiff base is a unique example showing growth inhibition of 3D-colon cancer stem cell spheroids and bulk colon cancer cells at lower dosage than salinomycin or oxaliplatin. Unlike oxaliplatin which increases the expression of stemness genes (SOX2, KLF4, HES1 and Oct4), these complexes maintain a tight regulation.
Collapse
Affiliation(s)
- Sourav Acharya
- Department of Chemical Sciences and Centre for Advance Functional Materials (CAFM), Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India.
| | - Subhashis Ghosh
- National Institute of Biomedical and Genomics, Kalyani, West Bengal 741251, India.
| | - Moumita Maji
- Department of Chemical Sciences and Centre for Advance Functional Materials (CAFM), Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India.
| | - Ajmal Roshan Unniram Parambil
- Department of Chemical Sciences and Centre for Advance Functional Materials (CAFM), Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India.
| | - Sandeep Singh
- National Institute of Biomedical and Genomics, Kalyani, West Bengal 741251, India.
| | - Arindam Mukherjee
- Department of Chemical Sciences and Centre for Advance Functional Materials (CAFM), Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India.
| |
Collapse
|
25
|
Molecular Chaperones in Cancer Stem Cells: Determinants of Stemness and Potential Targets for Antitumor Therapy. Cells 2020; 9:cells9040892. [PMID: 32268506 PMCID: PMC7226806 DOI: 10.3390/cells9040892] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs) are a great challenge in the fight against cancer because these self-renewing tumorigenic cell fractions are thought to be responsible for metastasis dissemination and cases of tumor recurrence. In comparison with non-stem cancer cells, CSCs are known to be more resistant to chemotherapy, radiotherapy, and immunotherapy. Elucidation of mechanisms and factors that promote the emergence and existence of CSCs and their high resistance to cytotoxic treatments would help to develop effective CSC-targeting therapeutics. The present review is dedicated to the implication of molecular chaperones (protein regulators of polypeptide chain folding) in both the formation/maintenance of the CSC phenotype and cytoprotective machinery allowing CSCs to survive after drug or radiation exposure and evade immune attack. The major cellular chaperones, namely heat shock proteins (HSP90, HSP70, HSP40, HSP27), glucose-regulated proteins (GRP94, GRP78, GRP75), tumor necrosis factor receptor-associated protein 1 (TRAP1), peptidyl-prolyl isomerases, protein disulfide isomerases, calreticulin, and also a transcription heat shock factor 1 (HSF1) initiating HSP gene expression are here considered as determinants of the cancer cell stemness and potential targets for a therapeutic attack on CSCs. Various approaches and agents are discussed that may be used for inhibiting the chaperone-dependent development/manifestations of cancer cell stemness.
Collapse
|
26
|
|
27
|
King AP, Wilson JJ. Endoplasmic reticulum stress: an arising target for metal-based anticancer agents. Chem Soc Rev 2020; 49:8113-8136. [DOI: 10.1039/d0cs00259c] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metal anticancer agents are rapidly emerging as selective, potent therapeutics that exhibit anticancer activity by inducing endoplasmic reticulum stress.
Collapse
Affiliation(s)
- A. Paden King
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| |
Collapse
|
28
|
Peng W, Hegazy AM, Jiang N, Chen X, Qi HX, Zhao XD, Pu J, Ye RR, Li RT. Identification of two mitochondrial-targeting cyclometalated iridium(III) complexes as potent anti-glioma stem cells agents. J Inorg Biochem 2019; 203:110909. [PMID: 31689591 DOI: 10.1016/j.jinorgbio.2019.110909] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/24/2019] [Accepted: 10/27/2019] [Indexed: 02/05/2023]
Abstract
Glioma stem cells (GSCs) are thought to be responsible for the recurrence and invasion of glioblastoma multiform (GBM), which have been evaluated and exploited as the therapeutic target for GBM. Cyclometalated iridium(III) complexes have been demonstrated as the potential anticancer agents, however, their antitumor efficacies against GSCs are still unknown. Herein, we investigated the antitumor activity of two cyclometalated iridium(III) complexes [Ir(ppy)2L](PF6) (Ir1) and [Ir(thpy)2L](PF6) (Ir2) (ppy = 2-phenylpyridine, thpy = 2-(2-thienyl)pyridine and L = 4,4'-Bis(hydroxymethyl)-2,2'-bipyridine) against GSCs. The results clearly indicate that Ir1 and Ir2 kill GSCs selectively with IC50 values ranging from 5.26-9.05 μM. Further mechanism research display that Ir1 and Ir2 can suppress the proliferation of GSCs, penetrate into GSCs efficiently, localize to mitochondria, and induce mitochondria-mediated apoptosis, including the loss of mitochondrial membrane (MMP), elevation of intracellular reactive oxygen species (ROS) and caspases activation. Moreover, Ir1 and Ir2 can destroy the GSCs self-renewal and unlimited proliferation capacity by affecting the GSCs colony formation. According our knowledge, this is the first study to investigate the anti-GSCs properties of cyclometalated iridium(III) complexes.
Collapse
Affiliation(s)
- Wan Peng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ahmed M Hegazy
- The First Department of Neurosurgery, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China; Zoology Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Ning Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xi Chen
- The First Department of Neurosurgery, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China; Kunming Medical University, Kunming 650101, China
| | - Hua-Xin Qi
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
| | - Xu-Dong Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China; Laboratory of Animal Tumor Models, Department of Thoracic Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jun Pu
- The First Department of Neurosurgery, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China; Kunming Medical University, Kunming 650101, China.
| | - Rui-Rong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Rong-Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
29
|
Lai H, Zeng D, Liu C, Zhang Q, Wang X, Chen T. Selenium-containing ruthenium complex synergizes with natural killer cells to enhance immunotherapy against prostate cancer via activating TRAIL/FasL signaling. Biomaterials 2019; 219:119377. [DOI: 10.1016/j.biomaterials.2019.119377] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022]
|
30
|
Silva SLR, Baliza IRS, Dias RB, Sales CBS, Rocha CAG, Soares MBP, Correa RS, Batista AA, Bezerra DP. Ru(II)-thymine complex causes DNA damage and apoptotic cell death in human colon carcinoma HCT116 cells mediated by JNK/p38/ERK1/2 via a p53-independent signaling. Sci Rep 2019; 9:11094. [PMID: 31366902 PMCID: PMC6668648 DOI: 10.1038/s41598-019-47539-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/19/2019] [Indexed: 12/19/2022] Open
Abstract
Ru(II)-thymine complex [Ru(PPh3)2(Thy)(bipy)]PF6 (where PPh3 = triphenylphosphine, Thy = thyminate and bipy = 2,2′-bipyridine) is a potent cytotoxic agent with ability to bind to DNA, inducing caspase-mediated apoptosis in leukemia cells. In this study, we investigated the mechanism underlying the cell death induction by Ru(II)-thymine complex in human colon carcinoma HCT116 cells, as well as its effect in xenograft tumor model. The Ru(II)-thymine complex increased significantly the percentage of apoptotic HCT116 cells. Co-treatment with a JNK/SAPK inhibitor, p38 MAPK inhibitor and MEK inhibitor, which inhibit the activation of ERK1/2, caused a marked reduction of the percentage of complex-induced apoptotic cells. Moreover, the Ru(II)-thymine complex induced an increase in phospho-JNK2 (T183/Y185), phospho-p38α (T180/Y182) and phospho-ERK1 (T202/Y204) levels in HCT116 cells. Treatment with the Ru(II)-thymine complex increased significantly the phospho-histone H2AX (S139) expression, a DNA damage marker. The expression of phospho-p53 (S15) and MDM2 were not changed, and the co-treatment with a p53 inhibitor (cyclic pifithrin-α) did not reduce the complex-induced apoptosis in HCT116 cells, indicating that the Ru(II)-thymine complex induces DNA damage-mediated apoptosis by JNK/p38/ERK1/2 via a p53-independent signaling. The Ru(II)-thymine complex (1 and 2 mg/kg/day) also inhibited HCT116 cell growth in a xenograft model, reducing the tumor mass at 32.6–40.1%. Altogether, indicate that the Ru(II)-thymine complex is a promising anti-colon cancer drug candidate.
Collapse
Affiliation(s)
- Suellen L R Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Ingrid R S Baliza
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Caroline B S Sales
- Department of Biomorphology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-902, Brazil
| | - Clarissa A Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Milena B P Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Rodrigo S Correa
- Department of Chemistry, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Alzir A Batista
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13561-901, Brazil
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil.
| |
Collapse
|
31
|
Guan S, Pan T, Zhang Y, Zeng Z, Mu L, Zhu D, Chang B, Zheng K, Qian J, Xie Q, Mei W, Tang W, Bai M. Synthesis, DNA-binding, and antitumor activity of polypyridyl-ruthenium(II) complexes [Ru(L)2(DClPIP)] (L = bpy, phen; DClPIP = 2-(2,4-dichlorophenyl)-1H-imidazo[4,5-f][1, 10]phenanthroline). J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1630614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shouhai Guan
- Department of Vascular Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Pan
- Department of Vascular Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanyang Zhang
- Department of Vascular Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaolin Zeng
- Department of Vascular Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Luwen Mu
- Department of Vascular Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Duo Zhu
- Department of Vascular Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Boyang Chang
- Department of Vascular Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kangdi Zheng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiesheng Qian
- Department of Vascular Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiang Xie
- Department of Vascular Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenjie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenjie Tang
- Department of Vascular Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingjun Bai
- Department of Vascular Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Qin QP, Wang ZF, Wang SL, Luo DM, Zou BQ, Yao PF, Tan MX, Liang H. In vitro and in vivo antitumor activities of three novel binuclear platinum(II) complexes with 4′-substituted-2,2′:6′,2″-terpyridine ligands. Eur J Med Chem 2019; 170:195-202. [DOI: 10.1016/j.ejmech.2019.03.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/02/2019] [Accepted: 03/05/2019] [Indexed: 12/11/2022]
|
33
|
Bailly C, Waring MJ. Pharmacological effectors of GRP78 chaperone in cancers. Biochem Pharmacol 2019; 163:269-278. [PMID: 30831072 DOI: 10.1016/j.bcp.2019.02.038] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/28/2019] [Indexed: 12/21/2022]
Abstract
The protein chaperone GRP78 is a master regulator of endoplasmic reticulum (ER) functions and is frequently over-expressed at the surface of cancer cells where it contributes to chemo-resistance. It represents a well-studied ER stress marker but an under-explored target for new drug development. This review aims to untangle the structural and functional diversity of GRP78 modulators, covering over 130 natural products, synthetic molecules, specific peptides and monoclonal antibodies that target GRP78. Several approaches to promote or to incapacitate GRP78 are presented, including the use of oligonucleotides and specific cell-delivery peptides often conjugated to cytotoxic payloads to design GRP78-targeted therapeutics. A repertoire of drugs that turn on/off GRP78 is exposed, including molecules which bind directly to GRP78, principally to its ATP site. There exist many options to regulate positively or negatively the expression of the chaperone, or to interfere with its cellular trafficking. This review provides a molecular cartography of GRP78 pharmacological effectors and adds weight to the notion that GRP78 repressors could represent promising anticancer therapeutics, notably as regards limiting chemo-resistance of cancer cells. The potential of GRP78-targeting drugs in other therapeutic modalities is also evoked.
Collapse
Affiliation(s)
- Christian Bailly
- UMR-S 1172, Centre de Recherche Jean-Pierre Aubert, INSERM, University of Lille, CHU Lille, 59045 Lille, France.
| | - Michael J Waring
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
34
|
Stilgenbauer M, Jayawardhana AMDS, Datta P, Yue Z, Gray M, Nielsen F, Bowers DJ, Xiao H, Zheng YR. A spermine-conjugated lipophilic Pt(iv) prodrug designed to eliminate cancer stem cells in ovarian cancer. Chem Commun (Camb) 2019; 55:6106-6109. [DOI: 10.1039/c9cc02081k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A spermine-conjugated lipophilic Pt(iv) prodrug is designed to induce mitochondrial damage and eliminate ovarian cancer stem cells.
Collapse
Affiliation(s)
| | | | - Payel Datta
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| | - Zhizhou Yue
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| | - Michael Gray
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| | - Frederick Nielsen
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| | - David J. Bowers
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Yao-Rong Zheng
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| |
Collapse
|
35
|
Lin K, Zhao ZZ, Bo HB, Hao XJ, Wang JQ. Applications of Ruthenium Complex in Tumor Diagnosis and Therapy. Front Pharmacol 2018; 9:1323. [PMID: 30510511 PMCID: PMC6252376 DOI: 10.3389/fphar.2018.01323] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/29/2018] [Indexed: 12/27/2022] Open
Abstract
Ruthenium complexes are a new generation of metal antitumor drugs that are currently of great interest in multidisciplinary research. In this review article, we introduce the applications of ruthenium complexes in the diagnosis and therapy of tumors. We focus on the actions of ruthenium complexes on DNA, mitochondria, and endoplasmic reticulum of cells, as well as signaling pathways that induce tumor cell apoptosis, autophagy, and inhibition of angiogenesis. Furthermore, we highlight the use of ruthenium complexes as specific tumor cell probes to dynamically monitor the active biological component of the microenvironment and as excellent photosensitizer, catalyst, and bioimaging agents for phototherapies that significantly enhance the diagnosis and therapeutic effect on tumors. Finally, the combinational use of ruthenium complexes with existing clinical antitumor drugs to synergistically treat tumors is discussed.
Collapse
Affiliation(s)
- Ke Lin
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zi-Zhuo Zhao
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hua-Ben Bo
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiao-Juan Hao
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, VIC, Australia
| | - Jin-Quan Wang
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|