1
|
Musetti B, Kun A, Menchaca D, Rodríguez-Haralambides A, Varela J, Thomson L, Bahnson EM. Cannabis sativa extracts inhibit LDL oxidation and the formation of foam cells in vitro, acting as potential multi-step inhibitors of atherosclerosis development. PLoS One 2024; 19:e0310777. [PMID: 39705234 DOI: 10.1371/journal.pone.0310777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/04/2024] [Indexed: 12/22/2024] Open
Abstract
Atherosclerotic disease is the leading cause of death world-wide. Our goal was to explore the effect of phytocannabinoids on the molecular mechanisms triggering the development of the atheromatous lesion. Three cannabis sativa extracts of different chemotypes were chemically characterized by UPLC-DAD. The capacity of the extracts to prevent the oxidation of LDL, the formation of foam cells and the activation of an inflammatory response by J774 cells, were monitored by UV-Vis spectrometry, confocal-microscopy and western blot. Three varieties of cannabis sativa, with high (E1), intermediate (E2) and low (E3) THC/CBD ratios were selected. The three cannabis extracts inhibited the oxidation of LDL by copper ions and the formation of foam cells by J774.1 cells challenged with oxLDL (ED50 5-12 μg mL-1). The effect of the cannabinoid extracts on the endocytic process was independent of the canonical cannabinoid receptors, CB1 and CB2, but related to the action of non-canonical receptors (TRPV1, TRPV4 and GPR55), involved in calcium signaling. Decreased levels of CD36 and OLR1 scavenger receptors were, at least partially, responsible for the diminished uptake of oxLDL induced by phytocannabinoids. The downregulation of CD36 and OLR1 could be explained by the observed inhibitory effect of the cannabis extracts on the activation of the NFκB pathway by oxLDL. Phytocannabinoids interfere with the main events leading to the development of the atheromatous plaque, opening new venues on atherosclerosis therapy.
Collapse
Affiliation(s)
- Bruno Musetti
- Facultad de Ciencias, Instituto de Química Biológica, Laboratorio de Enzimología, Universidad de la República, Montevideo, Uruguay
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Alejandra Kun
- Facultad de Ciencias, Biología Celular del Sistema Nervioso Periférico-DPAN-IIBCE, Instituto de Investigaciones Biológicas Clemente Estable, Sección Bioquímica, Montevideo, Uruguay
- CIBERNED-España, Madrid, Spain
| | - David Menchaca
- Laboratorio Química Bioanalítica, Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Uruguay
| | - Alejandra Rodríguez-Haralambides
- Laboratorio Química Bioanalítica, Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Uruguay
| | - Javier Varela
- Facultad de Ciencias, Laboratorio de Química Orgánica y Medicinal, de la República, Uruguay
| | - Leonor Thomson
- Facultad de Ciencias, Instituto de Química Biológica, Laboratorio de Enzimología, Universidad de la República, Montevideo, Uruguay
| | - Edward M Bahnson
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
2
|
Novel cytotoxic amphiphilic nitro-compounds derived from a synthetic route for paraconic acids. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|