1
|
Shablykin OV, Brovarets VS, Shablykina OV. Recyclization of 5-Amino- oxazoles as a Route to new Functionalized Heterocycles (Developments of V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine). CHEM REC 2024; 24:e202300264. [PMID: 37882374 DOI: 10.1002/tcr.202300264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/05/2023] [Indexed: 10/27/2023]
Abstract
The recyclizations of 5-amino- and 5-hydrazine-1,3-oxazoles mainly with electron-withdrawing group in 4th position are considered. The chemical behavior of these heterocycles is due to the presence of two hidden amide fragments; therefore, the recyclization processes include a stage of nucleophile attack on 2nd or 5th position of the oxazole cycle. When the nitrile group is present in 4th position, it is often involved in the recyclization forming α-aminoazoles. 5-Amino/hydrazine-1,3-oxazoles undergo recyclization both in nucleophilic (amines, hydrazine, thionating agents) and electrophilic medium ((trifluoro)acetic acid, other acylating agents). The numerous types of functionalized heterocycles can be easily obtained with the usage of these recyclizations, such as the derivatives of 3-amino-6,7-dihydro-5H-pyrrolo[1,2-a]imidazole, imidazolidine-2,4-dione, 1H-pyrazole-3,4,5-triamine, 5,6-diamino-2,3-diphenylpyrimidin-4(3H)-one, 2-(2-R-7-oxo-5-(trifluoromethyl)oxazolo[5,4-d]pyrimidin-6(7H)-yl)acetic acid, 2-R-4-(5-R'-1,3,4-oxadiazol-2-yl)oxazol-5-amine, (amino(5-amino-1,3,4-thiadiazol-2-yl)methyl)phosphonate.
Collapse
Affiliation(s)
- Oleh V Shablykin
- Department of chemistry of bioactive nitrogen-containing heterocyclic bases, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Academician Kukhar str., 1, Kyiv, Ukraine
- Enamine Ltd. (www.enamine.net), Winston Churchill str., 78, Kyiv, Ukraine
| | - Volodymyr S Brovarets
- Department of chemistry of bioactive nitrogen-containing heterocyclic bases, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Academician Kukhar str., 1, Kyiv, Ukraine
| | - Olga V Shablykina
- Department of chemistry of bioactive nitrogen-containing heterocyclic bases, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Academician Kukhar str., 1, Kyiv, Ukraine
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str., 60, Kyiv, Ukraine
| |
Collapse
|
2
|
Bivacqua R, Romeo I, Barreca M, Barraja P, Alcaro S, Montalbano A. HSV-1 Glycoprotein D and Its Surface Receptors: Evaluation of Protein-Protein Interaction and Targeting by Triazole-Based Compounds through In Silico Approaches. Int J Mol Sci 2023; 24:ijms24087092. [PMID: 37108255 PMCID: PMC10138673 DOI: 10.3390/ijms24087092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Protein-protein interactions (PPI) represent attractive targets for drug design. Thus, aiming at a deeper insight into the HSV-1 envelope glycoprotein D (gD), protein-protein docking and dynamic simulations of gD-HVEM and gD-Nectin-1 complexes were performed. The most stable complexes and the pivotal key residues useful for gD to anchor human receptors were identified and used as starting points for a structure-based virtual screening on a library of both synthetic and designed 1,2,3-triazole-based compounds. Their binding properties versus gD interface with HVEM and Nectin-1 along with their structure-activity relationships (SARs) were evaluated. Four [1,2,3]triazolo[4,5-b]pyridines were identified as potential HSV-1 gD inhibitors, for their good theoretical affinity towards all conformations of HSV-1 gD. Overall, this study suggests promising basis for the design of new antiviral agents targeting gD as a valuable strategy to prevent viral attachment and penetration into the host cell.
Collapse
Affiliation(s)
- Roberta Bivacqua
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Isabella Romeo
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Marilia Barreca
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Paola Barraja
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Alessandra Montalbano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
3
|
Devadoss T, Sowmya V, Bastati R. Synthesis of 1,6‐Naphthyridine and Its Derivatives: A Systematic Review. ChemistrySelect 2021. [DOI: 10.1002/slct.202004462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Thangaraj Devadoss
- Department of Pharmaceutical Chemistry KVSR Siddhartha College of Pharmaceutical Sciences Pinnamaneni Polyclinic Road, Siddhartha Nagar, Vijayawada Andhra Pradesh India, PIN- 520010
| | - Veldhi Sowmya
- Department of Pharmaceutical Chemistry KVSR Siddhartha College of Pharmaceutical Sciences Pinnamaneni Polyclinic Road, Siddhartha Nagar, Vijayawada Andhra Pradesh India, PIN- 520010
| | - Ravali Bastati
- Department of Pharmaceutical Chemistry KVSR Siddhartha College of Pharmaceutical Sciences Pinnamaneni Polyclinic Road, Siddhartha Nagar, Vijayawada Andhra Pradesh India, PIN- 520010
| |
Collapse
|
4
|
Spanò V, Barreca M, Cilibrasi V, Genovese M, Renda M, Montalbano A, Galietta LJV, Barraja P. Evaluation of Fused Pyrrolothiazole Systems as Correctors of Mutant CFTR Protein. Molecules 2021; 26:molecules26051275. [PMID: 33652850 PMCID: PMC7956813 DOI: 10.3390/molecules26051275] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by mutations that impair the function of the CFTR chloride channel. The most frequent mutation, F508del, causes misfolding and premature degradation of CFTR protein. This defect can be overcome with pharmacological agents named “correctors”. So far, at least three different classes of correctors have been identified based on the additive/synergistic effects that are obtained when compounds of different classes are combined together. The development of class 2 correctors has lagged behind that of compounds belonging to the other classes. It was shown that the efficacy of the prototypical class 2 corrector, the bithiazole corr-4a, could be improved by generating conformationally-locked bithiazoles. In the present study, we investigated the effect of tricyclic pyrrolothiazoles as analogues of constrained bithiazoles. Thirty-five compounds were tested using the functional assay based on the halide-sensitive yellow fluorescent protein (HS-YFP) that measured CFTR activity. One compound, having a six atom carbocyle central ring in the tricyclic pyrrolothiazole system and bearing a pivalamide group at the thiazole moiety and a 5-chloro-2-methoxyphenyl carboxamide at the pyrrole ring, significantly increased F508del-CFTR activity. This compound could lead to the synthesis of a novel class of CFTR correctors.
Collapse
Affiliation(s)
- Virginia Spanò
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (V.S.); (M.B.); (V.C.); (P.B.)
| | - Marilia Barreca
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (V.S.); (M.B.); (V.C.); (P.B.)
| | - Vincenzo Cilibrasi
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (V.S.); (M.B.); (V.C.); (P.B.)
| | - Michele Genovese
- Telethon Institute of Genetics and Medicine (TIGEM), Campi Flegrei 34, 80078 Naples, Italy; (M.G.); (M.R.); (L.J.V.G.)
| | - Mario Renda
- Telethon Institute of Genetics and Medicine (TIGEM), Campi Flegrei 34, 80078 Naples, Italy; (M.G.); (M.R.); (L.J.V.G.)
| | - Alessandra Montalbano
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (V.S.); (M.B.); (V.C.); (P.B.)
- Correspondence: ; Tel.: +39-091-238-968-22
| | - Luis Juan Vicente Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Campi Flegrei 34, 80078 Naples, Italy; (M.G.); (M.R.); (L.J.V.G.)
- Department of Translational Medical Sciences (DISMET), University of Naples, “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Paola Barraja
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (V.S.); (M.B.); (V.C.); (P.B.)
| |
Collapse
|
5
|
Lavanya M, Lin C, Mao J, Thirumalai D, Aabaka SR, Yang X, Mao J, Huang Z, Zhao J. Synthesis and Anticancer Properties of Functionalized 1,6-Naphthyridines. Top Curr Chem (Cham) 2021; 379:13. [PMID: 33624162 DOI: 10.1007/s41061-020-00314-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/12/2020] [Indexed: 12/29/2022]
Abstract
The burgeoning interest in synthesis and biological applications of 1,6-naphthyridines reflects the importance of 1,6-naphthyridines in the synthetic as well as medicinal chemistry fields. Specially, 1,6-naphthyridines are pharmacologically active, with variety of applications such as anticancer, anti-human immunodeficiency virus (HIV), anti-microbial, analgesic, anti-inflammatory and anti-oxidant activities. Although collective recent synthetic developments have paved a path to a wide range of functionalized 1,6-naphthyridines, a complete correlation of synthesis with biological activity remains elusive. The current review focuses on recent synthetic developments from the last decade and a thorough study of the anticancer activity of 1,6-naphthyridines on different cancer cell lines. Anticancer activity has been correlated to 1,6-naphthyridines using the literature on the structure-activity relationship (SAR) along with molecular modeling studies. Exceptionally, at the end of this review, the utility of 1,6-naphthyridines displaying activities other than anticancer has also been included as a glimmering extension.
Collapse
Affiliation(s)
- Mallu Lavanya
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, Xindu, People's Republic of China.,School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| | - Chong Lin
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, Xindu, People's Republic of China.
| | - Jincheng Mao
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, Xindu, People's Republic of China.
| | | | - Sreenath Reddy Aabaka
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, Xindu, People's Republic of China
| | - Xiaojiang Yang
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, Xindu, People's Republic of China
| | - Jinhua Mao
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, Xindu, People's Republic of China
| | - Zhiyu Huang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| | - Jinzhou Zhao
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, Xindu, People's Republic of China
| |
Collapse
|
6
|
Guranova N, Kantin G, Dar'in D, Krasavin M. Diazo Glutaconimides: an Unexplored Type of Heterocyclic α‐Diazocarbonyl Compounds Conveniently Evolved into Pyridine‐2,6(1
H
,3
H
)‐diones and Oxazolo[5,4‐
b
]pyridin‐5(4
H
)‐ones. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Natalia Guranova
- Department of Natural Products Chemistry, Institute of Chemistry, Saint Petersburg State University 26 Universitetskii prospekt Peterhof 198504 Russian Federation
| | - Grigory Kantin
- Department of Natural Products Chemistry, Institute of Chemistry, Saint Petersburg State University 26 Universitetskii prospekt Peterhof 198504 Russian Federation
| | - Dmitry Dar'in
- Department of Natural Products Chemistry, Institute of Chemistry, Saint Petersburg State University 26 Universitetskii prospekt Peterhof 198504 Russian Federation
| | - Mikhail Krasavin
- Department of Natural Products Chemistry, Institute of Chemistry, Saint Petersburg State University 26 Universitetskii prospekt Peterhof 198504 Russian Federation
| |
Collapse
|
7
|
Vydzhak RN, Panchishin SY, Brovarets VS. Application of Nickel Complexes with 1,3-Dicarbonyl Compounds for Synthesis of Fused 4-Aminopyridine-Based Systems. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220080101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|