1
|
Shakir M, Ali A, Lakshmi S, Garg M, Abdulhameed Almuqdadi HT, Irfan I, Kamthan M, Joshi MC, Javed S, Rawat DS, Abid M. Synthesis and mechanistic studies of 4-aminoquinoline-Isatin molecular hybrids and Schiff's bases as promising antimicrobial agents. Eur J Med Chem 2025; 283:117127. [PMID: 39673862 DOI: 10.1016/j.ejmech.2024.117127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/09/2024] [Accepted: 11/22/2024] [Indexed: 12/16/2024]
Abstract
In this investigation, to determine their potential as specific antibacterial agents, Schiff's bases (LT-SB1-23 and SB1-SB12) and novel quinoline-isatin hybrids were subjected to microbiological testing. The in-vitro screening against bacterial strains (Escherichia coli, Enterococcus faecalis, Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella typhi) exhibited their antibacterial potential with many of the compounds showing inhibition range of 90-100 % at 200 μg/mL, against most of the tested strains. The MIC values of some of the compounds showed good antibacterial efficacy with values ranging from 32 to 128 μg/mL. Their bacterial growth inhibitory potential was further supported by disk diffusion and growth curve assays. Interestingly, one of the Schiff's bases (LT-SB7) displayed strong synergistic activity against E. coli and S. typhi with 16-64 folds reduction in MIC values. Additionally, it exhibited up to 85 % suppression of biofilm at ½MIC against AA209 environmental bacterial isolate and reduced the development of multidrug-resistant bacterial isolates. Promising compound LT-SB7 underwent 100 ns molecular dynamics simulations with biofilm-causing protein (PDB ID: 7C7U) to assess conformational changes and complex stability. Overall, this study identified compounds as effective antibacterial alternatives for the future.
Collapse
Affiliation(s)
- Mohd Shakir
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India; Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Asghar Ali
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India; Clinical Biochemistry Lab, Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Swati Lakshmi
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Manika Garg
- Clinical Biochemistry Lab, Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Haider Thaer Abdulhameed Almuqdadi
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India; Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | - Iram Irfan
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohan Kamthan
- Clinical Biochemistry Lab, Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Mukesh C Joshi
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, 110007, India
| | - Saleem Javed
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Diwan S Rawat
- Department of Chemistry, University of Delhi, Delhi, 110007, India.
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
2
|
Ubaid A, Shakir M, Ali A, Khan S, Alrehaili J, Anwer R, Abid M. Synthesis and Structure-Activity Relationship (SAR) Studies on New 4-Aminoquinoline-Hydrazones and Isatin Hybrids as Promising Antibacterial Agents. Molecules 2024; 29:5777. [PMID: 39683935 DOI: 10.3390/molecules29235777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
In response to the escalating crisis of antimicrobial resistance (AMR), there is an urgent need to research and develop novel antibiotics. This study presents the synthesis and assessment of innovative 4-aminoquinoline-benzohydrazide-based molecular hybrids bearing aryl aldehydes (HD1-23) and substituted isatin warheads (HS1-12), characterized using multispectroscopic techniques with high purity confirmed by HRMS. The compounds were evaluated against a panel of clinically relevant antibacterial strains including the Gram-positive Enterococcus faecium, Bacillus subtilis, and Staphylococcus aureus and a Gram-negative Pseudomonas aeruginosa bacterial strain. Preliminary screenings revealed that several test compounds had significant antimicrobial effects, with HD6 standing out as a promising compound. Additionally, HD6 demonstrated impressively low minimum inhibitory concentrations (MICs) in the range of (8-128 μg/mL) against the strains B. subtilis, S. aureus and P. aeruginosa. Upon further confirmation, HD6 not only showed bactericidal properties with low minimum bactericidal concentrations (MBCs) such as (8 μg/mL against B. subtilis) but also displayed a synergistic effect when combined with the standard drug ciprofloxacin (CIP), highlighted by its FICI value of (0.375) against P. aeruginosa, while posing low toxicity risk. Remarkably, HD6 also inhibited a multidrug-resistant (MDR) bacterial strain, marking it as a critical addition to our antimicrobial arsenal. Computation studies were performed to investigate the possible mechanism of action of the most potent hybrid HD6 on biofilm-causing protein (PDB ID: 7C7U). The findings suggested that HD6 exhibits favorable binding free energy, which is supported by the MD simulation studies, presumably responsible for the bacterial growth inhibition. Overall, this study provides a suitable core for further synthetic alterations for their optimization as an antibacterial agent.
Collapse
Affiliation(s)
- Ayesha Ubaid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohd Shakir
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Asghar Ali
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
- Clinical Biochemistry Laboratory, Department of Biochemistry, School of Chemical and Life Science, Jamia Hamdard, New Delhi 110062, India
| | - Sobia Khan
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Jihad Alrehaili
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317-4233, Saudi Arabia
| | - Razique Anwer
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317-4233, Saudi Arabia
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
3
|
Lekkala R, Ng YH, Feroz SR, Norazmi NAZB, Ali AH, Hasbullah SA, Ismail N, Agustar HK, Lau YL, Hassan NI. Design and synthesis of pyrano[2,3-c]pyrazole-4-aminoquinoline hybrids as effective antimalarial compounds. Eur J Med Chem 2024; 279:116828. [PMID: 39244861 DOI: 10.1016/j.ejmech.2024.116828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/22/2024] [Accepted: 09/01/2024] [Indexed: 09/10/2024]
Abstract
In this work, a series of nineteen novel pyrano[2,3-c]pyrazole-4-aminoquinoline hybrids were synthesized as potent antimalarial agents by covalently linking the scaffolds of 4-aminoquinoline and pyrano[2,3-c]pyrazoles via an ethyl linker and characterized using Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR). Molecular docking was used to test each hybrid's and standard chloroquine's ability to bind to Plasmodium falciparum lactate dehydrogenase enzyme (PfLDH), an important enzyme in the parasite's glycolytic pathway. The hybrid compounds had a stronger binding affinity than the standard chloroquine (CQ). The schizontical antimalarial test of pyrano[2,3-c]pyrazole-4-aminoquinoline hybrid compound shows that all nineteen hybrid compounds were potent with the IC50 values ranging from 0.0151 to 0.301 μM against the CQ-sensitive 3D7 P. falciparum strain, and were active against the CQ-resistant K1 P. falciparum strain with the IC50 values ranging from 0.01895 to 2.746 μM. All the tested hybrid compounds were less potent than the standard drug chloroquine dipaspate (CQDP) against the CQ-sensitive 3D7 strain. In contrast, nine of the nineteen hybrids (16d, 16g, 16h, 16i, 16l, 16n, 16o, 16r, and 16s) displayed superior antimalarial activity than the CQDP against the CQ-resistant K1 P. falciparum strain. Among all the tested hybrids, 16c against the 3D7 strain and 16h against the K1 strain were the most promising antimalarial agents with 0.0151 and 0.01895 μM of IC50 values, respectively. In addition, the compounds were selective, showing moderate to low cytotoxic activity against a human normal liver WRL68 cell line. The synthesis of pyrano[2,3-c]pyrazole-4-aminoquinoline hybrids introduces new chemical entities that have the potential to exhibit potent antimalarial activity. It could address the ongoing challenge of drug resistance in malaria treatment.
Collapse
Affiliation(s)
- Ravindar Lekkala
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Yan Hong Ng
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Shevin Rizal Feroz
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Nur Aqilah Zahirah Binti Norazmi
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Amatul Hamizah Ali
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Siti Aishah Hasbullah
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Norzila Ismail
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150, KubangKerian, Kelantan, Malaysia
| | - Hani Kartini Agustar
- Department of Earth Sciences and Environment, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia.
| |
Collapse
|
4
|
Ravindar L, Hasbullah SA, Rakesh KP, Raheem S, Ismail N, Ling LY, Hassan NI. Pyridine and Pyrimidine hybrids as privileged scaffolds in antimalarial drug discovery: A recent development. Bioorg Med Chem Lett 2024; 114:129992. [PMID: 39426430 DOI: 10.1016/j.bmcl.2024.129992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Malaria continues to pose a significant threat to global health, which is exacerbated by the emergence of drug-resistant strains, necessitating the urgent development of new therapeutic options. Due to their substantial bioactivity in treating malaria, pyridine and pyrimidine have become the focal point of drug research. Hybrids of pyridine and pyrimidine offer a novel and promising avenue for developing effective antimalarial agents. The ability of these hybrids to overcome drug resistance is tinted, offering a potential solution to this critical obstacle in the treatment of malaria. By targeting multiple pathways, these hybrid compounds reduce the likelihood of resistance development, providing a promising strategy for combating drug-resistant strains of malaria. The review focuses on the most recent developments in 2018 in the structural optimization of pyridine and pyrimidine hybrid compounds, highlighting modifications that have been shown to improve antimalarial activity. Structure-activity studies have elucidated the essential characteristics required for potency, selectivity, and pharmacokinetics. Molecular docking and virtual screening expedite the identification of novel compounds with enhanced activity profiles. This analysis could aid in developing the most effective pyridine and pyrimidine hybrids as antimalarial agents.
Collapse
Affiliation(s)
- Lekkala Ravindar
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Siti Aishah Hasbullah
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - K P Rakesh
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Saki Raheem
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, W1W6 UW London, United Kingdom
| | - Norzila Ismail
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Lau Yee Ling
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia.
| |
Collapse
|
5
|
Zinman PS, Welsh A, Omondi RO, Khan S, Prince S, Nordlander E, Smith GS. Aminoquinoline-based Re(I) tricarbonyl complexes: Insights into their antiproliferative activity and mechanisms of action. Eur J Med Chem 2024; 266:116094. [PMID: 38219660 DOI: 10.1016/j.ejmech.2023.116094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
In an effort to develop new potent anticancer agents, two Schiff base rhenium(I) tricarbonyl complexes, containing the ubiquitous aminoquinoline scaffold, were synthesized. Both aminoquinoline ligands and Re(I) complexes showed adequate stability over a 48-h incubation period. Furthermore, the cytotoxic activity of the precursor ligands and rhenium(I) complexes were evaluated against the hormone-dependent MCF-7 and hormone-independent triple negative MDA-MB-231 breast cancer cell lines. Inclusion of the [Re(CO)3Cl]+ entity significantly enhanced the cytotoxicity of the aminoquinoline Schiff base ligands against the tested cancer cell lines. Remarkably, the incorporation of the Schiff-base iminoquinolyl entity notably enhanced the cytotoxic activity of the Re(I) complexes, in comparison with the iminopyridyl entity. Notably, the quinolyl-substituted complex showed up to three-fold higher activity than cisplatin against breast cancer cell lines, underpinning the significance of the quinoline pharmacophore in rational drug design. In addition, the most active Re(I) complex showed better selectivity towards the breast cancer cells over non-tumorigenic FG-0 cells. Western blotting revealed that the complexes increased levels of γH2AX, a key DNA damage response protein. Moreover, apoptosis was confirmed in both cell lines due to the detection of cleaved PARP. The complexes show favourable binding affinities towards both calf thymus DNA (CT-DNA), and bovine serum albumin (BSA), and the order of their interactions align with their cytotoxic effects. The in silico molecular simulations of the complexes were also performed with CT-DNA and BSA targets.
Collapse
Affiliation(s)
- Paige S Zinman
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Athi Welsh
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Reinner O Omondi
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Saif Khan
- Department of Human Biology, University of Cape Town, Faculty of Health Science, Observatory, 7925, South Africa
| | - Sharon Prince
- Department of Human Biology, University of Cape Town, Faculty of Health Science, Observatory, 7925, South Africa
| | - Ebbe Nordlander
- Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-221 00, Lund, Sweden
| | - Gregory S Smith
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa.
| |
Collapse
|
6
|
Prasad Raiguru B, Panda J, Mohapatra S, Nayak S. Recent developments in the synthesis of hybrid antimalarial drug discovery. Bioorg Chem 2023; 139:106706. [PMID: 37406519 DOI: 10.1016/j.bioorg.2023.106706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/16/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
In this 21st century, Malaria remains a global burden and causes massive economic trouble to disease-endemic nations. The control and eradication of malaria is a major challenge that requires an urgent need to develop novel antimalarial drugs. To overcome the aforementioned situation, several researchers have given significant effort to develop hybrid antimalarial agents in the search for new antimalarial drugs. Hence, we have summarized those developments of hybrid antimalarial agents from 2017 to till date. This review illustrates the current progress in the recent synthesis of hybrid antimalarial agents along with focusing on their antimalarial evaluation to find the most potent hybrids. This present mini-review will also be useful for the scientific community for the development of new antimalarial drugs to eradicate malaria.
Collapse
Affiliation(s)
| | - Jasmine Panda
- Department of Chemistry, Ravenshaw University, Cuttack 753003, India
| | | | - Sabita Nayak
- Department of Chemistry, Ravenshaw University, Cuttack 753003, India
| |
Collapse
|
7
|
Kumar N, Khanna A, Kaur K, Kaur H, Sharma A, Bedi PMS. Quinoline derivatives volunteering against antimicrobial resistance: rational approaches, design strategies, structure activity relationship and mechanistic insights. Mol Divers 2023; 27:1905-1934. [PMID: 36197551 PMCID: PMC9533295 DOI: 10.1007/s11030-022-10537-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/29/2022] [Indexed: 11/27/2022]
Abstract
Emergence of antimicrobial resistance has become a great threat to human species as there is shortage of development of new antimicrobial agents. So, its mandatary to combat AMR by initiating research and developing new novel antimicrobial agents. Among phytoconstituents, Quinoline (nitrogen containing heterocyclic) have played a wide role in providing new bioactive molecules. So, this review provides rational approaches, design strategies, structure activity relationship and mechanistic insights of newly developed quinoline derivatives as antimicrobial agents.
Collapse
Affiliation(s)
- Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
| | - Aanchal Khanna
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Komalpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Harmandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Anchal Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | | |
Collapse
|
8
|
Sharma B, Agarwal A, Awasthi SK. Is structural hybridization invoking new dimensions for antimalarial drug discovery research? RSC Med Chem 2023; 14:1227-1253. [PMID: 37484560 PMCID: PMC10357931 DOI: 10.1039/d3md00083d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/01/2023] [Indexed: 07/25/2023] Open
Abstract
Despite effective prevention methods, malaria is a devastating, persistent infection caused by protozoal parasites that result in nearly half a million fatalities annually. Any progress made thus far in the eradication of the disease is jeopardized by the expansion of malaria parasites that have evolved to become resistant to a wide range of drugs, including first-line therapy. To surmount this significant obstacle, it is necessary to develop newly synthesized drugs with multiple modes of action that may have a novel target in various stages of Plasmodium parasite development and this is made possible by the hybridization concept. Hybridization is the combination of at least two diverse pharmacophore units with some linkers bringing about a single molecule with a diverse mode of action. It intensifies a drug's physiological and chemical characteristics, such as absorption, cellular target contact, metabolism, excretion, distribution, and toxicity. This review article outlines the currently published most potent hybrid drugs against the Plasmodium species.
Collapse
Affiliation(s)
- Bhawana Sharma
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Alka Agarwal
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University Varanasi-221005 Uttar Pradesh India
| | - Satish Kumar Awasthi
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| |
Collapse
|
9
|
Ravindar L, Hasbullah SA, Rakesh KP, Hassan NI. Recent developments in antimalarial activities of 4-aminoquinoline derivatives. Eur J Med Chem 2023; 256:115458. [PMID: 37163950 DOI: 10.1016/j.ejmech.2023.115458] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023]
Abstract
Malaria is the fifth most lethal parasitic infection in the world. Antimalarial medications have played a crucial role in preventing and eradicating malaria. Numerous heterocyclic moieties have been incorporated into the creation of effective antimalarial drugs. The 4-aminoquinoline moiety is favoured in antimalarial drug discovery due to the diverse biological applications of its derivative. Since the 1960s, 4-aminoquinoline has been an important antimalarial drug due to its low toxicity, high tolerability, and rapid absorption after administration. This review focused on the antimalarial efficacy of the 4-aminoquinoline moiety hybridised with various heterocyclic scaffolds developed by scientists since 2018 against diverse Plasmodium clones. It could aid in the future development of more effective antimalarial agents.
Collapse
Affiliation(s)
- Lekkala Ravindar
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Siti Aishah Hasbullah
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - K P Rakesh
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia.
| |
Collapse
|
10
|
Carlucci R, Di Gresia G, Mediavilla MG, Cricco JA, Tekwani BL, Khan SI, Labadie GR. Expanding the scope of novel 1,2,3-triazole derivatives as new antiparasitic drug candidates. RSC Med Chem 2023; 14:122-134. [PMID: 36760749 PMCID: PMC9890560 DOI: 10.1039/d2md00324d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that prenyl and aliphatic triazoles are interesting motifs to prepare new chemical entities for antiparasitic and antituberculosis drug development. In this opportunity a new series of prenyl-1,2,3-triazoles were prepared from isoprenyl azides and different alkynes looking for new antimalarial drug candidates. The compounds were prepared by copper(i) catalyzed dipolar cycloaddition of the isoprenyl azide equilibrium mixture providing exclusively 1,4-disubstituted 1,2,3-triazoles in a regiospecific fashion. The complete collection of 64 compounds was tested on chloroquine-sensitive (CQ sensitive), Sierra Leone (D6), and the chloroquine-resistant, Indochina (W2), strains of Plasmodium falciparum and those compounds which were not previously reported were also tested against Leishmania donovani, the causative agent for visceral leishmaniasis. Thirteen analogs displayed antimalarial activity with IC50 below 10 μM, while the antileishmanial activity of the newly reported analogs could not improve upon those previously reported. Compounds 1o and 1r were identified as the most promising antimalarial drug leads with IC50 below 3.0 μM for both CQ-sensitive and resistant P. falciparum strains with high selectivity index. Finally, a chemoinformatic in silico analysis was performed to evaluate physicochemical parameters, cytotoxicity risk and drug score. The validation of a bifunctional farnesyl/geranylgeranyl diphosphate synthase PfFPPS/GGPPS as the potential target of the antimalarial activity of selected analogs should be further investigated.
Collapse
Affiliation(s)
- Renzo Carlucci
- Instituto de Química Rosario (IQUIR) UNR, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina +54 341 4370477 +54 341 4370477
| | - Gabriel Di Gresia
- Instituto de Química Rosario (IQUIR) UNR, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina +54 341 4370477 +54 341 4370477
| | - María Gabriela Mediavilla
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Rosario (UNR) Suipacha 531 S2002LRK Rosario Argentina
| | - Julia A Cricco
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Rosario (UNR) Suipacha 531 S2002LRK Rosario Argentina
| | - Babu L Tekwani
- Department of Infectious Diseases, Division of Scientific Platforms, Southern Research Birmingham AL 35205 USA
| | - Shabana I Khan
- National Center for Natural Products Research & Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi University MS 38677 USA
| | - Guillermo R Labadie
- Instituto de Química Rosario (IQUIR) UNR, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina +54 341 4370477 +54 341 4370477
- Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina
| |
Collapse
|
11
|
Bhanot A, Lunge A, Kumar N, Kidwai S, Singh R, Sundriyal S, Agarwal N. Discovery of small molecule inhibitors of Mycobacterium tuberculosis ClpC1: SAR studies and antimycobacterial evaluation. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
12
|
An insight on medicinal attributes of pyrimidine scaffold: An updated review. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Microwave synthesis and antimalarial screening of novel 4-amino benzoic acid (PABA)-substituted pyrimidine derivatives as Plasmodium falciparum dihydrofolate reductase inhibitors. 3 Biotech 2022; 12:170. [PMID: 35845109 PMCID: PMC9279537 DOI: 10.1007/s13205-022-03236-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/18/2022] [Indexed: 11/28/2022] Open
Abstract
Antimalarial drug resistance is a major threat due to the emerging resistance to all the available drugs in the market. In an approach to develop alternative drugs, a novel class of Pf-DHFR inhibitors was developed using pyrimidine as the core nucleus and substituting the 4- and 6- positions with amines and 4-amino benzoic acid (PABA) to avoid the problem of drug resistance. The resultant compounds 3(a-j) after primary in silico screening and filtering were synthesized using microwave efficiently in high yield and reduced time period compared to conventional synthesis. The antimalarial assay was performed in vitro, against chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) strains of Plasmodium falciparum using chloroquine as a reference standard. The IC50 values were in the range of 5.26-106.76 µg/ml for 3D7 and in Dd2 the value ranges from 4.71 to 112.98 µg/ml. Compounds 3d, 3e, 3f and 3h showed significant antimalarial activity against both the strains of P. falciparum with no cytotoxicity against fibroblast cell line and 3f was found to be the most potent among them. The hemolysis assay of all the compounds in fresh erythrocytes showed insignificant hemolysis below 5% at a higher dose level. Hence, the present study suggests the possible utility of PABA-substituted pyrimidine scaffold for further development of new Pf-DHFR inhibitors. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03236-w.
Collapse
|
14
|
Arshad M, Akhter MS. Synthesis, Characterization, Biological, and Molecular Docking Studies of (Z)-N-Substituted-4-(Pyridin-2-yl)-6-(1H-Pyrrolo[2,3-b]Pyridin-4-yl)Pyrimidin-2-Amine. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022050065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Díaz I, Salido S, Nogueras M, Cobo J. Design and Synthesis of New Pyrimidine-Quinolone Hybrids as Novel hLDHA Inhibitors. Pharmaceuticals (Basel) 2022; 15:ph15070792. [PMID: 35890090 PMCID: PMC9322123 DOI: 10.3390/ph15070792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 02/05/2023] Open
Abstract
A battery of novel pyrimidine-quinolone hybrids was designed by docking scaffold replacement as lactate dehydrogenase A (hLDHA) inhibitors. Structures with different linkers between the pyrimidine and quinolone scaffolds (10-21 and 24−31) were studied in silico, and those with the 2-aminophenylsulfide (U-shaped) and 4-aminophenylsulfide linkers (24−31) were finally selected. These new pyrimidine-quinolone hybrids (24−31)(a−c) were easily synthesized in good to excellent yields by a green catalyst-free microwave-assisted aromatic nucleophilic substitution reaction between 3-(((2/4-aminophenyl)thio)methyl)quinolin-2(1H)-ones 22/23(a−c) and 4-aryl-2-chloropyrimidines (1−4). The inhibitory activity against hLDHA of the synthesized hybrids was evaluated, resulting IC50 values of the U-shaped hybrids 24−27(a−c) much better than the ones of the 1,4-linked hybrids 28−31(a−c). From these results, a preliminary structure−activity relationship (SAR) was established, which enabled the design of novel 1,3-linked pyrimidine-quinolone hybrids (33−36)(a−c). Compounds 35(a−c), the most promising ones, were synthesized and evaluated, fitting the experimental results with the predictions from docking analysis. In this way, we obtained novel pyrimidine-quinolone hybrids (25a, 25b, and 35a) with good IC50 values (<20 μM) and developed a preliminary SAR.
Collapse
|
16
|
da Silva Neto GJ, Silva LR, de Omena RJM, Aguiar ACC, Annunciato Y, Rossetto BS, Gazarini ML, Heimfarth L, Quintans-Júnior LJ, da Silva-Júnior EF, Meneghetti MR. Dual quinoline-hybrid compounds with antimalarial activity against Plasmodium falciparum parasites. NEW J CHEM 2022; 46:6502-6518. [DOI: 10.1039/d1nj05598d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Although we have at our disposal relatively low-cost drugs that can be prescribed for the treatment of malaria, the prevalence of resistant strains of the causative parasite has required the development of new drugs.
Collapse
Affiliation(s)
- Geraldo José da Silva Neto
- Group of Catalysis and Chemical Reactivity, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Av. Lourival Melo Mota, 57072-900, Maceió, Brazil
| | - Leandro Rocha Silva
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Av. Lourival Melo Mota, 57072-900, Maceió, Brazil
| | - Rafael Jorge Melo de Omena
- Group of Catalysis and Chemical Reactivity, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Av. Lourival Melo Mota, 57072-900, Maceió, Brazil
| | - Anna Caroline Campos Aguiar
- Department of Biosciences, Federal University of São Paulo, Silva Jardim Street 136, 11015-020, Santos, São Paulo, Brazil
| | - Yasmin Annunciato
- Department of Biosciences, Federal University of São Paulo, Silva Jardim Street 136, 11015-020, Santos, São Paulo, Brazil
| | - Bárbara Santos Rossetto
- Department of Biosciences, Federal University of São Paulo, Silva Jardim Street 136, 11015-020, Santos, São Paulo, Brazil
| | - Marcos Leoni Gazarini
- Department of Biosciences, Federal University of São Paulo, Silva Jardim Street 136, 11015-020, Santos, São Paulo, Brazil
| | - Luana Heimfarth
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | | | - Mario Roberto Meneghetti
- Group of Catalysis and Chemical Reactivity, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Av. Lourival Melo Mota, 57072-900, Maceió, Brazil
| |
Collapse
|
17
|
Van de Walle T, Cools L, Mangelinckx S, D'hooghe M. Recent contributions of quinolines to antimalarial and anticancer drug discovery research. Eur J Med Chem 2021; 226:113865. [PMID: 34655985 DOI: 10.1016/j.ejmech.2021.113865] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022]
Abstract
Quinoline, a privileged scaffold in medicinal chemistry, has always been associated with a multitude of biological activities. Especially in antimalarial and anticancer research, quinoline played (and still plays) a central role, giving rise to the development of an array of quinoline-containing pharmaceuticals in these therapeutic areas. However, both diseases still affect millions of people every year, pointing to the necessity of new therapies. Quinolines have a long-standing history as antimalarial agents, but established quinoline-containing antimalarial drugs are now facing widespread resistance of the Plasmodium parasite. Nevertheless, as evidenced by a massive number of recent literature contributions, they are still of great value for future developments in this field. On the other hand, the number of currently approved anticancer drugs containing a quinoline scaffold are limited, but a strong increase and interest in quinoline compounds as potential anticancer agents can be seen in the last few years. In this review, a literature overview of recent contributions made by quinoline-containing compounds as potent antimalarial or anticancer agents is provided, covering publications between 2018 and 2020.
Collapse
Affiliation(s)
- Tim Van de Walle
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Lore Cools
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Sven Mangelinckx
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| |
Collapse
|
18
|
Synthesis, Molecular Docking, and Antimalarial Activity of Hybrid 4-Aminoquinoline-pyrano[2,3-c]pyrazole Derivatives. Pharmaceuticals (Basel) 2021; 14:ph14111174. [PMID: 34832956 PMCID: PMC8622706 DOI: 10.3390/ph14111174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/24/2022] Open
Abstract
Widespread resistance of Plasmodium falciparum to current artemisinin-based combination therapies necessitate the discovery of new medicines. Pharmacophoric hybridization has become an alternative for drug resistance that lowers the risk of drug–drug adverse interactions. In this study, we synthesized a new series of hybrids by covalently linking the scaffolds of pyrano[2,3-c]pyrazole with 4-aminoquinoline via an ethyl linker. All synthesized hybrid molecules were evaluated through in vitro screenings against chloroquine-resistant (K1) and -sensitive (3D7) P. falciparum strains, respectively. Data from in vitro assessments showed that hybrid 4b displayed significant antiplasmodial activities against the 3D7 strain (EC50 = 0.0130 ± 0.0002 μM) and the K1 strain (EC50 = 0.02 ± 0.01 μM), with low cytotoxic effect against Vero mammalian cells. The high selectivity index value on the 3D7 strain (SI > 1000) and the K1 strain (SI > 800) and the low resistance index value from compound 4b suggested that the pharmacological effects of this compound were due to selective inhibition on the 3D7 and K1 strains. Molecular docking analysis also showed that 4b recorded the highest binding energy on P. falciparum lactate dehydrogenase. Thus, P. falciparum lactate dehydrogenase is considered a potential molecular target for the synthesized compound.
Collapse
|
19
|
Sanad SM, Mekky AE. New pyrido[3′,2′:4,5]thieno[3,2-d]pyrimidin-4(3H)-one hybrids linked to arene units: synthesis of potential MRSA, VRE, and COX-2 inhibitors. CAN J CHEM 2021. [DOI: 10.1139/cjc-2021-0121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the current study, we reported the tandem synthesis of two series of arene-linked pyrimidinone hybrids with related fused thieno[2,3-b]pyridine moiety. The target hybrids were prepared, in moderate to excellent yields, by the reaction of a ternary mixture of the appropriate of 3-aminothieno[2,3-b]pyridine-2-carboxylate, DMF-DMA, and a series of aryl amines in dioxane at 110 °C for 8 h. The antibacterial activity of the new hybrids was estimated against six susceptible ATCC strains. Hybrids 5g and 7g, linked to a sulfonamide unit, showed the best efficacy against S. aureus and E. faecalis strains with minimum inhibitory concentration (MIC) values of 1.7–1.8 μM, which exceed ciprofloxacin. Furthermore, some of new hybrids were examined as potential inhibitors of four different MRSA and VRE strains. Hybrids 5g and 7g demonstrated more potent efficacy than linezolid against MRSA strains with MIC values of 3.6/3.4 and 1.8/1.7 μM against ATCC:33591 and ATCC:43300 strains, respectively. The prior hybrids displayed a comparable efficacy with linezolid against VRE strains with MIC values of 7.3/6.9 and 3.6/3.4 μM against ATCC:51299 and ATCC:51575 strains, respectively. Additionally, some of the new hybrids were examined as potential COX-2 inhibitors using the reference celecoxib (IC50 of 0.117 µM). Hybrid 7g revealed more potent inhibitory efficacy than celecoxib with IC50 of 0.112 µM, whereas hybrid 5g showed almost inhibitory activity equivalent to celecoxib with IC50 of 0.121 µM. Molecular docking was performed to predict the possible binding interactions between hybrids 5g and 7g with the target COX-2 enzyme.
Collapse
Affiliation(s)
- Sherif M.H. Sanad
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ahmed E.M. Mekky
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
20
|
Sanad SM, Mekky AE. Synthesis and antibacterial evaluation of new pyrido[3',2':4,5]thieno[3,2-d ]pyrimidin-4(3H)-one hybrids linked to different heteroarene units. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.11.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
21
|
Mohamed Teleb MA, Mekky AEM, Sanad SMH. 3‐Aminothieno
[2,3‐
b
]pyridine‐2‐carboxylate: Effective precursor for microwave‐assisted three components synthesis of new pyrido[3′,2′:4,5]thieno[3,2‐
d
]pyrimidin‐4(
3
H
)‐one hybrids. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Ahmed E. M. Mekky
- Chemistry Department, Faculty of Science Cairo University Giza Egypt
| | | |
Collapse
|
22
|
A trio of quinoline-isoniazid-phthalimide with promising antiplasmodial potential: Synthesis, in-vitro evaluation and heme-polymerization inhibition studies. Bioorg Med Chem 2021; 39:116159. [PMID: 33895706 DOI: 10.1016/j.bmc.2021.116159] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 11/21/2022]
Abstract
Quinoline-isoniazid-phthalimide triads have been synthesised to assess their antiplasmodial efficacy and cytotoxicity against chloroquine-resistant W2 strain of P. falciparum and Vero cells, respectively. Most of the synthesized compounds displayed IC50 in lower nM range and appeared to be approximately five to twelve fold more active than chloroquine. Heme-binding studies were also carried out to delineate the mode of action. The promising compounds with IC50s in range of 11-30 nM and selectivity index >2800, may act as promising template for the design of new antiplasmodials.
Collapse
|
23
|
Hernandes IS, Da Silva HC, Dos Santos HF, De Almeida WB. Unveiling the Molecular Structure of Antimalarial Drugs Chloroquine and Hydroxychloroquine in Solution through Analysis of 1H NMR Chemical Shifts. J Phys Chem B 2021; 125:3321-3342. [PMID: 33760611 DOI: 10.1021/acs.jpcb.1c00609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chloroquine (CQ) and hydroxychloroquine (HCQ) have been standard antimalarial drugs since the early 1950s, and very recently, the possibility of their use for the treatment of COVID-19 patients has been considered. To understand the drug mode of action at the submicroscopic level (atoms and molecules), molecular modeling studies with the aid of computational chemistry methods have been of great help. A fundamental step in such theoretical investigations is the knowledge of the predominant drug molecular structure in solution, which is the real environment for the interaction with biological targets. Our strategy to access this valuable information is to perform density functional theory (DFT) calculations of 1H NMR chemical shifts for several plausible molecular conformers and then find the best match with experimental NMR profile in solution (since it is extremely sensitive to conformational changes). Through this procedure, after optimizing 30 trial distinct molecular structures (ωB97x-D/6-31G(d,p)-PCM level of calculation), which may be considered representative conformations, we concluded that the global minimum (named M24), stabilized by an intramolecular N-H hydrogen bond, is not likely to be observed in water, chloroform, and dimethyl sulfoxide (DMSO) solution. Among fully optimized conformations (named M1 to M30, and MD1 and MD2), we found M12 (having no intramolecular H-bond) as the most probable structure of CQ and HCQ in water solution, which is a good approximate starting geometry in drug-receptor interaction simulations. On the other hand, the preferred CQ and HCQ structure in chloroform (and CQ in DMSO-d6) solution was assigned as M8, showing the solvent effects on conformational preferences. We believe that the analysis of 1H NMR data in solution can establish the connection between the macro level (experimental) and the sub-micro level (theoretical), which is not so apparent to us and appears to be more appropriate than the thermodynamic stability criterion in conformational analysis studies.
Collapse
Affiliation(s)
- Isabel S Hernandes
- Laboratório de Química Computacional e Modelagem Molecular (LQC-MM), Departamento de Química Inorgânica, Instituto de Química, Universidade Federal Fluminense (UFF), Outeiro de São João Batista s/n, Campus do Valonguinho, Centro, Niterói 24020-141, Rio de Janeiro, Brazil
| | - Haroldo C Da Silva
- Laboratório de Química Computacional e Modelagem Molecular (LQC-MM), Departamento de Química Inorgânica, Instituto de Química, Universidade Federal Fluminense (UFF), Outeiro de São João Batista s/n, Campus do Valonguinho, Centro, Niterói 24020-141, Rio de Janeiro, Brazil
| | - Hélio F Dos Santos
- Núcleo de Estudos em Química Computacional (NEQC), Departamento de Química, ICE, Universidade Federal de Juiz de Fora (UFJF), Campus Universitário, Martelos, Juiz de Fora 36036-330, Minas Gerais, Brazil
| | - Wagner B De Almeida
- Laboratório de Química Computacional e Modelagem Molecular (LQC-MM), Departamento de Química Inorgânica, Instituto de Química, Universidade Federal Fluminense (UFF), Outeiro de São João Batista s/n, Campus do Valonguinho, Centro, Niterói 24020-141, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Saini A, Kumar S, Raj R, Chowdhary S, Gendrot M, Mosnier J, Fonta I, Pradines B, Kumar V. Synthesis and antiplasmodial evaluation of 1H-1,2,3-triazole grafted 4-aminoquinoline-benzoxaborole hybrids and benzoxaborole analogues. Bioorg Chem 2021; 109:104733. [PMID: 33618251 DOI: 10.1016/j.bioorg.2021.104733] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
A library of 1H-1,2,3-triazole-tethered 4-aminoquinoline-benzoxaborole hybrids as well as aryl substituted benzoxaborole analogues was synthesized and screened for their anti-plasmodial efficacy against both chloroquine-susceptibility 3D7 and chloroquine-resistant W2 strains of P. falciparum. The inclusion of quinoline core among the synthesized analogues resulted in substantial enhancement of anti-plasmodial activities. Further, the spacer of a flexible alkyl chain is marginally preferred over piperazyl-ethyl in inhibiting growth of P. falciparum. The most potent 4-aminoquinoline-benzoxaborole conjugate with ethyl as spacer exhibited IC50 values of 4.15 and 3.78 μM against 3D7 CQ-susceptible and W2 CQ-resistant strains of P. falciparum with lower cross resistance with Chloroquine. There was no difference in anti-plasmodial activities between the CQ-susceptible 3D7 and CQ-resistant W2 strains of P. falciparum for the benzoxaborole derivatives lacking a quinoline core.
Collapse
Affiliation(s)
- Anu Saini
- Department of Chemistry, DAV College, Amritsar, India
| | - Sumit Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | - Raghu Raj
- Department of Chemistry, DAV College, Amritsar, India.
| | | | - Mathieu Gendrot
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU Méditerranée Infection, Marseille, France
| | - Joel Mosnier
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU Méditerranée Infection, Marseille, France; Centre National de Référence du Paludisme, Marseille, France
| | - Isabelle Fonta
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU Méditerranée Infection, Marseille, France; Centre National de Référence du Paludisme, Marseille, France
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU Méditerranée Infection, Marseille, France; Centre National de Référence du Paludisme, Marseille, France
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India.
| |
Collapse
|
25
|
Design and synthesis of new 3-((7-chloroquinolin-4-yl)amino)thiazolidin-4-one analogs as Mycobacterium tuberculosis DNA gyrase inhibitors. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-020-00162-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Abstract
Background
Tuberculosis is evidently a major health threat among human populations worldwide. The current study presents the synthesis of new 3-((7-chloroquinolin-4-yl)amino)thiazolidin-4-one analogs (4a–o) as potential Mycobacterium tuberculosis DNA gyrase inhibitors. DNA gyrase regulates DNA topology in MTB and has been a target of choice for antibacterial therapy. With this in mind, the synthesized derivatives (4a–o) were subjected to in vitro antitubercular evaluation by the MABA method and were tested for MTB DNA gyrase inhibition by supercoiling assay.
Results
All the synthesized compounds displayed inhibition of MTB within the MIC range of 1.56–12.5 μM. Further, out of the selected compounds that underwent DNA gyrase inhibition, compound 4o proved to be a potent lead molecule by displaying 82% of enzyme inhibition at 1 μM. All the synthesized derivatives also underwent molecular docking studies to comprehend their hypothetical binding interactions with Mycobacterium smegmatis GyrB.
Conclusion
All the results suggested that most of the synthesized derivatives inhibited Mycobacterium tuberculosis, and some 3-((7-chloroquinolin-4-yl)amino)thiazolidin-4-one analogs could act as leads for the development of antitubercular agents.
Collapse
|
26
|
Uddin A, Chawla M, Irfan I, Mahajan S, Singh S, Abid M. Medicinal chemistry updates on quinoline- and endoperoxide-based hybrids with potent antimalarial activity. RSC Med Chem 2021; 12:24-42. [PMID: 34046596 PMCID: PMC8132992 DOI: 10.1039/d0md00244e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/19/2020] [Indexed: 02/01/2023] Open
Abstract
The resistance of conventional antimalarial drugs against the malarial parasite continues to pose a challenge to control the disease. The indiscriminate exploitation of the available antimalarials has resulted in increasing treatment failures, which urges on the search for novel lead molecules. Artemisinin-based combination therapy (ACT) is the current WHO-recommended first-line treatment for the majority of malaria cases. Hybrid molecules offer a newer strategy for the development of next-generation antimalarial drugs. These comprise molecules, each with an individual pharmacological activity, linked together into a single hybrid molecule. This approach has been utilized by several research groups to develop molecules with potent antimalarial activity. In this review, we provide an overview of the pivotal roles of quinoline- and endoperoxide-based hybrids as inhibitors of the life-cycle progression of Plasmodium. Based on the exhaustive literature reports, we have collated the structural and functional analyses of quinoline- and endoperoxide-based hybrid molecules that show potency equal to or greater than those of the individual compounds, offering an effective therapeutics option for clinical use.
Collapse
Affiliation(s)
- Amad Uddin
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia Jamia Nagar New Delhi-110025 India +91 8750295095
- Special Centre for Molecular Medicine, Jawaharlal Nehru University New Delhi-110067 India
| | - Meenal Chawla
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia Jamia Nagar New Delhi-110025 India +91 8750295095
| | - Iram Irfan
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia Jamia Nagar New Delhi-110025 India +91 8750295095
| | - Shubhra Mahajan
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia Jamia Nagar New Delhi-110025 India +91 8750295095
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University New Delhi-110067 India
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia Jamia Nagar New Delhi-110025 India +91 8750295095
| |
Collapse
|
27
|
Toan DN, Thanh ND, Truong MX, Van DT. Synthesis, Cytotoxicity, ADMET and Molecular Docking Studies of Some Quinoline-Pyrimidine Hybrid Compounds: 3-(2-Amino-6-arylpyrimidin-4- yl)-4-hydroxy-1-methylquinolin-2(1H)-ones. Med Chem 2020; 18:36-50. [PMID: 33380305 DOI: 10.2174/1573406417666201230092615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/01/2020] [Accepted: 10/12/2020] [Indexed: 11/22/2022]
Abstract
AIMS Synthesis of 3-(2-amino-6-arylpyrimidin-4-yl)-4-hydroxy-1-methylquinolin-2(1H)-ones and estimation their anticancer activities on HepG2 and KB cancer lines. BACKGROUND Many derivatives of quinoline-2-on have been consider to synthesize and evaluate their biological properties by organic chemists due to their various biological effects, including antibacterial, antioxidant, anti-inflammatory, anticancer activities. Quinolinepyrimidine hybrid compounds exhibited various biological activities, such as antituberculosis, antibacterial, anticancer, antifungal, etc. The connection of 4-hydroxyquinoline-2-one with 2-amino-pyrimidine could initiate the new activities. OBJECTIVE α,β-Unsaturated ketones of 3-acetyl-4-hydroxy-N-methylquinolin-2-one were prepared. Novel 2-amino-6-aryl-4-(4'-hydroxy-Nmethylquinolin- 2'-on-3'-yl)pyrimidines have been synthesized by reaction of these corresponding α,β-unsaturated ketones with guanidine hydrochloride. Human hepatocellular carcinoma HepG2 and squamous cell carcinoma KB cancer lines were used for screening their cytotoxicity. METHOD 3-Acetyl-4-hydroxy-N-methylquinolin-2-one was prepared from N-methylaniline and diethyl malonate. Reaction of (un)substituted benzaldehydes with this 4-hydroxyquinoline-2-one produced corresponding substituted α ,β-unsaturated ketones in the presence of piperidine as catalyst. 2-Amino-6-aryl-4-(4'-hydroxy-N-methylquinolin-2'-on-3'-yl)pyrimidines have been synthesized from these α,β-unsaturated ketones of 3-acetyl-4-hydroxy-N-methylquinolin-2-one by reaction of corresponding α ,β-unsaturated ketones with guanidine hydrochloride. All obtained pyrimidines were screened for anticancer activity using MTT bio-assay method. RESULT Seven substituted (E)-4-hydroxy-3-(3-(aryl)acryloyl)-1-methylquinolin-2(1H)-ones were prepared and converted to corresponding substituted 2-amino-6-aryl-4-(4'-hydroxy-N-methylquinolin-2'-on-3'-yl)pyrimidines with yields of 58-74%. All the synthesized pyrimidines were screened for their in vitro anticancer activity against human hepatocellular carcinoma HepG2 and squamous cell carcinoma KB cancer lines. Compounds 6b and 6e had the best activity in the series, with IC50 values equal to 1.32 and 1.33 μM, respectively. ADMET properties showed that compounds 6b, 6e, and 6f possessed the drug-likeness behavior. Cross-docking results indicated that residues GLN778(A), DT8(C), DT9(D), DA12(F), and DG13(F) in the binding pocket as potential ligand binding hot-spot residues for compounds 6b, 6e, and 6f. CONCLUSION New substituted 2-amino-6-aryl-4-(4'-hydroxy-N-methylquinolin-2'-on-3'-yl)pyrimidines were obtained and displayed significant inhibition against human hepatocellular carcinoma HepG2 and squamous cell carcinoma KB cancer lines.
Collapse
Affiliation(s)
- Duong Ngoc Toan
- Faculty of Chemistry, Thai Nguyen University of Education, 20 Luong Ngoc Quyen, Thai Nguyen. Vietnam
| | - Nguyen Dinh Thanh
- Faculty of Chemistry, VNU University of Science (Vietnam National University, Ha Noi), 19 Le Thanh Tong, Hoan Kiem, Ha Noi. Vietnam
| | - Mai Xuan Truong
- Faculty of Chemistry, Thai Nguyen University of Education, 20 Luong Ngoc Quyen, Thai Nguyen. Vietnam
| | - Dinh Thuy Van
- Faculty of Chemistry, Thai Nguyen University of Education, 20 Luong Ngoc Quyen, Thai Nguyen. Vietnam
| |
Collapse
|
28
|
Singh M, Vaishali, Kumar S, Jamra R, Pandey SK, Singh V. A metal-free approach towards synthesis of β-carboline C1 substituted Pyrido(2,3-c)carbazole derivatives (nitramarine analogues) through A3-coupling and estimation of their light emitting properties. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Lu J, Chen C, Deng X, Mak MSH, Zhu Z, He X, Liang J, Maddili SK, Tsim KWK, Han Y, Pi R. Design, Synthesis, and Biological Evaluation of Novel Multifunctional Rolipram-Tranilast Hybrids As Potential Treatment for Traumatic Brain Injury. ACS Chem Neurosci 2020; 11:2348-2360. [PMID: 32644771 DOI: 10.1021/acschemneuro.0c00339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Traumatic brain injury (TBI) is a prevalent public healthcare concern frequently instigated by mechanical shock, traffic, or violence incidents, leading to permanent nerve damage, and there is no ideal treatment for it yet. In this study, a series of Rolipram-Tranilast hybrids were designed and synthesized. The neuroprotective activities of the Rolipram-Tranilast hybrids were evaluated both in vitro and in vivo. Compound 5 has been identified as the strongest neuroprotective molecule among the series with robust anti-oxidant and anti-inflammatory potentials. Compound 5 significantly increased the heme oxygenase-1 (HO-1) levels and the phosphorylated cAMP response elements binding protein (p-CREB) while it down-regulated phosphodiesterase-4 B (PDE4B) expression in vitro. Furthermore, compound 5 remarkably attenuated TBI and had a good safety profile in mice. Taken together, our findings suggested that compound 5 could serve as a novel promising lead compound in the treatment of TBI and other central nervous system (CNS) diseases associated with PDE4B and oxidative stress.
Collapse
Affiliation(s)
- Junfeng Lu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Chen Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaobing Deng
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Marvin SH Mak
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zeyu Zhu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xixin He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jinhao Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | | | - Karl W. K. Tsim
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yifan Han
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Rongbiao Pi
- School of Medicine, Sun Yat-Sen University, Guangzhou 518000, China
- National and Local United Engineering Lab of Drugability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
- International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangzhou, Guangzhou 510006, China
| |
Collapse
|
30
|
Mohammad Arshad. Design, Drug-Likeness, Synthesis, Characterization, Antimicrobial Activity, Molecular Docking, and MTT Assessment of 1,3-Thiazolidin-4-one Bearing Piperonal and Pyrimidine Moieties. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020040056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Arshad M. Design, computational, synthesis, characterization, antimicrobial, MTT and molecular docking assessment of bipyrimidine derivatives possessing indole moiety. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01855-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Feng LS, Xu Z, Chang L, Li C, Yan XF, Gao C, Ding C, Zhao F, Shi F, Wu X. Hybrid molecules with potential in vitro antiplasmodial and in vivo antimalarial activity against drug-resistant Plasmodium falciparum. Med Res Rev 2019; 40:931-971. [PMID: 31692025 DOI: 10.1002/med.21643] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/16/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022]
Abstract
Malaria is a tropical disease, leading to around half a million deaths annually. Antimalarials such as quinolines are crucial to fight against malaria, but malaria control is extremely challenged by the limited pipeline of effective pharmaceuticals against drug-resistant strains of Plasmodium falciparum which are resistant toward almost all currently accessible antimalarials. To tackle the growing resistance, new antimalarial drugs are needed urgently. Hybrid molecules which contain two or more pharmacophores have the potential to overcome the drug resistance, and hybridization of quinoline privileged antimalarial building block with other antimalarial pharmacophores may provide novel molecules with enhanced in vitro and in vivo activity against drug-resistant (including multidrug-resistant) P falciparum. In recent years, numerous of quinoline hybrids were developed, and their activities against a panel of drug-resistant P falciparum strains were screened. Some of quinoline hybrids were found to possess promising in vitro and in vivo potency. This review emphasized quinoline hybrid molecules with potential in vitro antiplasmodial and in vivo antimalarial activity against drug-resistant P falciparum, covering articles published between 2010 and 2019.
Collapse
Affiliation(s)
| | - Zhi Xu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Le Chang
- WuXi AppTec Co, Ltd, Wuhan, China
| | - Chuan Li
- WuXi AppTec Co, Ltd, Wuhan, China
| | | | | | | | | | - Feng Shi
- WuXi AppTec Co, Ltd, Wuhan, China
| | - Xiang Wu
- WuXi AppTec Co, Ltd, Wuhan, China
| |
Collapse
|
33
|
Combination Therapy Strategies for the Treatment of Malaria. Molecules 2019; 24:molecules24193601. [PMID: 31591293 PMCID: PMC6804225 DOI: 10.3390/molecules24193601] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/15/2019] [Accepted: 08/21/2019] [Indexed: 11/16/2022] Open
Abstract
Malaria is a vector- and blood-borne infection that is responsible for a large number of deaths around the world. Most of the currently used antimalarial therapeutics suffer from drug resistance. The other limitations associated with the currently used antimalarial drugs are poor drug bioavailability, drug toxicity, and poor water solubility. Combination therapy is one of the best approaches that is currently used to treat malaria, whereby two or more therapeutic agents are combined. Different combination therapy strategies are used to overcome the aforementioned limitations. This review article reports two strategies of combination therapy; the incorporation of two or more antimalarials into polymer-based carriers and hybrid compounds designed by hybridization of two antimalarial pharmacophores.
Collapse
|