1
|
Rojewska M, Romanowska J, Kraszewski A, Sobkowski M, Prochaska K. The Interactions of Anti-HIV Pronucleotides with a Model Phospholipid Membrane. Molecules 2024; 29:5787. [PMID: 39683946 DOI: 10.3390/molecules29235787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Pronucleotides, after entering the cell, undergo chemical or enzymatic conversion into nucleotides with a free phosphate residue, and the released nucleoside 5'-monophosphate is then phosphorylated to the biologically active form, namely nucleoside 5'-triphosphate. The active form can inhibit HIV virus replication. For the most effective therapy, it is necessary to improve the transport of prodrugs into organelles. The introduction of new functional groups into their structure increases lipophilicity and, as a result, facilitates the interaction of pronucleotide molecules with components of biological membranes. Studies of these interactions were performed using the Langmuir technique. The prototype of the biological membrane was a thin monolayer composed of phospholipid molecules, DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine). The pronucleotides were 3'-azido-3'-deoxythymidine (AZT) analogs, formed by the phosphorylation of AZT to monophosphate (AZTMP) and containing various masking moieties that could increase their lipophilicity. Our results show the influence of the pronucleotide's chemical structure on the fluidization of the model biomembrane. Changes in monolayer morphology in the presence of prodrugs were investigated by BAM microscopy. It was found that the incorporation of new groups into the structure of the drug as well as the concentration of AZT derivatives have a significant impact on the surface properties of the formed DPPC monolayer.
Collapse
Affiliation(s)
- Monika Rojewska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Joanna Romanowska
- Department of Nucleoside and Nucleotide Chemistry, Institute of Bioorganic Chemistry, Polish Academy of Science, 61-704 Poznań, Poland
| | - Adam Kraszewski
- Department of Nucleoside and Nucleotide Chemistry, Institute of Bioorganic Chemistry, Polish Academy of Science, 61-704 Poznań, Poland
| | - Michał Sobkowski
- Department of Nucleoside and Nucleotide Chemistry, Institute of Bioorganic Chemistry, Polish Academy of Science, 61-704 Poznań, Poland
| | - Krystyna Prochaska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| |
Collapse
|
2
|
Roy B, Navarro V, Peyrottes S. Prodrugs of Nucleoside 5'-Monophosphate Analogues: Overview of the Recent Literature Concerning their Synthesis and Applications. Curr Med Chem 2023; 30:1256-1303. [PMID: 36093825 DOI: 10.2174/0929867329666220909122820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 11/22/2022]
Abstract
Nucleoside analogues are widely used as anti-infectious and antitumoral agents. However, their clinical use may face limitations associated with their physicochemical properties, pharmacokinetic parameters, and/or their peculiar mechanisms of action. Indeed, once inside the cells, nucleoside analogues require to be metabolized into their corresponding (poly-)phosphorylated derivatives, mediated by cellular and/or viral kinases, in order to interfere with nucleic acid biosynthesis. Within this activation process, the first-phosphorylation step is often the limiting one and to overcome this limitation, numerous prodrug approaches have been proposed. Herein, we will focus on recent literature data (from 2015 and onwards) related to new prodrug strategies, the development of original synthetic approaches and novel applications of nucleotide prodrugs (namely pronucleotides) leading to the intracellular delivery of 5'-monophosphate nucleoside analogues.
Collapse
Affiliation(s)
- Béatrice Roy
- Team Nucleosides & Phosphorylated Effectors, Institute for Biomolecules Max Mousseron (IBMM), University of Montpellier, Route de Mende, 34293 Montpellier, France
| | - Valentin Navarro
- Team Nucleosides & Phosphorylated Effectors, Institute for Biomolecules Max Mousseron (IBMM), University of Montpellier, Route de Mende, 34293 Montpellier, France
| | - Suzanne Peyrottes
- Team Nucleosides & Phosphorylated Effectors, Institute for Biomolecules Max Mousseron (IBMM), University of Montpellier, Route de Mende, 34293 Montpellier, France
| |
Collapse
|
3
|
Liu Z, McKay AI, Zhao L, Forsyth CM, Jevtović V, Petković M, Frenking G, Vidović D. Carbodiphosphorane-Stabilized Parent Dioxophosphorane: A Valuable Synthetic HO 2P Source. J Am Chem Soc 2022; 144:7357-7365. [PMID: 35436104 DOI: 10.1021/jacs.2c00936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Introducing a small phosphorus-based fragment into other molecular entities via, for example, phosphorylation/phosphonylation is an important process in synthetic chemistry. One of the approaches to achieve this is by trapping and subsequently releasing extremely reactive phosphorus-based molecules such as dioxophosphoranes. In this work, electron-rich hexaphenylcarbodiphosphorane (CDP) was used to stabilize the least thermodynamically favorable isomer of HO2P to yield monomeric CDP·PHO2. The title compound was observed to be a quite versatile phosphonylating agent; that is, it showed a great ability to transfer, for the first time, the HPO2 fragment to a number of substrates such as alcohols, amines, carboxylic acids, and water. Several phosphorous-based compounds that were generated using this synthetic approach were also isolated and characterized for the first time. According to the initial computational studies, the addition-elimination pathway was significantly more favorable than the corresponding elimination-addition route for "delivering" the HO2P unit in these reactions.
Collapse
Affiliation(s)
- Zhizhou Liu
- School of Chemistry, Faculty of Sciences, Monash University, Clayton 3800, Australia.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Alasdair I McKay
- School of Chemistry, Faculty of Sciences, Monash University, Clayton 3800, Australia
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Craig M Forsyth
- School of Chemistry, Faculty of Sciences, Monash University, Clayton 3800, Australia
| | - Violeta Jevtović
- Department of Chemistry, College of Science, University of Hail, Ha'il 81451, Kingdom of Saudi Arabia
| | - Milena Petković
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade 11 158, Serbia
| | - Gernot Frenking
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.,Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Dragoslav Vidović
- School of Chemistry, Faculty of Sciences, Monash University, Clayton 3800, Australia
| |
Collapse
|
4
|
Kraszewski A, Sobkowski M, Stawinski J. H-Phosphonate Chemistry in the Synthesis of Electrically Neutral and Charged Antiviral and Anticancer Pronucleotides. Front Chem 2020; 8:595738. [PMID: 33282839 PMCID: PMC7691650 DOI: 10.3389/fchem.2020.595738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/14/2020] [Indexed: 11/13/2022] Open
Abstract
In this review a short account of our work on the synthesis and biological activity of electrically neutral and charged anti-HIV and anticancer pronucleotides, presented on the background of the contemporary research in this area, is given.
Collapse
Affiliation(s)
- Adam Kraszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Michal Sobkowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Jacek Stawinski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
5
|
Nano‐ and micro‐structure tin (IV) complexes bearing 4‐pyridinecarbacylamidophosphate: Sonochemical synthesis, crystal structure, anti‐cholinesterase activity, and docking studies. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
6
|
Smolobochkin AV, Gazizov AS, Doszhanova KA, Kuandykova AB, Jiyembayev BZ, Burilov AR, Pudovik MA, Cherkasov RA. Synthesis of New α-Aminophosphonates Based on Cyclohexylamine. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220060274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Green catalyst-free one-pot synthesis of novel tetrahydropyridine-3-carboxamides by microwave-assisted approach. J CHEM SCI 2020. [DOI: 10.1007/s12039-019-1725-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|