1
|
Shu VA, Eni DB, Ntie-Kang F. A survey of isatin hybrids and their biological properties. Mol Divers 2024:10.1007/s11030-024-10883-z. [PMID: 38833124 DOI: 10.1007/s11030-024-10883-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/15/2024] [Indexed: 06/06/2024]
Abstract
The emergence of diverse infections worldwide, which is a serious global threat to human existence, necessitates the urgent development of novel therapeutic candidates that can combat these diseases with efficacy. Molecular hybridization has been established as an efficient technique in designing bioactive molecules capable of fighting infections. Isatin, a core nucleus of an array of compounds with diverse biological properties can be modified at different positions leading to the creation of novel drug targets, is an active area of medicinal chemistry. This review containing published articles from 2005 to 2022 highlights isatin hybrids which have been synthesized and reported in the literature alongside a discussion on their biological properties. The enriched structure-activity relationship studies discussed provides insights for the rational design of novel isatin hybrids with tailored biological properties as effective therapeutic candidates inspired by nature.
Collapse
Affiliation(s)
- Vanessa Asoh Shu
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon
| | - Donatus Bekindaka Eni
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon.
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon.
| | - Fidele Ntie-Kang
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon.
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon.
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
2
|
Bendi A, Yadav P, Saini K, Singh Bhathiwal A, Raghav N. A Comprehensive Examination of Heterocyclic Scaffold Chemistry for Antitubercular Activity. Chem Biodivers 2024; 21:e202400067. [PMID: 38500408 DOI: 10.1002/cbdv.202400067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Tuberculosis is a communicable disease which affects humans particularly the lungs and is transmitted mainly through air. Despite two decades of intensive research aimed at understanding and combating tuberculosis, persistent biological uncertainties continue to hinder progress. Nowadays, heterocyclic compounds have proven themselves in effective treatment of tuberculosis because of their wide range of biological and pharmacological activities. Antituberculosis or antimycobacterial agents encompass a broad array of compounds utilized singly or in conjunction to combat Mycobacterium infections, spanning from tuberculosis to leprosy. Here, we summarize the synthesis of various heterocyclic compounds which includes the greener synthetic route as well as use of nano compounds as catalyst along with their anti TB activities.
Collapse
Affiliation(s)
- Anjaneyulu Bendi
- Department of Chemistry, Presidency University, Rajanukunte, Itgalpura, 560064, Bangalore, India
| | - Priyanka Yadav
- Department of Chemistry, Faculty of Science, SGT University, 122505, Gurugram, Haryana, India
| | - Komal Saini
- Applied Sciences and Humanities, World College of Technology and Management, 122506, Gurugram, Haryana, India
| | - Anirudh Singh Bhathiwal
- Department of Chemistry, Faculty of Science, SGT University, 122505, Gurugram, Haryana, India
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, 136119, Kurukshetra, Haryana, India
| |
Collapse
|
3
|
Maiuolo L, Tallarida MA, Meduri A, Fiorani G, Jiritano A, De Nino A, Algieri V, Costanzo P. 1,2,3-Triazole Hybrids Containing Isatins and Phenolic Moieties: Regioselective Synthesis and Molecular Docking Studies. Molecules 2024; 29:1556. [PMID: 38611835 PMCID: PMC11013233 DOI: 10.3390/molecules29071556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
The synthesis of hybrid molecules is one of the current strategies of drug discovery for the development of new lead compounds. The 1,2,3-triazole moiety represents an important building block in Medicinal Chemistry, extensively present in recent years. In this paper, we presented the design and the synthesis of new 1,2,3-triazole hybrids, containing both an isatine and a phenolic core. Firstly, the non-commercial azide and the alkyne synthons were prepared by different isatines and phenolic acids, respectively. Then, the highly regioselective synthesis of 1,4-disubstituted triazoles was obtained in excellent yields by a click chemistry approach, catalyzed by Cu(I). Finally, a molecular docking study was performed on the hybrid library, finding four different therapeutic targets. Among them, the most promising results were obtained on 5-lipoxygenase, an enzyme involved in the inflammatory processes.
Collapse
Affiliation(s)
- Loredana Maiuolo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy; (L.M.); (A.J.); (A.D.N.)
| | | | - Angelo Meduri
- RINA Consulting—Centro Sviluppo Materiali SpA, Zona Industriale San Pietro Lametino, Comparto 1, 88046 Lamezia Terme, CZ, Italy;
| | - Giulia Fiorani
- Department Molecular Sciences and Nanosystems, University Ca’ Foscari Venezia, 30172 Mestre, VE, Italy;
| | - Antonio Jiritano
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy; (L.M.); (A.J.); (A.D.N.)
| | - Antonio De Nino
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy; (L.M.); (A.J.); (A.D.N.)
| | - Vincenzo Algieri
- IRCCS NEUROMED—Istituto Neurologico Mediterraneo, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Paola Costanzo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy; (L.M.); (A.J.); (A.D.N.)
| |
Collapse
|
4
|
Abbas AA, Dawood KM. Benzofuran as a promising scaffold for the synthesis of novel antimicrobial agents. Expert Opin Drug Discov 2022; 17:1357-1376. [PMID: 36503375 DOI: 10.1080/17460441.2023.2157400] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The benzofuran moiety constitutes a main component of enormous biologically active natural and synthetic heterocycles. Such heterocycles have distinctive therapeutic potential and are employed in various clinical drugs. A number of publications have dealt with the synthesis and extraction of benzofuran-based heterocycles to investigate their antimicrobial potential. AREAS COVERED This review describes the antimicrobial activity of various natural and synthetic benzofuran scaffolds. The antimicrobial activity of benzofurans is thoroughly investigated against several bacterial (Gram-positive and Gram-negative) and fungal microorganisms compared with several reference antibiotic drugs. The effects of the electronic nature of substituents on the activity of benzofurans through SAR study were reported. This article also highlights the recent natural and synthetic benzofuran-based organic molecules between 2019-2022 that have had success in terms of their antimicrobial activity. EXPERT OPINION Many of the described benzofurans are promising candidates as antimicrobial agents based on their activity. Most used antibiotics target infections caused by the gram-positive pathogen S. aureus. Interestingly, most of the described benzofurans are promising inhibitors against S. aureus with either equipotent or more potent activity than the reference antibiotic drugs. These findings will encourage medicinal chemists to explore these new avenues for human health promotion to reduce suffering.
Collapse
Affiliation(s)
- Ashraf A Abbas
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Kamal M Dawood
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
5
|
do Carmo Pinheiro R, Back DF, Müller SG, Nogueira CW, Zeni G. Potassium tert-Butoxide-Promoted Tandem Cyclization of Organoselenium Alkynyl Aryl Propargyl Ethers. J Org Chem 2022; 87:13111-13123. [DOI: 10.1021/acs.joc.2c01598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Roberto do Carmo Pinheiro
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Davi F. Back
- Departamento de Química, UFSM, Laboratório de Materiais Inorgânicos, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Sabrina G. Müller
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Gilson Zeni
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| |
Collapse
|
6
|
Discovery of Some Heterocyclic Molecules as Bone Morphogenetic Protein 2 (BMP-2)-Inducible Kinase Inhibitors: Virtual Screening, ADME Properties, and Molecular Docking Simulations. Molecules 2022; 27:molecules27175571. [PMID: 36080338 PMCID: PMC9457949 DOI: 10.3390/molecules27175571] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 12/02/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are growth factors that have a vital role in the production of bone, cartilage, ligaments, and tendons. Tumors’ upregulation of bone morphogenetic proteins (BMPs) and their receptors are key features of cancer progression. Regulation of the BMP kinase system is a new promising strategy for the development of anti-cancer drugs. In this work, based on a careful literature study, a library of benzothiophene and benzofuran derivatives was subjected to different computational techniques to study the effect of chemical structure changes on the ability of these two scaffolds to target BMP-2 inducible kinase, and to reach promising candidates with proposed activity against BMP-2 inducible kinase. The results of screening against Lipinski’s and Veber’s Rules produced twenty-one outside eighty-four compounds having drug-like molecular nature. Computational ADMET studies favored ten compounds (11, 26, 27, 29, 30, 31, 34, 35, 65, and 72) with good pharmacokinetic profile. Computational toxicity studies excluded compound 34 to elect nine compounds for molecular docking studies which displayed eight compounds (26, 27, 29, 30, 31, 35, 65, and 72) as promising BMP-2 inducible kinase inhibitors. The nine fascinating compounds will be subjected to extensive screening against serine/threonine kinases to explore their potential against these critical proteins. These promising candidates based on benzothiophene and benzofuran scaffolds deserve further clinical investigation as BMP-2 kinase inhibitors for the treatment of cancer.
Collapse
|
7
|
Dwarakanath D, Gaonkar SL. Advances in Synthetic Strategies and Medicinal Importance of Benzofurans: A Review. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Deepika Dwarakanath
- Department of Chemistry Manipal Institute of Technology Manipal Academy of Higher Education 576104 Manipal Karnataka India
| | - Santosh L. Gaonkar
- Department of Chemistry Manipal Institute of Technology Manipal Academy of Higher Education 576104 Manipal Karnataka India
| |
Collapse
|
8
|
Abu-Melha S, Edrees MM, Kheder NA, Saad AM, Riyadh SM, Abdel-Aziz MM, Abdelmoaz MA, Gomha SM. Synthesis and Anti-Tubercular (Tb) Evaluation of Bis[4-Ethylidineamino[1,2,4]Triazole-3-Thiol] Tethered by 1,4-Dihydropyridine. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022020029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
A Mini Review on Isatin, an Anticancer Scaffold with Potential Activities against Neglected Tropical Diseases (NTDs). Pharmaceuticals (Basel) 2022; 15:ph15050536. [PMID: 35631362 PMCID: PMC9146800 DOI: 10.3390/ph15050536] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/29/2022] Open
Abstract
Isatin, chemically an indole-1H-2,3-dione, is recognised as one of the most attractive therapeutic fragments in drug design and development. The template has turned out to be exceptionally useful for developing new anticancer scaffolds, as evidenced by the increasing number of isatin-based molecules which are either in clinical use or in trials. Apart from its promising antiproliferative properties, isatin has shown potential in treating Neglected Tropical Diseases (NTDs) not only as a parent core, but also by attenuating the activities of various pharmacophores. The objective of this mini-review is to keep readers up to date on the latest developments in the biological potential of isatin-based scaffolds, targeting cancer and NTDs such as tuberculosis, malaria, and microbial infections.
Collapse
|
10
|
Cheke RS, Patil VM, Firke SD, Ambhore JP, Ansari IA, Patel HM, Shinde SD, Pasupuleti VR, Hassan MI, Adnan M, Kadri A, Snoussi M. Therapeutic Outcomes of Isatin and Its Derivatives against Multiple Diseases: Recent Developments in Drug Discovery. Pharmaceuticals (Basel) 2022; 15:ph15030272. [PMID: 35337070 PMCID: PMC8950263 DOI: 10.3390/ph15030272] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 12/22/2022] Open
Abstract
Isatin (1H indole 2, 3-dione) is a heterocyclic, endogenous lead molecule recognized in humans and different plants. The isatin nucleus and its derivatives are owed the attention of researchers due to their diverse pharmacological activities such as anticancer, anti-TB, antifungal, antimicrobial, antioxidant, anti-inflammatory, anticonvulsant, anti-HIV, and so on. Many research chemists take advantage of the gentle structure of isatins, such as NH at position 1 and carbonyl functions at positions 2 and 3, for designing biologically active analogues via different approaches. Literature surveys based on reported preclinical, clinical, and patented details confirm the multitarget profile of isatin analogues and thus their importance in the field of medicinal chemistry as a potent chemotherapeutic agent. This review represents the recent development of isatin analogues possessing potential pharmacological action in the years 2016–2020. The structure–activity relationship is also discussed to provide a pharmacophoric pattern that may contribute in the future to the design and synthesis of potent and less toxic therapeutics.
Collapse
Affiliation(s)
- Rameshwar S. Cheke
- Department of Pharmaceutical Chemistry, Dr. Rajendra Gode College of Pharmacy, Malkapur 443101, Maharashtra, India;
- Correspondence: (R.S.C.); (V.R.P.)
| | - Vaishali M. Patil
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad 201206, Uttar Pradesh, India;
| | - Sandip D. Firke
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India; (S.D.F.); (I.A.A.); (H.M.P.)
| | - Jaya P. Ambhore
- Department of Pharmaceutical Chemistry, Dr. Rajendra Gode College of Pharmacy, Malkapur 443101, Maharashtra, India;
| | - Iqrar A. Ansari
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India; (S.D.F.); (I.A.A.); (H.M.P.)
| | - Harun M. Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India; (S.D.F.); (I.A.A.); (H.M.P.)
| | - Sachin D. Shinde
- Department of Pharmacology, Shri. R. D. Bhakt College of Pharmacy, Jalna 431213, Maharashtra, India;
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine & Health Sciences, University Malaysia Sabah, Kota Kinabalu 44800, Sabah, Malaysia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru 28291, Riau, Indonesia
- Centre for International Collaboration and Research, Reva University, Rukmini Knowledge Park, Kattigenahalli, Yelahanka, Bangalore 560064, Karnataka, India
- Correspondence: (R.S.C.); (V.R.P.)
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Ha′il 2440, Saudi Arabia; (M.A.); (M.S.)
| | - Adel Kadri
- Faculty of Science of Sfax, Department of Chemistry, University of Sfax, B.P. 1171, Sfax 3000, Tunisia;
- Faculty of Science and Arts in Baljurashi, Albaha University, P.O. Box 1988, Albaha 65527, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Ha′il 2440, Saudi Arabia; (M.A.); (M.S.)
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), University of Monastir, Higher Institute of Biotechnology of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| |
Collapse
|
11
|
Synthesis, in vitro antimicrobial evaluation, and molecular docking studies of new isatin-1,2,3-triazole hybrids. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131855] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Recent advancements and developments in search of anti-tuberculosis agents: A quinquennial update and future directions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131473] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Rasras AJ, Shehadi IA, Younes EA, Jaradat DMM, AlQawasmeh RA. An efficient synthesis of furan-3(2 H)-imine scaffold from alkynones. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211145. [PMID: 34849246 PMCID: PMC8611349 DOI: 10.1098/rsos.211145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
A novel efficient method to generate spiro furan-3(2H)-imine derivatives is established by the reaction between the α,β-unsaturated ketones and aniline derivatives. The reaction involves 1,4- addition of aniline followed by the subsequent intramolecular cyclization mediated by tertiary alcohol to produce the furan-3(2H)-imine. All the synthesized compounds are characterized using nuclear magnetic resonance and high-resolution mass spectrometry (HRMS).
Collapse
Affiliation(s)
- Anas J. Rasras
- Faculty of Science, Department of Chemistry, Al-Balqa Applied University, PO Box 19117, Al-Salt, Jordan
| | - Ihsan A. Shehadi
- College of Science, Department of Chemistry, University of Sharjah, Pure and Applied Chemistry Research Group, PO Box 27272, Sharjah, United Arab Emirates
| | - Eyad A. Younes
- Department of Chemistry, Faculty of Science, The Hashemite University, PO Box 330127, Zarqa 13133, Jordan
| | - Da'san M. M. Jaradat
- Faculty of Science, Department of Chemistry, Al-Balqa Applied University, PO Box 19117, Al-Salt, Jordan
| | - Raed A. AlQawasmeh
- College of Science, Department of Chemistry, University of Sharjah, Pure and Applied Chemistry Research Group, PO Box 27272, Sharjah, United Arab Emirates
| |
Collapse
|
14
|
Varpe BD, Kulkarni AA, Jadhav SB, Mali AS, Jadhav SY. Isatin Hybrids and Their Pharmacological Investigations. Mini Rev Med Chem 2021; 21:1182-1225. [PMID: 33302835 DOI: 10.2174/1389557520999201209213029] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/01/2020] [Accepted: 10/16/2020] [Indexed: 11/22/2022]
Abstract
Hybridization is an important strategy to design molecules that can be effectively used to treat fatal diseases known to mankind. Molecular hybrids and their pharmacological investigations aided in discovering several potent isatin (Indole 2, 3 dione) derivatives with anti-HIV, antimalarial, antitubercular, antibacterial, and anticancer activities. Indole-2,3-dione and their derivatives have diverse pharmacological properties and have a prominent role in the discovery of new drugs. To understand the various approaches for designing new molecules based on isatin nucleus analysis of various pharmacophore hybrids, spacers/linkers between pharmacophores and isatin for hybridization and their biological activities are important. This review discusses the progress in developing isatin hybrids as biologically effective agents and their crucial aspects of design and structure-activity relationships.
Collapse
Affiliation(s)
- Bhushan D Varpe
- Department of Pharmaceutical Chemistry, DKSS's Institute of Pharmaceutical Science and Research, Swami Chincholi, Dist-Pune, 413130 Maharashtra, India
| | - Amol A Kulkarni
- Department of Pharmaceutical Chemistry, DKSS's Institute of Pharmaceutical Science and Research, Swami Chincholi, Dist-Pune, 413130 Maharashtra, India
| | - Shailaja B Jadhav
- PES's Modern College of Pharmacy, Nigdi, Pune, 411044, Maharashtra, India
| | - Anil S Mali
- Department of Pharmaceutical Chemistry, DKSS's Institute of Pharmaceutical Science and Research, Swami Chincholi, Dist-Pune, 413130 Maharashtra, India
| | - Shravan Y Jadhav
- Department of Chemistry, DBF Dayanand College of Arts & Science, Solapur 413002, Maharashtra, India
| |
Collapse
|
15
|
Abdel-Aziem A, Baaiu BS, El-Sawy ER. Reactions and Antibacterial Activity of 6-Bromo-3-(2-Bromoacetyl)-2 H-Chromen-2-One. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1916543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Anhar Abdel-Aziem
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Basma Saad Baaiu
- Department of Chemistry, Faculty of Science, Benghazi University, Benghazi, Libya
| | - Eslam R. El-Sawy
- Chemistry of Natural Compounds Department, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
16
|
Mustaqeem Abdullah M, Siddiqui NA, Mothana RA, Nasr FA, Al-Rehaily AJ, Almarfadi OM, Karim S, Haider K, Rafi Haider M, Shahar Yar M. Design, in-silico study and biological evaluation of newly synthesized 3-chlorobenzofuran congeners as antitubercular agents. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
17
|
Cui PL, Zhang D, Guo XM, Ji SJ, Jiang QM. Synthesis, antibacterial activities and molecular docking study of thiouracil derivatives containing oxadiazole moiety. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1904990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Peng-Lei Cui
- College of Science, Hebei Agricultural University, Baoding, China
| | - Di Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xiu-Min Guo
- College of Science, Hebei Agricultural University, Baoding, China
| | - Shu-Jing Ji
- College of Science, Hebei Agricultural University, Baoding, China
| | - Qing-Mei Jiang
- College of Science, Hebei Agricultural University, Baoding, China
| |
Collapse
|
18
|
Kumar R, Takkar P. Repositioning of Isatin hybrids as novel anti-tubercular agents overcoming pre-existing antibiotics resistance. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02699-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Bashiri M, Jarrahpour A, Nabavizadeh SM, Karimian S, Rastegari B, Haddadi E, Turos E. Potent antiproliferative active agents: novel bis Schiff bases and bis spiro β-lactams bearing isatin tethered with butylene and phenylene as spacer and DNA/BSA binding behavior as well as studying molecular docking. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02659-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Aneja B, Khan P, Alam S, Hasan P, Abid M. Ferulic Hydroxamic Acid Triazole Hybrids as Peptide Deformylase Inhibitors: Synthesis, Molecular Modelling and Biological Evaluation. ChemistrySelect 2020. [DOI: 10.1002/slct.202002089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Babita Aneja
- Department of Biosciences Jamia Millia Islamia New Delhi India 110025 (MA)
- Current: Department of Organic Chemistry Weizmann Institute of Science Rehovot Israel- 7610001
| | - Parvez Khan
- Centre for Interdisciplinary Research in Basic Sciences Jamia Millia Islamia New Delhi India 110025
- Current: Department of Biochemistry & Molecular Biology University of Nebraska Medical Center Omaha, NE USA- 68198
| | - Shadab Alam
- Department of Biosciences Jamia Millia Islamia New Delhi India 110025 (MA)
| | - Phool Hasan
- Department of Biosciences Jamia Millia Islamia New Delhi India 110025 (MA)
| | - Mohammad Abid
- Department of Biosciences Jamia Millia Islamia New Delhi India 110025 (MA)
| |
Collapse
|
21
|
Meng T, Hou Y, Shang C, Zhang J, Zhang B. Recent advances in indole dimers and hybrids with antibacterial activity against methicillin-resistant Staphylococcus aureus. Arch Pharm (Weinheim) 2020; 354:e2000266. [PMID: 32986279 DOI: 10.1002/ardp.202000266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/30/2020] [Accepted: 09/05/2020] [Indexed: 01/27/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), one of the major and most dangerous pathogens in humans, is a causative agent of severe pandemic of mainly skin and soft tissue and occasionally fatal infections. Therefore, it is imperative to develop potent and novel anti-MRSA agents. Indole derivatives could act against diverse enzymes and receptors in bacteria, occupying a salient place in the development of novel antibacterial agents. Dimerization and hybridization are common strategies to discover new drugs, and a number of indole dimers and hybrids possess potential antibacterial activity against a panel of clinically important pathogens including MRSA. Accordingly, indole dimers and hybrids are privileged scaffolds for the discovery of novel anti-MRSA agents. This review outlines the recent development of indole dimers and hybrids with a potential activity against MRSA, covering articles published between 2010 and 2020. The structure-activity relationship and the mechanism of action are also discussed to facilitate further rational design of more effective candidates.
Collapse
Affiliation(s)
- Tingting Meng
- Medical College, Xi'an Peihua University, Xi'an, Shaanxi, China
| | - Yani Hou
- Medical College, Xi'an Peihua University, Xi'an, Shaanxi, China
| | - Congshan Shang
- Medical College, Xi'an Peihua University, Xi'an, Shaanxi, China
| | - Jing Zhang
- School of Biomedical and Food Engineering, Shangluo University, Shangluo, Shaanxi, China
| | - Bo Zhang
- School of Biomedical and Food Engineering, Shangluo University, Shangluo, Shaanxi, China
| |
Collapse
|
22
|
Song F, Li Z, Bian Y, Huo X, Fang J, Shao L, Zhou M. Indole/isatin-containing hybrids as potential antibacterial agents. Arch Pharm (Weinheim) 2020; 353:e2000143. [PMID: 32667714 DOI: 10.1002/ardp.202000143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
The emergence and worldwide spread of drug-resistant bacteria have already posed a serious threat to human life, creating the urgent need to develop potent and novel antibacterial drug candidates with high efficacy. Indole and isatin (indole-2,3-dione) present a wide structural and mechanistic diversity, so their derivatives possess various pharmacological properties and occupy a salient place in the development of new drugs. Indole/isatin-containing hybrids, which demonstrate a promising activity against a panel of clinically important Gram-positive and Gram-negative bacteria, are privileged scaffolds for the discovery of novel antibacterial candidates. This review, covering articles published between January 2015 and May 2020, focuses on the development and structure-activity relationship (SAR) of indole/isatin-containing hybrids with potential application for fighting bacterial infections, to facilitate further rational design of novel drug candidates.
Collapse
Affiliation(s)
- Feng Song
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China.,School of Life Sciences, Dezhou University, Dezhou, Shandong, China
| | - Zhenghua Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China
| | - Yunqiang Bian
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China
| | - Xiankai Huo
- Department of Medical Imaging, Dezhou People's Hospital, Dezhou, Shandong, China
| | - Junman Fang
- School of Life Sciences, Dezhou University, Dezhou, Shandong, China
| | - Linlin Shao
- School of Life Sciences, Dezhou University, Dezhou, Shandong, China
| | - Meng Zhou
- School of Life Sciences, Dezhou University, Dezhou, Shandong, China
| |
Collapse
|
23
|
Bashiri M, Jarrahpour A, Rastegari B, Iraji A, Irajie C, Amirghofran Z, Malek-Hosseini S, Motamedifar M, Haddadi M, Zomorodian K, Zareshahrabadi Z, Turos E. Synthesis and evaluation of biological activities of tripodal imines and β-lactams attached to the 1,3,5-triazine nucleus. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02592-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Indole-based derivatives as potential antibacterial activity against methicillin-resistance Staphylococcus aureus (MRSA). Eur J Med Chem 2020; 194:112245. [DOI: 10.1016/j.ejmech.2020.112245] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/20/2020] [Accepted: 03/16/2020] [Indexed: 12/15/2022]
|
25
|
Feng D, Zhang A, Yang Y, Yang P. Coumarin-containing hybrids and their antibacterial activities. Arch Pharm (Weinheim) 2020; 353:e1900380. [PMID: 32253782 DOI: 10.1002/ardp.201900380] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 12/31/2022]
Abstract
Infections caused by Gram-positive and -negative bacteria are one of the foremost causes of morbidity and mortality globally. Antibiotics are the mainstay of therapy for bacterial infections, but the emergence and wide spread of drug-resistant pathogens have already become a huge issue for public healthcare systems. The coumarin moiety, which is ubiquitous in nature, could bind to the B subunit of DNA gyrase in bacteria and inhibit DNA supercoiling by blocking the ATPase activity; hence, coumarin derivatives possess potential antibacterial activity. Several coumarin-containing hybrids such as coumermycin A1, clorobiocin, and novobiocin have already been used in clinical practice for the treatment of various bacterial infections; thus, it is conceivable that hybridization of the coumarin moiety with other antibacterial pharmacophores may provide opportunities for the development of novel antibiotics. This review outlines the advances in coumarin-containing hybrids with antibacterial potential in the recent 5 years and the structure-activity relationships are also discussed.
Collapse
Affiliation(s)
- Dongxu Feng
- Department of Disinfection Center, Zhuji Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuan Yang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China.,Dong Medicine Key Laboratory of Hunan Province, Department of Laboratory Medicine, Hunan University of Medicine, Huaihua, Hunan, China
| | - Peng Yang
- Dong Medicine Key Laboratory of Hunan Province, Department of Laboratory Medicine, Hunan University of Medicine, Huaihua, Hunan, China
| |
Collapse
|
26
|
Zhang Y, Du H, Liu H, He Q, Xu Z. Isatin dimers and their biological activities. Arch Pharm (Weinheim) 2020; 353:e1900299. [DOI: 10.1002/ardp.201900299] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/20/2019] [Accepted: 12/28/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Ya‐Zhou Zhang
- Teaching and Research Office of Analytical Chemistry, School of Pharmaceutical SciencesGuizhou University of Traditional Chinese Medicine Guizhou China
| | - Hong‐Zhi Du
- Teaching and Research Office of Analytical Chemistry, School of Pharmaceutical SciencesGuizhou University of Traditional Chinese Medicine Guizhou China
| | - Hai‐Lin Liu
- Teaching and Research Office of Analytical Chemistry, School of Pharmaceutical SciencesGuizhou University of Traditional Chinese Medicine Guizhou China
| | - Qian‐Song He
- Teaching and Research Office of Analytical Chemistry, School of Pharmaceutical SciencesGuizhou University of Traditional Chinese Medicine Guizhou China
| | - Zhi Xu
- Teaching and Research Office of Analytical Chemistry, School of Pharmaceutical SciencesGuizhou University of Traditional Chinese Medicine Guizhou China
| |
Collapse
|
27
|
Zou Y. Benzofuran‐isatin conjugates as potent VEGFR‐2 and cancer cell growth inhibitors. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yulin Zou
- The Third Clinical Medical College of the Three Gorges UniversityGezhouba Central Hospital of Sinopharm Yichang 443002 Hubei China
| |
Collapse
|
28
|
Liu B, Wang G, Peng Y, Tang X, Hu G. Design, synthesis, and in vitro antimycobacterial activities of butylene tethered 7‐fluoroisatin‐isatin scaffolds. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Bi Liu
- School of Nuclear Technology and Chemistry and BiologyHubei University of Science and Technology Xianning People's Republic of China
| | - Gang‐Qiang Wang
- School of Nuclear Technology and Chemistry and BiologyHubei University of Science and Technology Xianning People's Republic of China
| | - Yan‐Hong Peng
- School of Nuclear Technology and Chemistry and BiologyHubei University of Science and Technology Xianning People's Republic of China
| | - Xiu‐Qin Tang
- School of Nuclear Technology and Chemistry and BiologyHubei University of Science and Technology Xianning People's Republic of China
| | - Guo‐Wen Hu
- School of Nuclear Technology and Chemistry and BiologyHubei University of Science and Technology Xianning People's Republic of China
| |
Collapse
|
29
|
Gao F, Chen Z, Ma L, Fan Y, Chen L, Lu G. Synthesis and biological evaluation of moxifloxacin-acetyl-1,2,3-1H-triazole-methylene-isatin hybrids as potential anti-tubercular agents against both drug-susceptible and drug-resistant Mycobacterium tuberculosis strains. Eur J Med Chem 2019; 180:648-655. [DOI: 10.1016/j.ejmech.2019.07.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/17/2019] [Accepted: 07/20/2019] [Indexed: 11/24/2022]
|
30
|
Gao F, Ye L, Wang Y, Kong F, Zhao S, Xiao J, Huang G. Benzofuran-isatin hybrids and their in vitro anti-mycobacterial activities against multi-drug resistant Mycobacterium tuberculosis. Eur J Med Chem 2019; 183:111678. [PMID: 31525660 DOI: 10.1016/j.ejmech.2019.111678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/01/2019] [Accepted: 09/03/2019] [Indexed: 10/26/2022]
Abstract
A series of benzofuran-isatin hybrids 6a-n and 7a-g linked by alkyl linkers were designed and synthesized. Among them, hybrids 6a-l and 7a-g were assessed for their in vitro anti-mycobacterial activities against two multi-drug resistant Mycobacterium tuberculosis (MDR-MTB) strains and the cytotoxicity towards CHO cells. The preliminary results indicated that all hybrids (MIC: 0.125-16 μg/mL) showed excellent activity against the tested MDR-MTB strains, and low cytotoxicity (CC50: 64->512 μg/mL) towards CHO cells. Among them, hybrid 7e (MIC: 0.125 and 0.25 μg/mL) was highly active against the tested two MDR-MTB strains, which was 8-16 folds better than ciprofloxacin (MIC: 1 and 4 μg/mL), ≥512 folds more potent than rifampicin (MIC: 64 and > 128 μg/mL) and isoniazid (MIC: >128 μg/mL), but it was less active than TAM16 (MIC: <0.06 μg/mL). Moreover, the hybrid 7e (CC50: 128 μg/mL) also showed low cytotoxicity towards CHO cells, and high selectivity index (1,024). However, the metabolic stability and in vivo pharmacokinetic profiles of hybrid 7e were inferior to TAM16, so it still needs to be modified so as to get the optimized hybrid for potential use in mycobacterial treatment.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China; Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, PR China.
| | - Lei Ye
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Yabin Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Shijia Zhao
- Wuhan University of Science and Technology, Wuhan, Hubei, PR China
| | - Jiaqi Xiao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, PR China.
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, PR China.
| |
Collapse
|
31
|
Ciprofloxacin-1,2,3-triazole-isatin hybrids tethered via amide: Design, synthesis, and in vitro anti-mycobacterial activity evaluation. Bioorg Med Chem Lett 2019; 29:2635-2637. [DOI: 10.1016/j.bmcl.2019.07.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 01/14/2023]
|
32
|
Ding Z, Hou P, Liu B. Gatifloxacin‐1,2,3‐triazole‐isatin hybrids and their antimycobacterial activities. Arch Pharm (Weinheim) 2019; 352:e1900135. [PMID: 31441087 DOI: 10.1002/ardp.201900135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Zhen Ding
- Department of PharmacyBozhou People's Hospital Bozhou China
| | - Panfei Hou
- Department of Clinical LaboratoryLianshui County People's Hospital Lianshui China
| | - Bi Liu
- School of Nuclear Technology and Chemistry and BiologyHubei University of Science and Technology Xianning China
| |
Collapse
|
33
|
Zhang J, Ba Y, Wang S, Yang H, Hou X, Xu Z. Nitroimidazole-containing compounds and their antibacterial and antitubercular activities. Eur J Med Chem 2019; 179:376-388. [PMID: 31260891 DOI: 10.1016/j.ejmech.2019.06.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 11/24/2022]
Abstract
Infections especially tuberculosis caused by various bacteria including mycobacteria result in millions of lives every year, but the control of bacterial infections is challenged by the limitation of effective pharmaceuticals against drug-resistant pathogens. Nitroimidazoles belong to a group of nitroheterocyclic compounds that have broad-spectrum activity against a series of organisms such as mycobacteria, anaerobic Gram-positive and Gram-negative bacteria, and some of them have already been used in clinics or under clinical trials for the treatment of infectious diseases. In this review, we made an overview of the recent advances in nitroimidazole-containing compounds with antibacterial and antitubercular activity in the recent 20 years.
Collapse
Affiliation(s)
- Jingyu Zhang
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, PR China
| | - Yanyan Ba
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, PR China
| | - Su Wang
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, PR China
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, PR China
| | - Xuehui Hou
- Faculty of Science, Henan University of Animal Husbandry and Economy, 450046, Zhengzhou, PR China.
| | - Zhi Xu
- Huanghuai University, College of Chemistry and Pharmaceutical Engineering, Zhumadian, PR China.
| |
Collapse
|
34
|
Gao F, Chen Z, Ma L, Qiu L, Lin J, Lu G. Benzofuran-isatin hybrids tethered via different length alkyl linkers and their in vitro anti-mycobacterial activities. Bioorg Med Chem 2019; 27:2652-2656. [DOI: 10.1016/j.bmc.2019.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 11/25/2022]
|