1
|
Xiao YC, Chen FE. The vinyl sulfone motif as a structural unit for novel drug design and discovery. Expert Opin Drug Discov 2024; 19:239-251. [PMID: 37978948 DOI: 10.1080/17460441.2023.2284201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Vinyl sulfones are a special sulfur-containing structural unit that have attracted considerable attention, owing to their important role in serving as key structural motifs of various biologically active compounds as well as serving as versatile building blocks for organic transformations. The synthetic strategy of vinyl sulfone derivatives has been substantially upgraded over the past 30 years, and the wide application of this functional group in drug design and discovery has been promoted. AREA COVERED In this review, the authors review the application of vinyl sulfones in drug discovery and select optimized compounds which might have significant impact or potential inspiration for drug design. EXPERT OPINION Vinyl sulfones have been reported to target various macromolecular targets via non-covalent or covalent interactions, including multiple kinases, tubulin, cysteine protease, transcription factor, and so on. Thus, it has been significantly applied as a privileged scaffold in the design of anticancer, anti-infective, anti-inflammatory, and neuroprotective agents. However, much work remains to be done to improve the drug-like properties, such as chemical and metabolic stability, ADME, and toxicity. Besides, the chemical space of vinyl sulfones needs to be expanded, including but not limited to the design of constrained endocyclic and exocyclic vinyl sulfones.
Collapse
Affiliation(s)
- You-Cai Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Fen-Er Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Jia Y, Jiang P, Wang X, Ablajan K. One-Pot, Metal-Free Synthesis of Allyl Sulfones in Water. J Org Chem 2024. [PMID: 38194354 DOI: 10.1021/acs.joc.3c01421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
A one-pot dehydration cross-coupling reaction between allyl alcohols and sodium sulfinates that provides allyl sulfones in good to excellent yields is presented. Its broad substrate scope includes symmetrical and asymmetrical α,α-diaryl- and α-aryl-substituted allylic alcohols and aryl and alkyl sodium sulfinates. For asymmetrical allylic substrates, the E isomer predominates with examples of excellent stereoselectivity. Control experiments provide the basis for a proposed radical-mediated mechanism. The metal-free procedure applies cheap and commercially available tetrabutylammonium tribromide as the catalyst and H2O as the solvent. Notable features of this simple, efficient, weakly toxic, and environmentally benign strategy include mild and convenient operating conditions and readily accessible starting materials.
Collapse
Affiliation(s)
- Yunfei Jia
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, People's Republic of China
| | - Ping Jiang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, People's Republic of China
| | - Xinqian Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, People's Republic of China
| | - Keyume Ablajan
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, People's Republic of China
| |
Collapse
|
3
|
Alzheimer's disease: Updated multi-targets therapeutics are in clinical and in progress. Eur J Med Chem 2022; 238:114464. [DOI: 10.1016/j.ejmech.2022.114464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
|
4
|
Ahmadi R, Emami S. Recent applications of vinyl sulfone motif in drug design and discovery. Eur J Med Chem 2022; 234:114255. [DOI: 10.1016/j.ejmech.2022.114255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/20/2022] [Accepted: 03/03/2022] [Indexed: 01/10/2023]
|
5
|
Liu Y, Uras G, Onuwaje I, Li W, Yao H, Xu S, Li X, Li X, Phillips J, Allen S, Gong Q, Zhang H, Zhu Z, Liu J, Xu J. Novel inhibitors of AChE and Aβ aggregation with neuroprotective properties as lead compounds for the treatment of Alzheimer's disease. Eur J Med Chem 2022; 235:114305. [DOI: 10.1016/j.ejmech.2022.114305] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/26/2022] [Accepted: 03/16/2022] [Indexed: 01/27/2023]
|
6
|
Liu T, Chen S, Du J, Xing S, Li R, Li Z. Design, synthesis, and biological evaluation of novel (4-(1,2,4-oxadiazol-5-yl)phenyl)-2-aminoacetamide derivatives as multifunctional agents for the treatment of Alzheimer's disease. Eur J Med Chem 2022; 227:113973. [PMID: 34752955 DOI: 10.1016/j.ejmech.2021.113973] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022]
Abstract
On the basis of our previous work, a novel series of (4-(1,2,4-oxadiazol-5-yl)phenyl)-2-aminoacetamide derivatives were synthesized and evaluated as multifunctional ligands for the treatment of Alzheimer's disease (AD). Biological evaluations indicated that the derivatives can be used as anti-AD drugs that have multifunctional properties, inhibit the activity of butyrylcholinesterase (BuChE), inhibit neuroinflammation, have neuroprotective properties, and inhibit the self-aggregation of Aβ. Compound f9 showed good potency in BuChE inhibition (IC50: 1.28 ± 0.18 μM), anti-neuroinflammatory potency (NO, IL-1β, TNF-α; IC50: 0.67 ± 0.14, 1.61 ± 0.21, 4.15 ± 0.44 μM, respectively), and inhibited of Aβ self-aggregation (51.91 ± 3.90%). Preliminary anti-inflammatory mechanism studies indicated that the representative compound f9 blocked the activation of the NF-κB signaling pathway. Moreover, f9 exhibited 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging effect, and an inhibitory effect on the production of intracellular reactive oxygen species (ROS). In the bi-directional transport assay, f9 displayed proper blood-brain barrier (BBB) permeability. In addition, the title compound improved memory and cognitive functions in a mouse model induced by scopolamine. Hence, the compound f9 can be considered as a promising lead compound for further investigation in the treatment of AD.
Collapse
Affiliation(s)
- Tongtong Liu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Shiming Chen
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Jiyu Du
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Siqi Xing
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Rong Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China.
| | - Zeng Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
7
|
Zhou X, Zhang N, Li Y, Mo Z, Ma X, Chen Y, Xu Y. Metal-free synthesis of 3-sulfonyl-5-selanyl-4a,8a-dihydro-2H-chromen-6(5H)-ones via visible light driven intermolecular cascade cyclization of alkyne-tethered cyclohexadienones and selenosulfonates. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
8
|
Bian M, Ma QQ, Wu Y, Du HH, Guo-Hua G. Small molecule compounds with good anti-inflammatory activity reported in the literature from 01/2009 to 05/2021: a review. J Enzyme Inhib Med Chem 2021; 36:2139-2159. [PMID: 34628990 PMCID: PMC8516162 DOI: 10.1080/14756366.2021.1984903] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Inflammation and disease are closely related. Inflammation can induce various diseases, and diseases can promote inflammatory response, and two possibly induces each other in a bidirectional loop. Inflammation is usually treated using synthetic anti-inflammatory drugs which are associated with several adverse effects hence are not safe for long-term use. Therefore, there is need for anti-inflammatory drugs which are not only effective but also safe. Several researchers have devoted to the research and development of effective anti-inflammatory drugs with little or no side effects. In this review, we studied some small molecules with reported anti-inflammatory activities and hence potential sources of anti-inflammatory agents. The information was retrieved from relevant studies published between January 2019 and May, 2021 for review. This review study was aimed to provide relevant information towards the design and development of effective and safe anti-inflammation agents.
Collapse
Affiliation(s)
- Ming Bian
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia, China.,Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Qian-Qian Ma
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia, China.,Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Yun Wu
- First Clinical Medical of Inner, Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Huan-Huan Du
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia, China.,Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Gong Guo-Hua
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia, China.,Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China.,First Clinical Medical of Inner, Mongolia Minzu University, Tongliao, Inner Mongolia, China
| |
Collapse
|
9
|
Zhou LC, Liang YF, Huang Y, Yang GX, Zheng LL, Sun JM, Li Y, Zhu FL, Qian HW, Wang R, Ma L. Design, synthesis, and biological evaluation of diosgenin-indole derivatives as dual-functional agents for the treatment of Alzheimer's disease. Eur J Med Chem 2021; 219:113426. [PMID: 33848787 DOI: 10.1016/j.ejmech.2021.113426] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/17/2021] [Accepted: 03/28/2021] [Indexed: 02/07/2023]
Abstract
The complex pathogenesis of Alzheimer's disease (AD) has become a major obstacle in its treatment. An effective approach is to develop multifunctional agents that simultaneously target multiple pathological processes. Here, a series of diosgenin-indole compounds were designed, synthesized and evaluated for their neuroprotective effects against H2O2 (hydrogen peroxide), 6-OHDA (6-hydroxydopamine) and Aβ (beta amyloid) damages. Preliminary structure-activities relationship revealed that the introduction of indole fragment and electron-donating group at C-5 on ring indole could be beneficial for neuroprotective activities. Results indicated that compound 5b was the most promising candidate against cellular damage induced by H2O2 (52.9 ± 1.9%), 6-OHDA (38.4 ± 2.4%) and Aβ1-42 (54.4 ± 2.7%). Molecular docking study suggested the affinity for 5b bound to Aβ1-42 was -40.59 kcal/mol, which revealed the strong binding affinity of 5b to Aβ1-42. The predicted values of brain/blood partition coefficient (-0.733) and polar surface area (85.118 Å2) indicated the favorable abilities of BBB permeation and absorption of 5b. In addition, 5b significantly decreased ROS (reactive oxygen species) production induced by H2O2. In the following in vivo experiment, 5b obviously attenuated memory and learning impairments of Aβ-injected mice. In summary, compound 5b could be considered as a promising dual-functional neuroprotective agent against AD.
Collapse
Affiliation(s)
- Li-Cheng Zhou
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ying-Fan Liang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yi Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Gui-Xiang Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Lu-Lu Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jia-Min Sun
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Fu-Li Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - He-Wen Qian
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
10
|
Pavlidis N, Kofinas A, Papanikolaou MG, Miras HN, Drouza C, Kalampounias AG, Kabanos TA, Konstandi M, Leondaritis G. Synthesis, characterization and pharmacological evaluation of quinoline derivatives and their complexes with copper(ΙΙ) in in vitro cell models of Alzheimer's disease. J Inorg Biochem 2021; 217:111393. [PMID: 33610031 DOI: 10.1016/j.jinorgbio.2021.111393] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/30/2021] [Accepted: 02/05/2021] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder of the central nervous system. The main pathophysiological mechanisms involve cholinergic neurotransmission, beta-amyloid (Αβ) and Tau proteins, several metal ions and oxidative stress, among others. Current drugs offer only relief of symptoms and not a cure of AD. Accumulating evidence suggests that multifunctional compounds, targeting multiple pathophysiological mechanisms, may have a great potential for the treatment of AD. In this study, we report on the synthesis and physicochemical characterization of four quinoline-based metal chelators and their respective copper(II) complexes. Most compounds were non-toxic at concentrations ≤5 μM. In neuroprotection studies employing undifferentiated and differentiated SH-SY5Y cells, the metal chelator N2,N6-di(quinolin-8-yl)pyridine-2,6-dicarboxamide (H2dqpyca) appeared to exert significant neuroprotection against both, Aβ peptide- and H2O2-induced toxicities. The copper(II) complex [CuII(H2bqch)Cl2].3H2O (H2bqch = N,N'-Bis(8-quinolyl)cyclohexane-1,2-diamine) also protected against H2O2-induced toxicity, with a half-maximal effective concentration of 80 nM. Molecular docking simulations, using the crystal structure of the acetylcholinesterase (AChE)-rivastigmine complex as a template, indicated a strong interaction of the metal chelator H2dqpyca, followed by H2bqch, with both the peripheral anionic site and the catalytic active site of AChE. In conclusion, the sufficient neuroprotection provided by the metal chelator H2dqpyca and the copper(II) complex [CuII(H2bqch)Cl2].3H2O along with the evidence for interaction between H2dqpyca and AChE, indicate that these compounds have the potential and should be further investigated in the framework of preclinical studies employing animal models of AD as candidate multifunctional lead compounds for the treatment of the disease.
Collapse
Affiliation(s)
- Nikolaos Pavlidis
- Department of Pharmacology, Faculty of Medicine, University of Ioannina, Ioannina 45110, Greece; Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, Ioannina 45110, Greece.
| | - Aristeidis Kofinas
- Department of Pharmacology, Faculty of Medicine, University of Ioannina, Ioannina 45110, Greece.
| | - Michael G Papanikolaou
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, Ioannina 45110, Greece.
| | - Haralampos N Miras
- West CHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Chryssoula Drouza
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus.
| | - Angelos G Kalampounias
- Physical Chemistry Laboratory, Department of Chemistry, University of Ioannina, Ioannina 45110, Greece; Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), Ioannina 45110, Greece.
| | - Themistoklis A Kabanos
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, Ioannina 45110, Greece.
| | - Maria Konstandi
- Department of Pharmacology, Faculty of Medicine, University of Ioannina, Ioannina 45110, Greece.
| | - George Leondaritis
- Department of Pharmacology, Faculty of Medicine, University of Ioannina, Ioannina 45110, Greece.
| |
Collapse
|
11
|
Kupczyk D, Studzińska R, Bilski R, Baumgart S, Kołodziejska R, Woźniak A. Synthesis of Novel 2-(Isopropylamino)thiazol-4(5 H)-one Derivatives and Their Inhibitory Activity of 11β-HSD1 and 11β-HSD2 in Aspect of Carcinogenesis Prevention. Molecules 2020; 25:E4233. [PMID: 32942682 PMCID: PMC7570983 DOI: 10.3390/molecules25184233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 01/24/2023] Open
Abstract
Glucocorticoid metabolism at the tissue level is regulated by two isoenzymes 11β-hydroxysteroid dehydrogenase (11β-HSD), which mutually convert biologically active cortisol and inactive cortisone. Recent research is focused on the role of 11β-HSD1 and 11β-HSD2 as autocrine factors of tumor cell proliferation and differentiation. Herein, we report the synthesis of novel 2-(isopropylamino)thiazol-4(5H)-one derivatives and their inhibitory activity for 11β-HSD1 and 11β-HSD2. The derivative containing the spiro system of thiazole and cyclohexane rings shows the highest degree of 11β-HSD1 inhibition (54.53% at 10 µM) and is the most selective inhibitor of this enzyme among the tested compounds. In turn, derivatives containing ethyl and n-propyl group at C-5 of thiazole ring inhibit the activity of 11β-HSD2 to a high degree (47.08 and 54.59% at 10 µM respectively) and are completely selective. Inhibition of the activity of these enzymes may have a significant impact on the process of formation and course of tumors. Therefore, these compounds can be considered as potential pharmaceuticals supporting anti-cancer therapy.
Collapse
Affiliation(s)
- Daria Kupczyk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (R.B.); (R.K.); (A.W.)
| | - Renata Studzińska
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-089 Bydgoszcz, Poland;
| | - Rafał Bilski
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (R.B.); (R.K.); (A.W.)
| | - Szymon Baumgart
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-089 Bydgoszcz, Poland;
| | - Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (R.B.); (R.K.); (A.W.)
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (R.B.); (R.K.); (A.W.)
| |
Collapse
|
12
|
Chen Y, Hao Y, Liu Q, Wu B, Liu Y, Zhang Z, Tian C, Ning X, Guo Y, Wang X, Liu J. Design, Synthesis and Biological Evaluation of Novel (
E
)‐Hydroxystyryl Aralkyl Sulfones as Neuroprotective Agents. ChemistrySelect 2020. [DOI: 10.1002/slct.202001401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ying Chen
- Department of Chemical Biology, School of Pharmaceutical SciencesPeking University Beijing 100191 China
| | - Yameng Hao
- Department of Chemical Biology, School of Pharmaceutical SciencesPeking University Beijing 100191 China
| | - Qian Liu
- Department of Chemical Biology, School of Pharmaceutical SciencesPeking University Beijing 100191 China
| | - Bolin Wu
- Department of Chemical Biology, School of Pharmaceutical SciencesPeking University Beijing 100191 China
| | - Yunqi Liu
- Department of Chemical Biology, School of Pharmaceutical SciencesPeking University Beijing 100191 China
| | - Zhili Zhang
- Department of Chemical Biology, School of Pharmaceutical SciencesPeking University Beijing 100191 China
| | - Chao Tian
- Department of Chemical Biology, School of Pharmaceutical SciencesPeking University Beijing 100191 China
| | - Xianling Ning
- Institute of Systems Biomedicine, School of Basic Medical SciencesBeijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center Beijing 100191 China
| | - Ying Guo
- Department of Chemical Biology, School of Pharmaceutical SciencesPeking University Beijing 100191 China
| | - Xiaowei Wang
- Department of Chemical Biology, School of Pharmaceutical SciencesPeking University Beijing 100191 China
| | - Junyi Liu
- Department of Chemical Biology, School of Pharmaceutical SciencesPeking University Beijing 100191 China
- State Key Laboratory of Natural and Biomimetic DrugsPeking University Beijing 100191 China
| |
Collapse
|
13
|
Yang GX, Huang Y, Zheng LL, Zhang L, Su L, Wu YH, Li J, Zhou LC, Huang J, Tang Y, Wang R, Ma L. Design, synthesis and evaluation of diosgenin carbamate derivatives as multitarget anti-Alzheimer’s disease agents. Eur J Med Chem 2020; 187:111913. [DOI: 10.1016/j.ejmech.2019.111913] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022]
|