1
|
Dhawale SA, Mokale SN, Dabhade PS. Discovery of Novel Pyrimidine Based Small Molecule Inhibitors as VEGFR-2 Inhibitors: Design, Synthesis, and Anti-cancer Studies. Curr Comput Aided Drug Des 2025; 21:38-49. [PMID: 38185893 DOI: 10.2174/0115734099269413231018065351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/02/2023] [Accepted: 09/12/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Receptor tyrosine kinases (RTKs) are potent oncoproteins in cancer that, when mutated or overexpressed, can cause uncontrolled growth of cells, angiogenesis, and metastasis, making them significant targets for cancer treatment. Vascular endothelial growth factor receptor 2 (VEGFR2), is a tyrosine kinase receptor that is produced in endothelial cells and is the most crucial regulator of angiogenic factors involved in tumor angiogenesis. So, a series of new substituted N-(4-((2-aminopyrimidin-5-yl)oxy)phenyl)-N-phenyl cyclopropane- 1,1-dicarboxamide derivatives as VEGFR-2 inhibitors have been designed and synthesized. METHODS Utilizing H-NMR, C13-NMR, and mass spectroscopy, the proposed derivatives were produced and assessed. HT-29 and COLO-205 cell lines were used for the cytotoxicity tests. The effective compound was investigated further for the Vegfr-2 kinase inhibition assay, cell cycle arrest, and apoptosis. A molecular docking examination was also carried out with the Maestro-12.5v of Schrodinger. RESULTS In comparison to the reference drug Cabozantinib (IC50 = 9.10 and 10.66 μM), compound SP2 revealed promising cytotoxic activity (IC50 = 4.07 and 4.98 μM) against HT-29 and COLO-205, respectively. The synthesized compound SP2 showed VEGFR-2 kinase inhibition activity with (IC50 = 6.82 μM) against the reference drug, Cabozantinib (IC50 = 0.045 μM). Moreover, compound SP2 strongly induced apoptosis by arresting the cell cycle in the G1 phase. The new compounds' potent VEGFR-2 inhibitory effect was noted with key amino acids Asp1044, and Glu883, and the hydrophobic interaction was also observed in the pocket of the VEGFR-2 active site by using a docking study. CONCLUSION The results demonstrate that at the cellular and enzyme levels, the synthetic compounds SP2 are similarly effective as cabozantinib. The cell cycle and apoptosis data demonstrate the effectiveness of the suggested compounds. Based on the findings of docking studies, cytotoxic effects, in vitro VEGFR-2 inhibition, apoptosis, and cell cycle arrest, this research has given us identical or more effective VEGFR-2 inhibitors.
Collapse
Affiliation(s)
- Sachin A Dhawale
- Department of Pharmaceutical Chemistry, Y.B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad, 431001, Maharashtra, India
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical Education and Research, Aurangabad, 431001, M.S. India
| | - Santosh N Mokale
- Department of Pharmaceutical Chemistry, Y.B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad, 431001, Maharashtra, India
| | - Pratap S Dabhade
- Department of Pharmaceutical Chemistry, Y.B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad, 431001, Maharashtra, India
| |
Collapse
|
2
|
Mohamed AM, Abou-Ghadir OMF, Mostafa YA, Almarhoon ZM, Bräse S, Youssif BGM. Design, synthesis, and antiproliferative activity of new 1,2,3-triazole/quinazoline-4-one hybrids as dual EGFR/BRAF V600E inhibitors. RSC Adv 2024; 14:38403-38415. [PMID: 39640522 PMCID: PMC11618052 DOI: 10.1039/d4ra06694d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
A novel series of 1,2,3-triazole/quinazoline-4-one hybrids (8a-t) were designed and synthesized as dual-targeted antiproliferative agents. Compounds 8a-t were evaluated for their antiproliferative efficacy against a panel of four cancer cell lines. The results indicated that most of the evaluated compounds exhibited strong antiproliferative activity, with 8f, 8g, 8h, 8j, and 8l demonstrating the highest potency. These five compounds were investigated as EGFR and BRAFV600E inhibitors. The in vitro tests showed that compounds 8g, 8h, and 8j are strong antiproliferative agents that might work as dual EGFR/BRAFV600E inhibitors. Compounds 8g and 8h were further examined as activators of caspases 3, 8, and Bax and down-regulators of the anti-apoptotic protein Bcl2. The results indicated that the studied compounds had considerable apoptotic antiproliferative action. The investigation of the cell cycle and apoptosis revealed that compound 8g induces cell cycle arrest during the G1 phase transition. Molecular docking experiments are thoroughly examined to validate the binding interactions of the most active hybrids with the active sites of EGFR and BRAFV600E. The data indicated that the examined compounds can efficiently engage with essential amino acid residues in both kinases.
Collapse
Affiliation(s)
- Amira M Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| | - Ola M F Abou-Ghadir
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| | - Yaser A Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology 76131 Karlsruhe Germany
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| |
Collapse
|
3
|
Mahmoud MA, Mohammed AF, Salem OIA, Almutairi TM, Bräse S, Youssif BGM. Design, synthesis, and apoptotic antiproliferative action of new 1,2,3-triazole/1,2,4-oxadiazole hybrids as dual EGFR/VEGFR-2 inhibitors. J Enzyme Inhib Med Chem 2024; 39:2305856. [PMID: 38326989 PMCID: PMC10854447 DOI: 10.1080/14756366.2024.2305856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/07/2024] [Indexed: 02/09/2024] Open
Abstract
A novel series of 1,2,3-triazole/1,2,4-oxadiazole hybrids (7a-o) was developed as dual inhibitors of EGFR/VEGFR-2. Compounds 7a-o were evaluated as antiproliferative agents with Erlotinib as the reference drug. Results demonstrated that most of the tested compounds showed significant antiproliferative action with GI50 values ranging from 28 to 104 nM, compared to Erlotinib (GI50 = 33 nM), and compounds 7i-m were the most potent. Compounds 7h, 7i, 7j, 7k, and 7l were evaluated as dual EGFR/VEGFR-2 inhibitors. These in vitro experiments demonstrated that compounds 7j, 7k, and 7l are potent antiproliferative agents that may operate as dual EGFR/VEGFR-2 inhibitors. Compounds 7j, 7k, and 7l were evaluated for their apoptotic potential activity, where findings indicated that compounds 7j, 7k, and 7l promote apoptosis by activating caspase-3, 8, and Bax and down-regulating the anti-apoptotic Bcl-2. Molecular docking simulations show the binding mode of the most active antiproliferative compounds within EGFR and VEGFR-2 active sites.
Collapse
Affiliation(s)
- Mohamed A. Mahmoud
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Anber F. Mohammed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Ola I. A. Salem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | | | - Stefan Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
4
|
Mostafa YA, Assoud JA, Desoky AY, Mohamady S, Mohamed NM, Salem OIA, Almarhoon ZM, Bräse S, Youssif BGM. New series of 4,6-diaryl pyrimidines: facile synthesis and antiproliferative activity as dual EGFR/VEGFR-2 inhibitors. Front Chem 2024; 12:1498104. [PMID: 39569013 PMCID: PMC11576293 DOI: 10.3389/fchem.2024.1498104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction We developed and produced a new series of 4,6-diaryl-pyrimidines 9-29 as antiproliferative agents targeting EGFR/VEGFR-2. Methods The antiproliferative efficacy of the novel targets was assessed against a panel of 60 NCI cancer cell lines and four cancer cell lines in vitro. Results and Discussion Compounds 14, 17, 19, 22, 25, and 29 demonstrated the greatest potency among the derivatives, with GI50 values between 22 and 33 nM; compounds 22 and 29 exhibited the highest potency, with GI50 values of 22 and 24 nM, respectively. We subsequently examined the most efficient derivatives as dual EGFR/VEGFR-2 inhibitors, finding that compounds 22 and 29 functioned as dual inhibitors. Moreover, 22 and 29 can act as apoptotic inducers by increasing Bax levels and decreasing levels of the anti-apoptotic protein Bcl2. At both 24- and 48-h intervals, the cell migration rates of compounds 22 and 29 were lower than those of untreated cells, according to the migration rate and wound closure percentage assessment. The wound closure rate reached 100% after 72 h of therapy with compound 22 but only 80% with compound 29. The docking study showed that compounds 22 and 29 had docking scores similar to those of Erlotinib and Sorafenib, co-crystallized ligands, for the EGFR and VEGFR-2 proteins. The experiments on lipophilicity showed that the new pyrimidines had a consistent result. This group of compounds has better biological activity in all the biological systems studied with low lipophilicity.
Collapse
Affiliation(s)
- Yaser A Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University in Assiut, Assiut, Egypt
| | | | - Ahmed Y Desoky
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
| | - Samy Mohamady
- Faculty of Pharmacy, The British University in Egypt, Al-Sherouk, Egypt
| | - Nesma M Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
- Pharmacognosy Department, Faculty of Pharmacy, Badr University in Assiut, Assiut, Egypt
| | - Ola I A Salem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
5
|
Al-Wahaibi LH, El-Sheref EM, Tawfeek HN, Abou-Zied HA, Rabea SM, Bräse S, Youssif BGM. Design, synthesis, and biological evaluation of novel quinoline-based EGFR/HER-2 dual-target inhibitors as potential anti-tumor agents. RSC Adv 2024; 14:32978-32991. [PMID: 39434991 PMCID: PMC11492426 DOI: 10.1039/d4ra06394e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
Dual targeting of EGFR and HER2 is a valid anti-cancer approach for treating solid tumors. We designed and synthesized a new series of EGFR/HER-2 dual-target inhibitors based on quinoline derivatives. The structure of the newly synthesized compounds was verified using 1H NMR, 13C NMR, and elemental analysis. The targeted compounds were tested for antiproliferative efficacy against four cancer cell lines. All the compounds had GI50s ranging from 25 to 82 nM, with breast (MCF-7) and lung (A-549) cancer cell lines being the most sensitive. Compound 5a demonstrated the most significant antiproliferative action. With inhibitory (IC50) values of 71 and 31 nM, respectively, compound 5a proved to be the most effective dual-target inhibitor of EGFR and HER-2, outperforming the reference erlotinib (IC50 = 80 nM) as an EGFR inhibitor but falling short of the clinically used agent lapatinib (IC50 = 26 nM) as a HER2 inhibitor. The apoptotic potential activity of 5a was examined, and the findings demonstrated that 5a promotes apoptosis by activating caspase-3, 8, and Bax while simultaneously reducing the expression of the anti-apoptotic protein Bcl-2. The docking studies provided valuable insights into the binding interactions of compounds 3e and 5a with EGFR, effectively rationalizing the observed SAR trends.
Collapse
Affiliation(s)
- Lamya H Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah Bint Abdulrahman University Riyadh 11671 Saudi Arabia
| | - Essmat M El-Sheref
- Chemistry Department, Faculty of Science, Minia University El Minia 61519 Egypt
| | - Hendawy N Tawfeek
- Chemistry Department, Faculty of Science, Minia University El Minia 61519 Egypt
- Unit of Occupational of Safety and Health, Administration Office of Minia University El-Minia 61519 Egypt
| | - Hesham A Abou-Zied
- Medicinal Chemistry Department, Faculty of Pharmacy, Deraya University Minia Egypt
| | - Safwat M Rabea
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University Minia 61519 Egypt
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology Karlsruhe 76131 Germany
| | - Bahaa G M Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt +20-01098294419
| |
Collapse
|
6
|
Barbieri F, Grazia Martina M, Giorgio C, Linda Chiara M, Allodi M, Durante J, Bertoni S, Radi M. Benzofuran-2-Carboxamide Derivatives as Immunomodulatory Agents Blocking the CCL20-Induced Chemotaxis and Colon Cancer Growth. ChemMedChem 2024; 19:e202400389. [PMID: 38923732 DOI: 10.1002/cmdc.202400389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
The correlation between the CCL20/CCR6 axis and autoimmune and non-autoimmune disorders is widely recognized. Inhibition of the CCL20-dependent cell migration represents therefore a promising approach for the treatment of many diseases, such as inflammatory bowel diseases and colorectal cancer. We report herein our efforts to explore the biologically relevant chemical space around the benzofuran scaffold of MR120, a modulator of the CCL20/CCR6 axis previously discovered by our group. A functional screening allowed us to identify C4 and C5-substituted derivatives as the most effective inhibitors of the CCL20-induced chemotaxis of human peripheral blood mononuclear cells (PBMC). Moreover, selected compounds (16 e and 24 b) also proved to potently inhibit the growth of different colon cancer cell lines, with cytotoxic/cytostatic and antiproliferative activity.
Collapse
Affiliation(s)
- Francesca Barbieri
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze, 27/A, 43124, Parma, Italy
| | - Maria Grazia Martina
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze, 27/A, 43124, Parma, Italy
| | - Carmine Giorgio
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze, 27/A, 43124, Parma, Italy
| | - Maria Linda Chiara
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze, 27/A, 43124, Parma, Italy
| | - Marika Allodi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze, 27/A, 43124, Parma, Italy
| | - Joseph Durante
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze, 27/A, 43124, Parma, Italy
| | - Simona Bertoni
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze, 27/A, 43124, Parma, Italy
| | - Marco Radi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze, 27/A, 43124, Parma, Italy
| |
Collapse
|
7
|
Al-Wahaibi LH, Elbastawesy MAI, Abodya NE, Youssif BGM, Bräse S, Shabaan SN, Sayed GH, Anwer KE. New Pyrazole/Pyrimidine-Based Scaffolds as Inhibitors of Heat Shock Protein 90 Endowed with Apoptotic Anti-Breast Cancer Activity. Pharmaceuticals (Basel) 2024; 17:1284. [PMID: 39458925 PMCID: PMC11510237 DOI: 10.3390/ph17101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/07/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Supported by a comparative study between conventional, grinding, and microwave techniques, a mild and versatile method based on the [1 + 3] cycloaddition of 2-((3-nitrophenyl)diazenyl)malononitrile to tether pyrazole and pyrimidine derivatives in good yields was used. Methods: The newly synthesized compounds were analyzed with IR, 13C NMR, 1H NMR, mass, and elemental analysis methods. The products show interesting precursors for their antiproliferative anti-breast cancer activity. Results: Pyrimidine-containing scaffold compounds 9 and 10 were the most active, achieving IC50 = 26.07 and 4.72 µM against the breast cancer MCF-7 cell line, and 10.64 and 7.64 µM against breast cancer MDA-MB231-tested cell lines, respectively. Also, compounds 9 and 10 showed a remarkable inhibitory activity against the Hsp90 protein with IC50 values of 2.44 and 7.30 µM, respectively, in comparison to the reference novobiocin (IC50 = 1.14 µM). Moreover, there were possible apoptosis and cell cycle arrest in the G1 phase for both tested compounds (supported by CD1, caspase-3,8, BAX, and Bcl-2 studies). Also, the binding interactions of compound 9 were confirmed through molecular docking, and simulation studies displayed a complete overlay into the Hsp90 protein pocket. Conclusions: Compounds 9 and 10 may have apoptotic antiproliferative action as Hsp90 inhibitors.
Collapse
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Mohammed A. I. Elbastawesy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt;
| | - Nader E. Abodya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Bahaa G. M. Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Sara N. Shabaan
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo 11754, Egypt;
| | - Galal H. Sayed
- Heterocyclic Synthesis Lab., Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt; (G.H.S.); (K.E.A.)
| | - Kurls E. Anwer
- Heterocyclic Synthesis Lab., Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt; (G.H.S.); (K.E.A.)
| |
Collapse
|
8
|
Al-Wahaibi LH, Abou-Zied HA, Abdelrahman MH, Morcoss MM, Trembleau L, Youssif BGM, Bräse S. Design and synthesis new indole-based aromatase/iNOS inhibitors with apoptotic antiproliferative activity. Front Chem 2024; 12:1432920. [PMID: 39308851 PMCID: PMC11414412 DOI: 10.3389/fchem.2024.1432920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
The present study details the design, synthesis, and bio-evaluation of indoles 3-16 as dual inhibitors of aromatase and inducible nitric oxide synthase (iNOS)with antiproliferative activity. The study evaluates the antiproliferative efficacy of 3-16 against various cancer cell lines, highlighting hybrids 12 and 16 for their exceptional activity with GI50 values of 25 nM and 28 nM, respectively. The inhibitory effects of the most active hybrids 5, 7, 12, and 16, on both aromatase and iNOS were evaluated. Compounds 12 and 16 were investigated for their apoptotic potential activity, and the results showed that the studied compounds enhance apoptosis by activating caspase-3, 8, and Bax and down-regulating the anti-apoptotic Bcl-2. Molecular docking studies are intricately discussed to confirm most active hybrids' 12- and 16-binding interactions with the aromatase active site. Additionally, our novel study discussed the ADME characteristics of derivatives 8-16, highlighting their potential as therapeutic agents with reduced toxicity.
Collapse
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hesham A. Abou-Zied
- Medicinal Chemistry Department, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Mostafa H. Abdelrahman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Martha M. Morcoss
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Laurent Trembleau
- School of Natural and Computing Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
9
|
Napiórkowska M, Otto-Ślusarczyk D, Kurpios-Piec D, Stukan I, Gryzik M, Wojda U. BM7, a derivative of benzofuran, effectively fights cancer by promoting cancer cell apoptosis and impacting IL-6 levels. Eur J Pharmacol 2024; 978:176751. [PMID: 38897442 DOI: 10.1016/j.ejphar.2024.176751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
The BM7 compound, a bromo derivative of methyl 6-acetyl-5-hydroxy-2-methyl-1-benzofuran-3-carboxylate, was previously identified as cytotoxic to human leukaemia cells (K562 and HL60) and human cervical cancer (HeLa), while showing no toxicity to non-cancerous primary endothelial cells (HUVEC). In this study, we present the first demonstration of BM7's anticancer efficacy in vivo using a mouse chronic myeloid leukaemia xenograft model. Administered intraperitoneally in a mixture of 10% Solutol HS 15/10% ethanol, BM7 exhibited no visible toxicity and significantly reduced tumor weight, comparable to standard drugs imatinib and hydroxyurea. Further supporting its anticancer potential, a multi-model in vitro study involving seven human cancer cell lines revealed the most promising responses in colon cancer (SW480, SW620, HCT116), liver cancer (HEPG2), and breast adenocarcinoma (MDA-MB-231) cells. BM7 demonstrated multifaceted anticancer mechanisms, inducing apoptosis while elevating reactive oxygen species (ROS) levels and suppressing interleukin-6 (IL-6) release in these cell lines. These findings position BM7 as a candidate of significant interest for cancer therapy. Its ability to not only induce apoptosis but also modulate cellular processes such as ROS levels and immune responses, specifically IL-6 suppression, makes BM7 a versatile and promising agent for further exploration in the realm of cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Iga Stukan
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland; Department of General Pathology, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, 1 Rybacka Street, 70-204, Szczecin, Poland
| | - Marek Gryzik
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| |
Collapse
|
10
|
Youssif BGM, Morcoss MM, Bräse S, Abdel-Aziz M, Abdel-Rahman HM, Abou El-Ella DA, Abdelhafez ESMN. Benzimidazole-Based Derivatives as Apoptotic Antiproliferative Agents: Design, Synthesis, Docking, and Mechanistic Studies. Molecules 2024; 29:446. [PMID: 38257358 PMCID: PMC10819888 DOI: 10.3390/molecules29020446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
A new class of benzimidazole-based derivatives (4a-j, 5, and 6) with potential dual inhibition of EGFR and BRAFV600E has been developed. The newly synthesized compounds were submitted for testing for antiproliferative activity against the NCI-60 cell line. All newly synthesized compounds 4a-j, 5, and 6 were selected for testing against a panel of sixty cancer cell lines at a single concentration of 10 µM. Some compounds tested demonstrated remarkable antiproliferative activity against the cell lines tested. Compounds 4c, 4e, and 4g were chosen for five-dose testing against 60 human tumor cell lines. Compound 4c demonstrated strong selectivity against the leukemia subpanel, with a selectivity ratio of 5.96 at the GI50 level. The most effective in vitro anti-cancer assay derivatives (4c, 4d, 4e, 4g, and 4h) were tested for EGFR and BRAFV600E inhibition as potential targets for antiproliferative action. The results revealed that compounds 4c and 4e have significant antiproliferative activity as dual EGFR/BRAFV600E inhibitors. Compounds 4c and 4e induced apoptosis by increasing caspase-3, caspase-8, and Bax levels while decreasing the anti-apoptotic Bcl2 protein. Moreover, molecular docking studies confirmed the potential of compounds 4c and 4e to act as dual EGFR/BRAFV600E inhibitors.
Collapse
Affiliation(s)
- Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Martha M. Morcoss
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt;
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (M.A.-A.); (E.S.M.N.A.)
| | - Hamdy M. Abdel-Rahman
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt;
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University in Assiut (BUA), Assiut 71536, Egypt
| | - Dalal A. Abou El-Ella
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy Ain Shams University, Cairo 11566, Egypt;
| | - El Shimaa M. N. Abdelhafez
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (M.A.-A.); (E.S.M.N.A.)
| |
Collapse
|
11
|
Frejat FOA, Zhao B, Furaijit N, Wang L, Abou-Zied HA, Fathy HM, Mohamed FAM, Youssif BGM, Wu C. New pyrrolidine-carboxamide derivatives as dual antiproliferative EGFR/CDK2 inhibitors. Chem Biol Drug Des 2024; 103:e14422. [PMID: 38230772 DOI: 10.1111/cbdd.14422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/20/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024]
Abstract
Cancer is one of the leading causes of mortality worldwide, making it a public health concern. A novel series of pyrrolidine-carboxamide derivatives 7a-q were developed and examined in a cell viability assay utilizing a human mammary gland epithelial cell line (MCF-10A), where all the compounds exhibited no cytotoxic effects and more than 85% cell viability at a concentration of 50 μM. Antiproliferative activity was evaluated in vitro against four panels of cancer cell lines A-549, MCF-7, Panc-1, and HT-29. Compounds 7e, 7g, 7k, 7n, and 7o were the most active as antiproliferative agents capable of triggering apoptosis. Compound 7g was the most potent of all the derivatives, with a mean IC50 of 0.90 μM compared to IC50 of 1.10 μM for doxorubicin. Compound 7g inhibited A-549 (epithelial cancer cell line), MCF-7 (breast cancer cell line), and HT-29 (colon cancer cell line) more efficiently than doxorubicin. EGFR inhibitory assay results of 7e, 7g, 7k, 7n, and 7o demonstrated that the tested compounds inhibited EGFR with IC50 values ranging from 87 to 107 nM in comparison with the reference drug erlotinib (IC50 = 80 nM). 7e, 7g, 7k, 7n, and 7o inhibited CDK2 efficiently in comparison to the reference dinaciclib (IC50 = 20 nM), with IC50 values ranging from 15 to 31 nM. The results of inhibitory activity assay against different CDK isoforms revealed that the tested compounds had preferential inhibitory activity against the CDK2 isoform.
Collapse
Affiliation(s)
- Frias Obaid Arhema Frejat
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, PR China
- Zhengzhou Key laboratory of new veterinary Drug preparation innovation, Zhengzhou, PR China
| | - Bingbing Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, PR China
| | | | - Lihong Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, PR China
| | - Hesham A Abou-Zied
- Medicinal Chemistry Department, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Hazem M Fathy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Fatma A M Mohamed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat, Saudi Arabia
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Chunli Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, PR China
- Zhengzhou Key laboratory of new veterinary Drug preparation innovation, Zhengzhou, PR China
- Henan Qunbo Pharmaceutical Research Institute Co. LTD., Zhengzhou, PR China
| |
Collapse
|
12
|
Al-Wahaibi LH, Hisham M, Abou-Zied HA, Hassan HA, Youssif BGM, Bräse S, Hayallah AM, Abdel-Aziz M. Quinazolin-4-one/3-cyanopyridin-2-one Hybrids as Dual Inhibitors of EGFR and BRAF V600E: Design, Synthesis, and Antiproliferative Activity. Pharmaceuticals (Basel) 2023; 16:1522. [PMID: 38004388 PMCID: PMC10674657 DOI: 10.3390/ph16111522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
A novel series of hybrid compounds comprising quinazolin-4-one and 3-cyanopyridin-2-one structures has been developed, with dual inhibitory actions on both EGFR and BRAFV600E. These hybrid compounds were tested in vitro against four different cancer cell lines. Compounds 8, 9, 18, and 19 inhibited cell proliferation significantly in the four cancer cells, with GI50 values ranging from 1.20 to 1.80 µM when compared to Doxorubicin (GI50 = 1.10 µM). Within this group of hybrids, compounds 18 and 19 exhibited substantial inhibition of EGFR and BRAFV600E. Molecular docking investigations provided confirmation that compounds 18 and 19 possess the capability to inhibit EGFR and BRAFV600E. Moreover, computational ADMET prediction indicated that most of the newly synthesized hybrids have low toxicity and minimal side effects.
Collapse
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia;
| | - Mohamed Hisham
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia City 61111, Egypt; (M.H.); (H.A.A.-Z.)
| | - Hesham A. Abou-Zied
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia City 61111, Egypt; (M.H.); (H.A.A.-Z.)
| | - Heba A. Hassan
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (H.A.H.); (M.A.-A.)
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Alaa M. Hayallah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Sphinx University, Assiut 71515, Egypt
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (H.A.H.); (M.A.-A.)
| |
Collapse
|
13
|
Maghraby MTE, Mazyad Almutairi T, Bräse S, Salem OIA, Youssif BGM, Sheha MM. New 1,2,3-Triazole/1,2,4-triazole Hybrids as Aromatase Inhibitors: Design, Synthesis, and Apoptotic Antiproliferative Activity. Molecules 2023; 28:7092. [PMID: 37894571 PMCID: PMC10609154 DOI: 10.3390/molecules28207092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
A novel series of 1,2,3-triazole/1,2,4-triazole hybrids 5a, 5b, and 6a-i was designed and synthesized as antiproliferative agents targeting aromatase enzymes. The antiproliferative activity of the new hybrids against four cancer cells was studied using Erlotinib as a control. Compounds 6a and 6b demonstrated the highest antiproliferative activity among these hybrids, with GI50 values of 40 nM and 35 nM, respectively. Compound 6b was the most potent derivative, with a GI50 of 35 nM, comparable to Erlotinib's GI50 of 33 nM. Compound 6b inhibited all cancer cell lines with comparable efficacy to Erlotinib. Compounds 5a, 5b, and 6a-i were tested for inhibitory action against aromatase as a potential target for their antiproliferative activity. Results revealed that compounds 6a and 6b were the most potent aromatase inhibitors, with IC50 values of 0.12 ± 0.01 µM and 0.09 ± 0.01 µM, respectively, being more potent than the reference Ketoconazole (IC50 = 2.6 ± 0.20 µM) but less potent than Letrozole (IC50 = 0.002 ± 0.0002). These findings indicated that compounds 6a and 6b had significant aromatase inhibitory action and are potential antiproliferative candidates. The findings were further linked to molecular docking investigations, which gave models of strong interactions with the aromatase domain for inhibitors with high binding scores.
Collapse
Affiliation(s)
- Mohamed T-E Maghraby
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; (M.T.-E.M.); (O.I.A.S.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Valley University, New Valley 72511, Egypt
| | - Tahani Mazyad Almutairi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Ola I. A. Salem
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; (M.T.-E.M.); (O.I.A.S.)
| | - Bahaa G. M. Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; (M.T.-E.M.); (O.I.A.S.)
| | - Mahmoud M. Sheha
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt;
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, New-Assiut 71684, Egypt
| |
Collapse
|
14
|
Hagar FF, Abbas SH, Gomaa HAM, Youssif BGM, Sayed AM, Abdelhamid D, Abdel-Aziz M. Chalcone/1,3,4-Oxadiazole/Benzimidazole hybrids as novel anti-proliferative agents inducing apoptosis and inhibiting EGFR & BRAFV 600E. BMC Chem 2023; 17:116. [PMID: 37716963 PMCID: PMC10504751 DOI: 10.1186/s13065-023-01003-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/10/2023] [Indexed: 09/18/2023] Open
Abstract
INTRODUCTION One of the most robust global challenges and difficulties in the 21st century is cancer. Treating cancer is a goal which continues to motivate researchers to innovate in design and development of new treatments to help battle the disease. OBJECTIVES Our objective was developing new antiapoptotic hybrids based on biologically active heterocyclic motifs "benzimidazole?oxadiazole-chalcone hybrids'' that had shown promising ability to inhibit EGFR and induce apoptosis. We expected these scaffolds to display anticancer activity via inhibition of BRAF, EGFR, and Bcl-2 and induction of apoptosis through activation of caspases. METHODS The new hybrids 7a-x were evaluated for their anti-proliferative, EGFR & BRAFV600E inhibitory, and apoptosis induction activities were detected. Docking study & dynamic stimulation into EGFR and BRAFV600E were studied. RESULTS All hybrids exhibited remarkable cell growth inhibition on the four tested cell lines with IC50 ranging from 0.95 μM to 12.50 μM. which was comparable to Doxorubicin. Compounds 7k-m had the most potent EGFR inhibitory activity. While, compounds 7e, 7g, 7k and 7l showed good inhibitory activities against BRAFV600E. Furthermore, Compounds 7k, 7l, and 7m increased Caspases 3,8 & 9, Cytochrome C and Bax levels and decreased Bcl-2 protein levels. Compounds 7k-m received the best binding scores and showed binding modes that were almost identical to each other and comparable with that of the co-crystalized Erlotinib in EGFR and BRAF active sites. CONCLUSION Compounds 7k-m could be used as potential apoptotic anti-proliferative agents upon further optimization.
Collapse
Affiliation(s)
- Fatma Fouad Hagar
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Samar H Abbas
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Hesham A M Gomaa
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka, 72314, Saudi Arabia
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Ahmed M Sayed
- Pharmacognosy Department, Faculty of Pharmacy, Nahda University, Beni-Suef, 62513, Egypt
| | - Dalia Abdelhamid
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| |
Collapse
|
15
|
Al-Wahaibi LH, Abou-Zied HA, Hisham M, Beshr EAM, Youssif BGM, Bräse S, Hayallah AM, Abdel-Aziz M. Design, Synthesis, and Biological Evaluation of Novel 3-Cyanopyridone/Pyrazoline Hybrids as Potential Apoptotic Antiproliferative Agents Targeting EGFR/BRAF V600E Inhibitory Pathways. Molecules 2023; 28:6586. [PMID: 37764362 PMCID: PMC10537368 DOI: 10.3390/molecules28186586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
A series of novel 3-cyanopyridone/pyrazoline hybrids (21-30) exhibiting dual inhibition against EGFR and BRAFV600E has been developed. The synthesized target compounds were tested in vitro against four cancer cell lines. Compounds 28 and 30 demonstrated remarkable antiproliferative activity, boasting GI50 values of 27 nM and 25 nM, respectively. These hybrids exhibited dual inhibitory effects on both EGFR and BRAFV600E pathways. Compounds 28 and 30, akin to Erlotinib, displayed promising anticancer potential. Compound 30 emerged as the most potent inhibitor against cancer cell proliferation and BRAFV600E. Notably, both compounds 28 and 30 induced apoptosis by elevating levels of caspase-3 and -8 and Bax, while downregulating the antiapoptotic Bcl2 protein. Molecular docking studies confirmed the potential of compounds 28 and 30 to act as dual EGFR/BRAFV600E inhibitors. Furthermore, in silico ADMET prediction indicated that most synthesized 3-cyanopyridone/pyrazoline hybrids exhibit low toxicity and minimal adverse effects.
Collapse
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia;
| | - Hesham A. Abou-Zied
- Medicinal Chemistry Department, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt; (H.A.A.-Z.); (M.H.)
| | - Mohamed Hisham
- Medicinal Chemistry Department, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt; (H.A.A.-Z.); (M.H.)
| | - Eman A. M. Beshr
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (E.A.M.B.); (M.A.-A.)
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Alaa M. Hayallah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Sphinx University, Assiut 71515, Egypt
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (E.A.M.B.); (M.A.-A.)
| |
Collapse
|
16
|
Mohamed FAM, Alakilli SYM, El Azab EF, Baawad FAM, Shaaban EIA, Alrub HA, Hendawy O, Gomaa HAM, Bakr AG, Abdelrahman MH, Trembleau L, Mohammed AF, Youssif BGM. Discovery of new 5-substituted-indole-2-carboxamides as dual epidermal growth factor receptor (EGFR)/cyclin dependent kinase-2 (CDK2) inhibitors with potent antiproliferative action. RSC Med Chem 2023; 14:734-744. [PMID: 37122549 PMCID: PMC10131667 DOI: 10.1039/d3md00038a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
A new series of 5-substituted-3-ethylindole-2-carboxamides 5a-k and 6a-c was designed and synthesised in an attempt to develop a dual targeted antiproliferative agent. Various spectroscopic methods of analysis were used to confirm the structures of the new compounds. The antiproliferative effect of compounds 5a-k and 6a-c against four cancer cell lines was investigated. Compounds 5a-k and 6a-c had significant antiproliferative activity against the four cancer cell lines tested, with mean GI50 values ranging from 37 nM to 193 nM. The most powerful derivatives were compounds 5g, 5i, and 5j, with GI50 values of 55 nM, 49 nM, and 37 nM, respectively, in comparison to the reference erlotinib, which had a GI50 of 33 nM. The four most potent compounds, 5c, 5g, 5i, and 5j, were then investigated for their efficacy as EGFR inhibitors, and the findings showed that the tested compounds inhibited EGFR with IC50 values ranging from 85 nM to 124 nM when compared to the reference erlotinib (IC50 = 80 nM). Moreover, compounds 5c and 5g inhibited CDK2 with IC50 values of 46 ± 05 nM and 33 ± 04 nM, respectively. The EGFR and CDK2 assays revealed that compounds 5i and 5j displayed potent antiproliferative activity and can be considered as potential dual EGFR and CDK2 inhibitors.
Collapse
Affiliation(s)
- Fatma A M Mohamed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University Al-Qurayyat 77454 Saudi Arabia
| | - Saleha Y M Alakilli
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University Jeddah 23761 Saudi Arabia
| | - Eman Fawzy El Azab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University Al-Qurayyat 77454 Saudi Arabia
- Biochemistry Department, Faculty of Science, Alexandria University Alexandria 21511 Egypt
| | - Faris A M Baawad
- M.B.B.S, Faculty of Medicine, King Abdulaziz University Jeddah 23761 Saudi Arabia
| | - Esraa Ibrahim A Shaaban
- Department of Biochemistry, Graduate; School of Medical Sciences, Nagoya City University Mizuho-cho, Mizuho-ku Nagoya 467-8601 Japan
| | - Heba Abu Alrub
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University Al-Qurayyat 77454 Saudi Arabia
| | - Omnia Hendawy
- Department of Pharmacology, College of Pharmacy, Jouf University Sakaka 72341 Aljouf Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Beni-Suef University Beni-Suef Egypt
| | - Hesham A M Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University Sakaka 72341 Aljouf Saudi Arabia
| | - Adel G Bakr
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University Assiut Branch Assiut 71524 Egypt
| | - Mostafa H Abdelrahman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University Assiut 71524 Egypt
| | - Laurent Trembleau
- School of Natural and Computing Sciences, University of Aberdeen Meston Building Aberdeen AB243UE UK
| | - Anber F Mohammed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt +201098294419
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt +201098294419
| |
Collapse
|
17
|
Abbas AA, Dawood KM. Anticancer therapeutic potential of benzofuran scaffolds. RSC Adv 2023; 13:11096-11120. [PMID: 37056966 PMCID: PMC10086673 DOI: 10.1039/d3ra01383a] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023] Open
Abstract
Benzofuran moiety is the main component of many biologically active natural and synthetic heterocycles. These heterocycles have unique therapeutic potentials and are involved in various clinical drugs. The reported results confirmed the extraordinary inhibitory potency of such benzofurans against a panel of human cancer cell lines compared with a wide array of reference anticancer drugs. Several publications about the anticancer potencies of benzofuran-based heterocycles were encountered. The recent developments of anticancer activities of both natural and synthetic benzofuran scaffolds during 2019-2022 are thoroughly covered. Many of the described benzofurans are promising candidates for development as anticancer agents based on their outstanding inhibitory potency against a panel of human cancer cells compared with reference anticancer drugs. These findings encourage medicinal chemists to explore new areas to improve human health and reduce suffering.
Collapse
Affiliation(s)
- Ashraf A Abbas
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +20-2-35727556 +20-2-35676602
| | - Kamal M Dawood
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +20-2-35727556 +20-2-35676602
| |
Collapse
|
18
|
Hagar FF, Abbas SH, Abdelhamid D, Gomaa HAM, Youssif BGM, Abdel-Aziz M. New 1,3,4-oxadiazole-chalcone/benzimidazole hybrids as potent antiproliferative agents. Arch Pharm (Weinheim) 2023; 356:e2200357. [PMID: 36351754 DOI: 10.1002/ardp.202200357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
Abstract
A series of new 1,3,4-oxadiazole-chalcone/benzimidazole hybrids 9a-o and 10a-k were designed and synthesized as potential antiproliferative agents. Hybrids 9a-o exhibited remarkable antiproliferative activities on different NCI-60 cell lines in a single-dose assay. The antiproliferative activities of the newly synthesized compounds were evaluated against a panel of four human cancer cell lines (A-549, MCF-7, Panc-1, and HT-29). Compounds 9g-i and their oxygen isosteres, 10f-h, exhibited promising antiproliferative activities with IC50 values ranging from 0.80 to 2.27 µM compared to doxorubicin (IC50 ranging from 0.90 to 1.41 µM). Furthermore, the inhibitory potency of these compounds against the epidermal growth factor receptor (EGFR) and BRAFV600E kinases was evaluated using erlotinib as a reference drug. Molecular modeling studies were done to investigate the binding mode of the most active hybrids in the ATP binding site of EGFR.
Collapse
Affiliation(s)
- Fatma Fouad Hagar
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Samar H Abbas
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Dalia Abdelhamid
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Hesham A M Gomaa
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka, 72314, Saudi Arabia
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
19
|
Al-Wahaibi LH, Mohammed AF, Abdelrahman MH, Trembleau L, Youssif BGM. Design, Synthesis, and Antiproliferative Activity of New 5-Chloro-indole-2-carboxylate and Pyrrolo[3,4- b]indol-3-one Derivatives as Potent Inhibitors of EGFR T790M/BRAF V600E Pathways. Molecules 2023; 28:1269. [PMID: 36770936 PMCID: PMC9921301 DOI: 10.3390/molecules28031269] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Mutant EGFR/BRAF pathways are thought to be crucial targets for the development of anticancer drugs since they are over-activated in several malignancies. We present here the development of a novel series of 5-chloro-indole-2-carboxylate 3a-e, 4a-c and pyrrolo[3,4-b]indol-3-ones 5a-c derivatives as potent inhibitors of mutant EGFR/BRAF pathways with antiproliferative activity. The cell viability assay results of 3a-e, 4a-c, and 5a-c revealed that none of the compounds tested were cytotoxic, and that the majority of those tested at 50 µM had cell viability levels greater than 87%. Compounds 3a-e, 4a-c, and 5a-c had significant antiproliferative activity with GI50 values ranging from 29 nM to 78 nM, with 3a-e outperforming 4a-c and 5a-c in their inhibitory actions against the tested cancer cell lines. Compounds 3a-e were tested for EGFR inhibition, with IC50 values ranging from 68 nM to 89 nM. The most potent derivative was found to be the m-piperidinyl derivative 3e (R = m-piperidin-1-yl), with an IC50 value of 68 nM, which was 1.2-fold more potent than erlotinib (IC50 = 80 nM). Interestingly, all the tested compounds 3a-e had higher anti-BRAFV600E activity than the reference erlotinib but were less potent than vemurafenib, with compound 3e having the most potent activity. Moreover, compounds 3b and 3e showed an 8-fold selectivity index toward EGFRT790M protein over wild-type. Additionally, molecular docking of 3a and 3b against BRAFV600E and EGFRT790M enzymes revealed high binding affinity and active site interactions compared to the co-crystalized ligands. The pharmacokinetics properties (ADME) of 3a-e revealed safety and good pharmacokinetic profile.
Collapse
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Anber F. Mohammed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mostafa H. Abdelrahman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Laurent Trembleau
- School of Natural and Computing Sciences, University of Aberdeen, Meston Building, Aberdeen AB24 3UE, UK
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
20
|
Mohamed SF, Elnaggar DH, Elsayed MA, Abd-Elghaffar HS, Hosny HM, Mohamed AM, Abbas EMH, Farghaly TA, El-Awady RA. Synthesis, Anticancer Activity, Pharmacokinetics, and Docking Study of Some New Heterocycles Linked Indole Moiety. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2151475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Salwa F. Mohamed
- Applied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Dina H. Elnaggar
- Applied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Mohamed A. Elsayed
- Applied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | | | - Hana M. Hosny
- Pesticide Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Ashraf M. Mohamed
- Applied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Eman M. H. Abbas
- Department of Chemistry, Natural and Microbial Products, National Research Center, Dokki, Cairo, Egypt
| | - Thoraya A. Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Cairo, Giza, Egypt
| | - Raafat A. El-Awady
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
21
|
Alshammari MB, Aly AA, Youssif BGM, Bräse S, Ahmad A, Brown AB, Ibrahim MAA, Mohamed AH. Design and synthesis of new thiazolidinone/uracil derivatives as antiproliferative agents targeting EGFR and/or BRAF V600E. Front Chem 2022; 10:1076383. [PMID: 36578355 PMCID: PMC9792171 DOI: 10.3389/fchem.2022.1076383] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Thiourea derivatives of uracil were efficiently synthesized via the reaction of 5-aminouracil with isothiocyanates. Then, we prepared uracil-containing thiazoles via condensation of thioureas with diethyl/dimethyl acetylenedicarboxylates. The structures of the products were confirmed by a combination of spectral techniques including infra-red (IR), nuclear magnetic resonance (NMR), mass spectrometry (MS) and elemental analyses. A rationale for the formation of the products is presented. The newly synthesized compounds were evaluated for their in vitro antiproliferative activity against four cancer cell lines. The compounds tested showed promising antiproliferative activity, with GI50 values ranging from 1.10 µM to 10.00 µM. Compounds 3c, 5b, 5c, 5h, 5i, and 5j were the most potent derivatives, with GI50 values ranging from 1.10 µM to 1.80 µM. Compound 5b showed potent inhibitory activity against EGFR and BRAFV600E with IC50 of 91 ± 07 and 93 ± 08 nM, respectively, indicating that this compound could serve as a dual inhibitor of EGFR and BRAFV600E with promising antiproliferative properties. Docking computations revealed the great potency of compounds 5b and 5j towards EGFR and BRAFV600E with docking scores of -8.3 and -9.7 kcal/mol and -8.2 and -9.3 kcal/mol, respectively.
Collapse
Affiliation(s)
- Mohammed B. Alshammari
- Chemistry Department, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharij, Saudi Arabia
| | - Ashraf A. Aly
- Chemistry Department, Faculty of Science, Minia University, El-Minia, Egypt,*Correspondence: Ashraf A. Aly, , ; Bahaa G. M. Youssif, ; Stefan Bräse,
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Asyut, Egypt,*Correspondence: Ashraf A. Aly, , ; Bahaa G. M. Youssif, ; Stefan Bräse,
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruher Institut fur Technologie, Karlsruhe, Germany,Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology, Karlsruhe, Germany,*Correspondence: Ashraf A. Aly, , ; Bahaa G. M. Youssif, ; Stefan Bräse,
| | - Akil Ahmad
- Chemistry Department, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharij, Saudi Arabia
| | - Alan B. Brown
- Chemistry Department, Florida Institute of Technology, Melbourne, FL, United States
| | - Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Asmaa H. Mohamed
- Chemistry Department, Faculty of Science, Minia University, El-Minia, Egypt
| |
Collapse
|
22
|
Synthesis and Biological Evaluation of Indole-2-Carboxamides with Potent Apoptotic Antiproliferative Activity as EGFR/CDK2 Dual Inhibitors. Pharmaceuticals (Basel) 2022; 15:ph15081006. [PMID: 36015154 PMCID: PMC9414584 DOI: 10.3390/ph15081006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022] Open
Abstract
The apoptotic antiproliferative actions of our previously reported CB1 allosteric modulators 5-chlorobenzofuran-2-carboxamide derivatives VIIa–j prompted us to develop and synthesise a novel series of indole-2-carboxamide derivatives 5a–k, 6a–c, and 7. Different spectroscopic methods of analysis were used to validate the novel compounds. Using the MTT assay method, the novel compounds were examined for antiproliferative activity against four distinct cancer cell lines. Compounds 5a–k, 6a–c, and 7 demonstrated greater antiproliferative activity against the breast cancer cell line (MCF-7) than other tested cancer cell lines, and 5a–k (which contain the phenethyl moiety in their backbone structure) demonstrated greater potency than 6a–c and 7, indicating the importance of the phenethyl moiety for antiproliferative action. Compared to reference doxorubicin (GI50 = 1.10 µM), compounds 5d, 5e, 5h, 5i, 5j, and 5k were the most effective of the synthesised derivatives, with GI50 ranging from 0.95 µM to 1.50 µM. Compounds 5d, 5e, 5h, 5i, 5j, and 5k were tested for their inhibitory impact on EGFR and CDK2, and the results indicated that the compounds tested had strong antiproliferative activity and are effective at suppressing both CDK2 and EGFR. Moreover, the studied compounds induced apoptosis with high potency, as evidenced by their effects on apoptotic markers such as Caspases 3, 8, 9, Cytochrome C, Bax, Bcl2, and p53.
Collapse
|
23
|
Dwarakanath D, Gaonkar SL. Advances in Synthetic Strategies and Medicinal Importance of Benzofurans: A Review. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Deepika Dwarakanath
- Department of Chemistry Manipal Institute of Technology Manipal Academy of Higher Education 576104 Manipal Karnataka India
| | - Santosh L. Gaonkar
- Department of Chemistry Manipal Institute of Technology Manipal Academy of Higher Education 576104 Manipal Karnataka India
| |
Collapse
|
24
|
Bakchi B, Krishna AD, Sreecharan E, Ganesh VBJ, Niharika M, Maharshi S, Puttagunta SB, Sigalapalli DK, Bhandare RR, Shaik AB. An overview on applications of SwissADME web tool in the design and development of anticancer, antitubercular and antimicrobial agents: A medicinal chemist's perspective. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Structure-Activity Relationship of Benzofuran Derivatives with Potential Anticancer Activity. Cancers (Basel) 2022; 14:cancers14092196. [PMID: 35565325 PMCID: PMC9099631 DOI: 10.3390/cancers14092196] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/17/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Cancer is the leading cause of death worldwide and responsible for killing approximately 10 million people per year. Fused heterocyclic ring systems such as benzofuran have emerged as important scaffolds with many biological properties. Furthermore, derivatives of benzofurans demonstrate a wide range of biological and pharmacological activities, including anticancer properties. The main aim of this review is to highlight and discuss the contribution of benzofuran derivatives as anticancer agents by considering and discussing the chemical structure of 20 different compounds. Evaluating the chemical structure of these compounds will guide future medicinal chemists in designing new drugs for cancer therapy that might give excellent results in in vivo/in vitro applications. Abstract Benzofuran is a heterocyclic compound found naturally in plants and it can also be obtained through synthetic reactions. Multiple physicochemical characteristics and versatile features distinguish benzofuran, and its chemical structure is composed of fused benzene and furan rings. Benzofuran derivatives are essential compounds that hold vital biological activities to design novel therapies with enhanced efficacy compared to conventional treatments. Therefore, medicinal chemists used its core to synthesize new derivatives that can be applied to a variety of disorders. Benzofuran exhibited potential effectiveness in chronic diseases such as hypertension, neurodegenerative and oxidative conditions, and dyslipidemia. In acute infections, benzofuran revealed anti-infective properties against microorganisms like viruses, bacteria, and parasites. In recent years, the complex nature and the number of acquired or resistant cancer cases have been largely increasing. Benzofuran derivatives revealed potential anticancer activity with lower incidence or severity of adverse events normally encountered during chemotherapeutic treatments. This review discusses the structure–activity relationship (SAR) of several benzofuran derivatives in order to elucidate the possible substitution alternatives and structural requirements for a highly potent and selective anticancer activity.
Collapse
|
26
|
Hendawy OM. A comprehensive review of recent advances in the biological activities of 1,2,4-oxadiazoles. Arch Pharm (Weinheim) 2022; 355:e2200045. [PMID: 35445430 DOI: 10.1002/ardp.202200045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/10/2022]
Abstract
Nitrogen heterocycles play an essential role in medication development. The 1,2,4-oxadiazole heterocycle has been extensively studied, yielding a large variety of molecules with varied biological functions. The 1,2,4-oxadiazole shows bioisosteric equivalency with ester and amide moieties. In recent years, the 1,2,4-oxadiazole nucleus has received a lot of attention in medicinal chemistry. It was thought to be a pharmacophore component in the production of biologically intriguing drugs. This review presents a comprehensive overview of the recent achievements in the biological activities of 1,2,4-oxadiazoles as potential antimicrobial, anticancer, anti-inflammatory, neuroprotective, and antidiabetic agents. The structure-activity relationship and mechanisms of action are also reviewed.
Collapse
Affiliation(s)
- Omnia M Hendawy
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| |
Collapse
|
27
|
Design and synthesis of new triarylimidazole derivatives as dual inhibitors of BRAFV600E/p38α with potential antiproliferative activity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Structure-based design, synthesis and antiproliferative action of new quinazoline-4-one/chalcone hybrids as EGFR inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Gomaa HA, Shaker ME, Alzarea SI, Hendawy O, Mohamed FA, Gouda AM, Ali AT, Morcoss MM, Abdelrahman MH, Trembleau L, Youssif BG. Optimization and SAR investigation of novel 2,3-dihydropyrazino[1,2-a]indole-1,4-dione derivatives as EGFR and BRAFV600E dual inhibitors with potent antiproliferative and antioxidant activities. Bioorg Chem 2022; 120:105616. [DOI: 10.1016/j.bioorg.2022.105616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 11/02/2022]
|
30
|
Mahmoud MA, Mohammed AF, Salem OIA, Gomaa HAM, Youssif BGM. New 1,3,4-oxadiazoles linked with the 1,2,3-triazole moiety as antiproliferative agents targeting the EGFR tyrosine kinase. Arch Pharm (Weinheim) 2022; 355:e2200009. [PMID: 35195309 DOI: 10.1002/ardp.202200009] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
Abstract
A series of 1,3,4-oxadiazole-1,2,3-triazole hybrids bearing different pharmacophoric moieties has been designed and synthesized. Their antiproliferative activity was evaluated against four human cancer cell lines (Panc-1, MCF-7, HT-29, and A-549) using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The preliminary activity test displayed that the most active compounds, 6d, 6e, and 8a-e, suppressed cancer cell growth (GI50 = 0.23-2.00 µM) comparably to erlotinib (GI50 = 0.06 µM). Compounds 6d, 6e, and 8a-e inhibited the epidermal growth factor receptor tyrosine kinase (EGFR-TK) at IC50 = 0.11-0.73 µM, compared to erlotinib (IC50 = 0.08 ± 0.04 µM). The apoptotic mechanism revealed that the most active hybrid 8d induced expression levels of caspase-3, caspase-9, and cytochrome-c in the human cancer cell line Panc-1 by 7.80-, 19.30-, and 13-fold higher than doxorubicin. Also, 8d increased the Bax level by 40-fold than doxorubicin, along with decreasing Bcl-2 levels by 6.3-fold. Cell cycle analysis after treatment of Panc-1 cells with hybrid 8d revealed a high proportion of cell accumulation (41.53%) in the pre-G1 phase, indicating cell cycle arrest at the G1 transition. Computational docking of the 8d and 8e hybrids with the EGFR binding site revealed their ability to bind with EGFR similar to erlotinib. Finally, in silico absorption, distribution, metabolism, and excretion/pharmacokinetic studies for the most active hybrids are discussed.
Collapse
Affiliation(s)
- Mohamed A Mahmoud
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Anber F Mohammed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Ola I A Salem
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Hesham A M Gomaa
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Bahaa G M Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
31
|
Mekheimer RA, Allam SMR, Al-Sheikh MA, Moustafa MS, Al-Mousawi SM, Mostafa YA, Youssif BGM, Gomaa HAM, Hayallah AM, Abdelaziz M, Sadek KU. Discovery of new pyrimido[5,4-c]quinolines as potential antiproliferative agents with multitarget actions: Rapid synthesis, docking, and ADME studies. Bioorg Chem 2022; 121:105693. [PMID: 35219045 DOI: 10.1016/j.bioorg.2022.105693] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/15/2022] [Indexed: 12/21/2022]
Abstract
A novel series of pyrimido[5,4-c]quinoline derivatives variously substituted at positions 2 and 5 have been synthesized, in good to excellent yields, via rapid base-catalyzed cyclization reaction of 2,4-dichloroquinoline-3-carbonitrile (5) with guanidine hydrochlorides 6a-c. All the synthesized compounds were screened for their in vitro antiproliferative activity. The most active hybrids 26a-d, 28a-d, and 30B were assessed against topoisomerase (topo) I, topo IIα, CDK2, and EGFR. The majority of the tested compounds exhibited selective topo I inhibitory activity while had weak topo IIα inhibitory action with compounds 30B and 28d, showed better topo I inhibitory activity than the reference camptothecin. Compound 30B, the most potent derivative as antiproliferative agent, exhibited moderate activity against CDK2 (IC50 = 1.60 µM). The results of this assay show that CDK2 is not a potential target for these compounds, implying that the observed cytotoxicity of these compounds is due to a different mechanism. Compounds 30B, 28d, and 28c were found to be the most potent against EGFR and their EGFR inhibitory activities (IC50 = 0.40 ± 0.2, 0.49 ± 0.2, and 0.64 ± 0.3, respectively) relative to the positive control erlotinib (IC50 = 0.07 ± 0.03 µM). These results revealed that topo I and EGFR are attractive targets for this class of chemical compounds.
Collapse
Affiliation(s)
- Ramadan A Mekheimer
- Department of Chemistry, Faculty of Science, Minia University, Minia 61519, Egypt.
| | - Samar M R Allam
- Department of Chemistry, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Mariam A Al-Sheikh
- Department of Chemistry, Jeddah University, Faculty of Sciences-Al Faisaliah, Jeddah 21493, Saudi Arabia
| | - Moustafa S Moustafa
- Department of Chemistry, Faculty of Science, Kuwait University, P.O. Box 12613, Safat 13060, Kuwait
| | - Saleh M Al-Mousawi
- Department of Chemistry, Faculty of Science, Kuwait University, P.O. Box 12613, Safat 13060, Kuwait.
| | - Yaser A Mostafa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Bahaa G M Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Hesham A M Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 2014, Saudi Arabia
| | - Alaa M Hayallah
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, New Assiut, Egypt
| | - Mohamed Abdelaziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Kamal U Sadek
- Department of Chemistry, Faculty of Science, Minia University, Minia 61519, Egypt
| |
Collapse
|
32
|
Design and Synthesis of (2- oxo-1,2-Dihydroquinolin-4-yl)-1,2,3-triazole Derivatives via Click Reaction: Potential Apoptotic Antiproliferative Agents. Molecules 2021; 26:molecules26226798. [PMID: 34833890 PMCID: PMC8620910 DOI: 10.3390/molecules26226798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022] Open
Abstract
A mild and versatile method based on Cu-catalyzed [2+3] cycloaddition (Huisgen-Meldal-Sharpless reaction) was developed to tether 3,3’-((4-(prop-2-yn-1-yloxy)phenyl)methylene)bis(4-hydroxyquinolin-2(1H)-ones) with 4-azido-2-quinolones in good yields. This methodology allowed attaching three quinolone molecules via a triazole linker with the proposed mechanism. The products are interesting precursors for their anti-proliferative activity. Compound 8g was the most active one, achieving IC50 = 1.2 ± 0.2 µM and 1.4 ± 0.2 µM against MCF-7 and Panc-1 cell lines, respectively. Moreover, cell cycle analysis of cells MCF-7 treated with 8g showed cell cycle arrest at the G2/M phase (supported by Caspase-3,8,9, Cytochrome C, BAX, and Bcl-2 studies). Additionally, significant pro-apoptotic activity is indicated by annexin V-FITC staining.
Collapse
|
33
|
Hendawy OM, Gomaa HAM, Alzarea SI, Alshammari MS, Mohamed FAM, Mostafa YA, Abdelazeem AH, Abdelrahman MH, Trembleau L, Youssif BGM. Novel 1,5-diaryl pyrazole-3-carboxamides as selective COX-2/sEH inhibitors with analgesic, anti-inflammatory, and lower cardiotoxicity effects. Bioorg Chem 2021; 116:105302. [PMID: 34464816 DOI: 10.1016/j.bioorg.2021.105302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/20/2022]
Abstract
COX-2 selective drugs have been withdrawn from the market due to cardiovascular side effects, just a few years after their discovery. As a result, a new series of 1,5-diaryl pyrazole carboxamides 19-31 was synthesized as selective COX-2/sEH inhibitors with analgesic, anti-inflammatory, and lower cardiotoxic properties. The target compounds were synthesized and tested in vitro against COX-1, COX-2, and sEH enzymes. Compounds 20, 22 and 29 exhibited the most substantial COX-2 inhibitory activity (IC50 values: 0.82-1.12 µM) and had SIs of 13, 18, and 16, respectively, (c.f. celecoxib; SI = 8). Moreover, compounds 20, 22, and 29 were the most potent dual COX-2/sEH inhibitors, with IC50 values of 0.95, 0.80, and 0.85 nM against sEH, respectively, and were more potent than the standard AUDA (IC50 = 1.2 nM). Furthermore, in vivo studies revealed that these compounds were the most active as analgesic/anti-inflammatory derivatives with a good cardioprotective profile against cardiac biomarkers and inflammatory cytokines. Finally, the most active dual inhibitors were docked inside COX-2/sEH active sites to explain their binding modes.
Collapse
Affiliation(s)
- O M Hendawy
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Beni-Suef University, Egypt
| | - Hesham A M Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Mutariah S Alshammari
- Department of Chemistry, College of Science, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Fatma A M Mohamed
- Clinical Laboratory Science Department, College of Applied Medical Sciences, Jouf University, Aljouf 72341, Saudi Arabia; Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Yaser A Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ahmed H Abdelazeem
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; Department of Pharmaceutical Sciences, College of Pharmacy, Riyadh Elm University, Riyadh 11681, Saudi Arabia
| | - Mostafa H Abdelrahman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Laurent Trembleau
- School of Natural and Computing Sciences, University of Aberdeen, Meston Building, Aberdeen AB24 3UE, United Kingdom.
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
34
|
Al-Wahaibi LH, Youssif BGM, Taher ES, Abdelazeem AH, Abdelhamid AA, Marzouk AA. Design, Synthesis, Biological Evaluation, and Computational Studies of Novel Tri-Aryl Imidazole-Benzene Sulfonamide Hybrids as Promising Selective Carbonic Anhydrase IX and XII Inhibitors. Molecules 2021; 26:molecules26164718. [PMID: 34443307 PMCID: PMC8400968 DOI: 10.3390/molecules26164718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 11/30/2022] Open
Abstract
A novel series of tri-aryl imidazole derivatives 5a–n carrying benzene sulfonamide moiety has been designed for their selective inhibitory against hCA IX and XII activity. Six compounds were found to be potent and selective CA IX inhibitors with the order of 5g > 5b > 5d > 5e > 5g > 5n (Ki = 0.3–1.3 μM, and selectivity ratio for hCA IX over hCA XII = 5–12) relative to acetazolamide (Ki = 0.03 μM, and selectivity ratio for hCA IX over hCA XII = 0.20). The previous sixth inhibitors have been further investigated for their anti-proliferative activity against four different cancer cell lines using MTT assay. Compounds 5g and 5b demonstrated higher antiproliferative activity than other tested compounds (with GI50 = 2.3 and 2.8 M, respectively) in comparison to doxorubicin (GI50 = 1.1 M). Docking studies of these two compounds adopted orientation and binding interactions with a higher liability to enter the active side pocket CA-IX selectively similar to that of ligand 9FK. Molecular modelling simulation showed good agreement with the acquired biological evaluation.
Collapse
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11564, Saudi Arabia
- Correspondence: (L.H.A.-W.); (B.G.M.Y.); Tel.: +20-1098294419 (B.G.M.Y.)
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Correspondence: (L.H.A.-W.); (B.G.M.Y.); Tel.: +20-1098294419 (B.G.M.Y.)
| | - Ehab S. Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt;
| | - Ahmed H. Abdelazeem
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt;
- Department of Pharmaceutical Sciences, College of Pharmacy, Riyadh Elm University, Riyadh 11681, Saudi Arabia
| | - Antar A. Abdelhamid
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt;
- Chemistry Department, Faculty of Science, Albaha University, P.O. Box 1988, Albaha 65731, Saudi Arabia
| | - Adel A. Marzouk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt;
| |
Collapse
|
35
|
Tantawy AH, Meng XG, Marzouk AA, Fouad A, Abdelazeem AH, Youssif BGM, Jiang H, Wang MQ. Structure-based design, synthesis, and biological evaluation of novel piperine-resveratrol hybrids as antiproliferative agents targeting SIRT-2. RSC Adv 2021; 11:25738-25751. [PMID: 35478872 PMCID: PMC9037111 DOI: 10.1039/d1ra04061h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
A series of novel piperine–resveratrol hybrids 5a–h was designed, synthesized, and structurally elucidated by IR, and 1H, 13C, and 19F NMR. Antiproliferative activities of 5a–h were evaluated by NCI against sixty cancer cell lines. Compound 5b, possessing resveratrol pharmacophoric phenolic moieties, showed a complete cell death against leukemia HL-60 (TB) and Breast cancer MDA-MB-468 with growth inhibition percentage of −0.49 and −2.83, respectively. In addition, 5b recorded significant activity against the other cancer cell lines with growth inhibition percentage between 80 to 95. New 5a–h hybrids were evaluated for their inhibitory activities against Sirt-1 and Sirt-2 as molecular targets for their antiproliferative action. Results showed that compounds 5a–h were more potent inhibitors of Sirt-2 than Sirt-1 at 5 μm and 50 μm. Compound 5b showed the strongest inhibition of Sirt-2 (78 ± 3% and 26 ± 3% inhibition at 50 μM and 5 μM, respectively). Investigation of intermolecular interaction via Hirschfeld surface analysis indicates that these close contacts are mainly ascribed to the O–H⋯O hydrogen bonding. To get insights into the Sirt-2 inhibitory mechanism, a docking study was performed where 5b was found to fit nicely inside both extended C-pocket and selectivity pocket and could compete with the substrate acyl-Lys. Another possible binding pattern showed that 5b could act by partial occlusion of the NAD+ C-pocket. Collectively, these findings would contribute significantly to better understanding the Sirt-2 inhibitory mechanism in order to develop a new generation of refined and selective Sirt-2 inhibitors. A series of novel piperine–resveratrol hybrids 5a–h was designed, synthesized, and structurally elucidated by IR, and 1H, 13C, and 19F NMR.![]()
Collapse
Affiliation(s)
- Ahmed H Tantawy
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University Wuhan 430070 People's Republic of China .,Department of Chemistry, College of Science, Huazhong Agricultural University Wuhan 430070 China .,Department of Chemistry, College of Science, Benha University Benha 13518 Egypt
| | - Xiang-Gao Meng
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, School of Chemistry, Central China Normal University Wuhan 430079 China
| | - Adel A Marzouk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University Assiut Branch Assiut 71524 Egypt
| | - Ali Fouad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University Assiut Branch Assiut 71524 Egypt
| | - Ahmed H Abdelazeem
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62514 Egypt.,Department of Pharmaceutical Sciences, College of Pharmacy, Riyadh Elm University Riyadh 11681 Saudi Arabia
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| | - Hong Jiang
- Department of Chemistry, College of Science, Huazhong Agricultural University Wuhan 430070 China
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University Wuhan 430070 People's Republic of China
| |
Collapse
|
36
|
Al-Mahmoudy A, Hassan A, Ibrahim T, Youssif B, Taher E, Tantawy M, Abdel-Aal E, Osman N. Novel Benzyloxyphenyl Pyrimidine-5-Carbonitrile Derivatives as Potential Apoptotic Antiproliferative Agents. Anticancer Agents Med Chem 2021; 22:978-990. [PMID: 34126912 DOI: 10.2174/1871520621666210612043812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pyrimidine-5-carbonitrile had a broad spectrum of biological activities such as antiviral, antioxidant and anticancer activity. Among similar compounds, monastrol being the most prominent due to cell-permeant inhibitor of mitosis therefore, we investigated the new Pyrimidine-5-carbonitrile as a cytotoxic agent for p53 pathway. OBJECTIVE Several new benzyloxyphenyl pyrimidine-5-carbonitrile derivatives were designed, synthesized, characterized, and their cytotoxicity was evaluated. The most active compounds were tested for their activity against p53 as a mechanistic target for antiproliferative action. METHOD The key intermediate tetrahydropyrimidine-5-carbonitrile derivative 4 was prepared by a multicomponent reaction (MCR) of Biginelli type. S-alkylation of the key intermediate with the required alkyl or aralkyl halides or refluxing 4 with POCl3 followed by an amino acid yielded the target compounds. The cytotoxicity of 5c-e, 7a-c, 9, 10a, b and 11 was evaluated using A549 cell line of human lung adenocarcinoma, HepG2 liver cell line, and MDA-MB-231 cell line of breast cancer using the MTT assay. The transcription effects of 7a, 7c, and 11 on the p53 were assessed and compared with the reference doxorubicin. RESULTS Compounds 7a, 7c, and 11 have the highest cytotoxic effect when applied to most cancer cells. The tested compounds with 5-FU showed a significant increase in the anticancer activity more than 5-FU alone. Compounds 7a, 7c, and 11 increased the level of active caspase 3 by 4-6-fold, compared to untreated control cells in human liver cancer cell line (HepG2). Compounds 7a, 7c, and 11 increase the levels of caspase 8 and 9, indicating activation of both intrinsic and extrinsic pathways and showed potent induction of Bax, down-regulation of Bcl-2 protein levels and over-expression of Cytochrome C levels in HepG2 cell lines. Compound 11 exhibited cell cycle arrest at the Pre-G1 and G2/M phases in the cell cycle analysis of HepG2 cell line. The results revealed an increase of 12.40-19.10 in p53 level compared to the test cells and that p53 protein level of 7a, 7c, and 11 was significantly inductive (636, 861 and 987 pg/mL, respectively) in relation to doxorubicin (1263 pg/mL). CONCLUSION Pyrimidine-5-carbonitrile derivatives have potent apoptotic and antiproliferative properties.
Collapse
Affiliation(s)
- Amany Al-Mahmoudy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519. Egypt
| | - Alaa Hassan
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519. Egypt
| | - Tarek Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589. Saudi Arabia
| | - Bahaa Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526. Egypt
| | - Ehab Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, 71524, Assiut. Egypt
| | - Mohamed Tantawy
- Hormones Department, Medical Research Division, National Research Centre, Dokki, Giza. Egypt
| | - Eatedal Abdel-Aal
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519. Egypt
| | - Nermine Osman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519. Egypt
| |
Collapse
|
37
|
The Interplay between the Immune and the Endocannabinoid Systems in Cancer. Cells 2021; 10:cells10061282. [PMID: 34064197 PMCID: PMC8224348 DOI: 10.3390/cells10061282] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
The therapeutic potential of Cannabis sativa has been recognized since ancient times. Phytocannabinoids, endocannabinoids and synthetic cannabinoids activate two major G protein-coupled receptors, subtype 1 and 2 (CB1 and CB2). Cannabinoids (CBs) modulate several aspects of cancer cells, such as apoptosis, autophagy, proliferation, migration, epithelial-to-mesenchymal transition and stemness. Moreover, agonists of CB1 and CB2 receptors inhibit angiogenesis and lymphangiogenesis in vitro and in vivo. Low-grade inflammation is a hallmark of cancer in the tumor microenvironment (TME), which contains a plethora of innate and adaptive immune cells. These cells play a central role in tumor initiation and growth and the formation of metastasis. CB2 and, to a lesser extent, CB1 receptors are expressed on a variety of immune cells present in TME (e.g., T cells, macrophages, mast cells, neutrophils, NK cells, dendritic cells, monocytes, eosinophils). The activation of CB receptors modulates a variety of biological effects on cells of the adaptive and innate immune system. The expression of CB2 and CB1 on different subsets of immune cells in TME and hence in tumor development is incompletely characterized. The recent characterization of the human cannabinoid receptor CB2-Gi signaling complex will likely aid to design potent and specific CB2/CB1 ligands with therapeutic potential in cancer.
Collapse
|
38
|
Mohamed FAM, Gomaa HAM, Hendawy OM, Ali AT, Farghaly HS, Gouda AM, Abdelazeem AH, Abdelrahman MH, Trembleau L, Youssif BGM. Design, synthesis, and biological evaluation of novel EGFR inhibitors containing 5-chloro-3-hydroxymethyl-indole-2-carboxamide scaffold with apoptotic antiproliferative activity. Bioorg Chem 2021; 112:104960. [PMID: 34020242 DOI: 10.1016/j.bioorg.2021.104960] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
New EGFR inhibitor series of fifteen 5-chloro-3-hydroxymethyl-indole-2-carboxamide derivatives has been designed, synthesized, and tested for antiproliferative activity against a panel of cancer cell lines. The results showed that p-substituted phenethyl derivatives 10, 11, 13, 15 and 17-19 showed superior antiproliferative activity compared to their m-substituted counterparts 12, 14, 16 and 20. Compounds 15, 16, 19 and 20 displayed promising EGFR inhibitory activity as well as an increase in caspase 3 levels. Compounds 15 and 19 increased caspase-8 and 9 levels, as well as inducing Bax and decreasing Bcl-2 protein levels. Compound 19 demonstrated cell cycle arrest at pre-G1 and G2/M phases. The results of the docking study into the active site of EGFR revealed strong fitting of the new compounds with higher binding affinities compared to erlotinib.
Collapse
Affiliation(s)
- Fatma A M Mohamed
- Clinical Laboratory Science Department, College of Applied Medical Sciences, Jouf University, Aljouf 72341, Saudi Arabia; Chemistry Department, Faculty of Science, Alexandria University, Alexandria-21321, Egypt
| | - Hesham A M Gomaa
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - O M Hendawy
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Beni-Suef University, Egypt
| | - Asmaa T Ali
- Biochemistry Department, Faculty of Pharmacy, Nahda University, Beni-Suef 62511, Egypt
| | - Hatem S Farghaly
- Biochemistry Department, Faculty of Pharmacy, Nahda University, Beni-Suef 62511, Egypt
| | - Ahmed M Gouda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ahmed H Abdelazeem
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mostafa H Abdelrahman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Laurent Trembleau
- School of Natural and Computing Sciences, University of Aberdeen, Meston Building, Aberdeen AB243UE, United Kingdom
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
39
|
Design, Synthesis, and Antibacterial Screening of Some Novel Heteroaryl-Based Ciprofloxacin Derivatives as DNA Gyrase and Topoisomerase IV Inhibitors. Pharmaceuticals (Basel) 2021; 14:ph14050399. [PMID: 33922361 PMCID: PMC8145110 DOI: 10.3390/ph14050399] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022] Open
Abstract
A novel series of ciprofloxacin hybrids comprising various heterocycle derivatives has been synthesized and structurally elucidated using 1H NMR, 13C NMR, and elementary analyses. Using ciprofloxacin as a reference, compounds 1-21 were screened in vitro against Gram-positive bacterial strains such as Staphylococcus aureus and Bacillus subtilis and Gram-negative strains such as Escherichia coli and Pseudomonas aeruginosa. As a result, many of the compounds examined had antibacterial activity equivalent to ciprofloxacin against test bacteria. Compounds 2-6, oxadiazole derivatives, were found to have antibacterial activity that was 88 to 120% that of ciprofloxacin against Gram-positive and Gram-negative bacteria. The findings showed that none of the compounds tested had antifungal activity against Aspergillus flavus, but did have poor activity against Candida albicans, ranging from 23% to 33% of fluconazole, with compound 3 being the most active (33% of fluconazole). The most potent compounds, 3, 4, 5, and 6, displayed an IC50 of 86, 42, 92, and 180 nM against E. coli DNA gyrase, respectively (novobiocin, IC50 = 170 nM). Compounds 4, 5, and 6 showed IC50 values (1.47, 6.80, and 8.92 µM, respectively) against E. coli topo IV in comparison to novobiocin (IC50 = 11 µM).
Collapse
|
40
|
Abdel-Aziz SA, Taher ES, Lan P, Asaad GF, Gomaa HAM, El-Koussi NA, Youssif BGM. Design, synthesis, and biological evaluation of new pyrimidine-5-carbonitrile derivatives bearing 1,3-thiazole moiety as novel anti-inflammatory EGFR inhibitors with cardiac safety profile. Bioorg Chem 2021; 111:104890. [PMID: 33872924 DOI: 10.1016/j.bioorg.2021.104890] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/11/2022]
Abstract
A new series of pyrimidine-5-carbonitrile derivatives 8a-p carrying the 1,3-thiazole moiety has been designed and synthesized as novel anti-inflammatory EGFR inhibitors with cardiac and gastric safety profiles. 8a-p have been assessed for their inhibitory activity against COX-1/COX-2 activity. Compounds 8h, 8n, and 8p were found to be potent and selective COX-2 inhibitors (IC50 = 1.03-1.71 μM) relative to celecoxib (IC50 = 0.88 μM). The most potent COX-2 inhibitors have been further investigated for their in-vivo anti-inflammatory effect. Compounds 8h, 8n, and 8p showed anti-inflammatory activity up to 90%, 94% and 86% of meloxicam after 4 h interval. 8h, 8n, and 8p showed higher gastric safety profiles than meloxicam. A substantial reduction in serum concentrations of PGE2, TNF-α, IL-6, iNO and MDA and a significant induction of TAC was also observed. In vivo experiments on heart rate and blood pressure established the cardiovascular safety profile of 8h, 8n, and 8p. Anti-proliferative and wild-type EGFR inhibitory assays displayed similar results to selective COX-2 inhibition where compounds 8h, 8n, and 8p had a superior inhibition than other tested ones. Molecular docking study demonstrated that these compounds revealed similar orientation and binding interactions as selective COX-2 inhibitors with a higher liability to enter the side pocket selectively. Also, they interacted with EGFR tyrosine kinase main amino acids similar to erlotinib with a strong binding energy score.
Collapse
Affiliation(s)
- Salah A Abdel-Aziz
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia 61519, Egypt.
| | - Ehab S Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Ping Lan
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou 510632, China
| | - Gihan F Asaad
- Department of Pharmacology, National Research Centre, Dokki-Giza, Egypt
| | - Hesham A M Gomaa
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 2014, Saudi Arabia
| | - Nawal A El-Koussi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia 61519, Egypt; Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
41
|
Design, synthesis, and biological evaluation of new series of pyrrol-2(3H)-one and pyridazin-3(2H)-one derivatives as tubulin polymerization inhibitors. Bioorg Chem 2020; 107:104522. [PMID: 33317838 DOI: 10.1016/j.bioorg.2020.104522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/21/2020] [Accepted: 11/27/2020] [Indexed: 12/17/2022]
Abstract
A potential microtubule destabilizing series of new thirty-five Pyrrol-2-one, Pyridazin-3(2H)-one and Pyridazin-3(2H)-one/oxime derivatives has been synthesized and tested for their antiproliferative activity against a panel of 60 human cancer cell lines. Compounds IVc, IVg and IVf showed a broad spectrum of growth inhibitory activity against cancer cell lines representing renal, cancer of lung, colon, central nervous system, ovary, and kidney. Among them, compound IVg was found to have broad spectrum anti-tumor activity against the tested nine tumor subpanels with selectivity ratios ranging between 0.21 and 3.77 at the GI50 level. In vitro assaying revealed tubulin polymerization inhibition by all active compounds IVc, IVg and IVf. The results of the docking study revealed nice fitting of compounds IVc, IVf, and IVg into CA-4 binding site in tubulin. The three compounds exhibited high binding affinities (ΔGb = -12.49 to -12.99 kcal/mol) toward tubulin compared to CA-4 (-8.87 kcal/mol). Investigation of the binding modes of the three compounds IVc, IVf, and IVg revealed that they interacted mainly hydrophobically with tubulin and similar binding orientations to that of CA-4. These observations suggest that tubulin is a possible target for these compounds.
Collapse
|
42
|
Ramadan M, Abd El-Aziz M, Elshaier YA, Youssif BG, Brown AB, Fathy HM, Aly AA. Design and synthesis of new pyranoquinolinone heteroannulated to triazolopyrimidine of potential apoptotic antiproliferative activity. Bioorg Chem 2020; 105:104392. [DOI: 10.1016/j.bioorg.2020.104392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/03/2020] [Accepted: 10/15/2020] [Indexed: 01/07/2023]
|
43
|
Mohassab AM, Hassan HA, Abdelhamid D, Gouda AM, Youssif BGM, Tateishi H, Fujita M, Otsuka M, Abdel-Aziz M. Design and synthesis of novel quinoline/chalcone/1,2,4-triazole hybrids as potent antiproliferative agent targeting EGFR and BRAF V600E kinases. Bioorg Chem 2020; 106:104510. [PMID: 33279248 DOI: 10.1016/j.bioorg.2020.104510] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/10/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
New quinoline / chalcone hybrids containing 1,2,4-triazole moiety have been designed, synthesized and their structures elucidated and confirmed by various spectroscopic techniques. The designed compounds showed moderate to good activity on different NCI 60 cell lines in a single-dose assay with a growth inhibition rate ranging from 50% to 94%. Compounds 7b, 7d, 9b, and 9d were the most active compounds in most cancer cell lines with a growth inhibition percent between 77% and 94%. Newly synthesized hybrids were evaluated for their anti-proliferative activity against a panel of four human cancer cell lines. Compounds 7a, 7b, 9a, 9b, and 9d showed promising antiproliferative activities. These compounds were further tested for their inhibitory potency against EGFR and BRAFV600E kinases with erlotinib as a reference drug. The molecular docking study of compounds 7a, 7b, 9a, 9b, and 9d revealed nice fitting into the active site of EGFR and BRAFV600E kinases. Compounds 7b, 9b, and 9d displayed the highest binding affinities and similar binding pattern to those of erlotinib.
Collapse
Affiliation(s)
- Aliaa M Mohassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Heba A Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| | - Dalia Abdelhamid
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Ahmed M Gouda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Drug Discovery, Science Farm Ltd., 1-7-30 Kuhonji, Chuo-ku, Kumamoto 862-0976, Japan
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| |
Collapse
|
44
|
Novel 1,2,4-triazole derivatives as apoptotic inducers targeting p53: Synthesis and antiproliferative activity. Bioorg Chem 2020; 105:104369. [PMID: 33091670 DOI: 10.1016/j.bioorg.2020.104369] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 09/12/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
A series of novel thiazolo[3,2-b][1,2,4]-triazoles 3a-n has been synthesized and evaluated in vitro as potential antiproliferative. Compounds 3b-d exhibited significant antiproliferative activity. Compound 3b was the most potent with Mean GI50 1.37 µM comparing to doxorubicin (GI50 1.13 µM). The transcription effects of 3b, 3c and 3d on the p53 were assessed and compared with the reference doxorubicin. The results revealed an increase of 15-27 in p53 level compared to the test cells and that p53 protein level of 3b, 3c and 3d was significantly inductive (1419, 571 and 787 pg/mL, respectively) in relation to doxorubicin (1263 pg/mL). The docking study of the new compounds 3a-n revealed high binding scores for the new compounds toward p53 binding domain in MDM2. The docking analyses revealed the highest affinities for compounds 3b-d which induced p53 activity in MCF-7 cancer cells. Compound 3b which exhibited the highest antiproliferative activity and induced the highest increase in p53 level in MCF-7 cells showed also the highest affinity to MDM2.
Collapse
|
45
|
Al-Wahaibi LH, Gouda AM, Abou-Ghadir OF, Salem OIA, Ali AT, Farghaly HS, Abdelrahman MH, Trembleau L, Abdu-Allah HHM, Youssif BGM. Design and synthesis of novel 2,3-dihydropyrazino[1,2-a]indole-1,4-dione derivatives as antiproliferative EGFR and BRAF V600E dual inhibitors. Bioorg Chem 2020; 104:104260. [PMID: 32920363 DOI: 10.1016/j.bioorg.2020.104260] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/13/2020] [Accepted: 08/28/2020] [Indexed: 12/16/2022]
Abstract
Recent studies have shown additive and synergistic effects associated with the combination of kinase inhibitors. BRAFV600E and EGFR are attractive targets for many diseases treatments and have been studied extensively. In keeping with our interest in developing anticancer targeting EGFR and BRAFV600E, a novel series of 2,3-dihydropyrazino[1,2-a]indole-1,4-dione has been rationally designed, synthesized and evaluated for their antiproliferative activity against a panel of four human cancer cell lines. Compounds 20-23, 28-31, and 33 showed promising antiproliferative activities. These compounds were further tested for their inhibitory potencies against EGFR and BRAFV600E kinases with erlotinib as a reference drug. Compounds 23 and 33 exhibited equipotency to doxorubicin against the four cell lines and efficiently inhibited both EGFR (IC50 = 0.08 and 0.09 µM, respectively) and BRAFV600E (IC50 = 0.1 and 0.29 µM, respectively). In cell cycle study of MCF-7 cell line, compounds 23 and 33 induced apoptosis and exhibited cell cycle arrest in both Pre-G1 and G2/M phases. Molecular docking analyses revealed that the new compounds can fit snugly into the active sites of EGFR, and BRAFV600E kinases. Compound 23, 31 and 33 adopted similar binding orientations and interactions to those of erlotinib and vemurafenib.
Collapse
Affiliation(s)
- Lamya H Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah Bint Abdulrahman University
| | - Ahmed M Gouda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ola F Abou-Ghadir
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ola I A Salem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Asmaa T Ali
- Biochemistry Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Hatem S Farghaly
- Biochemistry Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Mostafa H Abdelrahman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Laurent Trembleau
- School of Natural and Computing Sciences, University of Aberdeen, Meston Building, Aberdeen AB243UE, United Kingdom
| | - Hajjaj H M Abdu-Allah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
46
|
Marzouk AA, Abdel-Aziz SA, Abdelrahman KS, Wanas AS, Gouda AM, Youssif BGM, Abdel-Aziz M. Design and synthesis of new 1,6-dihydropyrimidin-2-thio derivatives targeting VEGFR-2: Molecular docking and antiproliferative evaluation. Bioorg Chem 2020; 102:104090. [PMID: 32683176 DOI: 10.1016/j.bioorg.2020.104090] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/16/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
Abstract
A series of new 1,6-dihydropyrimidin-2-thiol derivatives (scaffold A) as VEGFR-2 inhibitors has been designed and synthesized. Compounds 3a, 3b, 3e and 4b have been selected for in vitro anticancer screening by the National Cancer Institute. Compound 3e showed remarkable anticancer activity against most of the cell lines tested, where a complete cell death against leukemia, non-small cell lung cancer, colon, CNS, melanoma, and breast cancer cell lines was observed. In vitro five dose tests showed that compound 3e had high activity against most of the tested cell lines with GI50 ranging from 19 to 100 μM and selectivity ratios ranging between 0.75 and 1.71 at the GI50 level. VEGFR-2-kinase was tested against 3a, 3b, 3e, 4b and sorafenib was used as a reference. Compounds 3a and 3e were the most potent analogues with IC50 values of 386.4 nM and 198.7 nM against VEGFR-2, respectively, in comparison to sorafenib (IC50 = 0.17 nM). The results of the docking study showed a good fitting of the new compounds to the active site of VEGFR-2 with binding free energies in the range of -9.80 to -11.25 kcal/mol compared to -12.12 kcal/mol for sorafenib. Compounds 4a-e with the hydroxyimino group had a higher affinity to VEGFR-2 than their parent derivatives 3a-e.
Collapse
Affiliation(s)
- Adel A Marzouk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Salah A Abdel-Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Kamal S Abdelrahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Amira S Wanas
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA; Pharmacognosy Department, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Ahmed M Gouda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| |
Collapse
|
47
|
Stasiulewicz A, Znajdek K, Grudzień M, Pawiński T, Sulkowska JI. A Guide to Targeting the Endocannabinoid System in Drug Design. Int J Mol Sci 2020; 21:ijms21082778. [PMID: 32316328 PMCID: PMC7216112 DOI: 10.3390/ijms21082778] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid system (ECS) is one of the most crucial systems in the human organism, exhibiting multi-purpose regulatory character. It is engaged in a vast array of physiological processes, including nociception, mood regulation, cognitive functions, neurogenesis and neuroprotection, appetite, lipid metabolism, as well as cell growth and proliferation. Thus, ECS proteins, including cannabinoid receptors and their endogenous ligands’ synthesizing and degrading enzymes, are promising therapeutic targets. Their modulation has been employed in or extensively studied as a treatment of multiple diseases. However, due to a complex nature of ECS and its crosstalk with other biological systems, the development of novel drugs turned out to be a challenging task. In this review, we summarize potential therapeutic applications for ECS-targeting drugs, especially focusing on promising synthetic compounds and preclinical studies. We put emphasis on modulation of specific proteins of ECS in different pathophysiological areas. In addition, we stress possible difficulties and risks and highlight proposed solutions. By presenting this review, we point out information pivotal in the spotlight of ECS-targeting drug design, as well as provide an overview of the current state of knowledge on ECS-related pharmacodynamics and show possible directions for needed research.
Collapse
Affiliation(s)
- Adam Stasiulewicz
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Correspondence: (A.S.); (J.I.S.)
| | - Katarzyna Znajdek
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Monika Grudzień
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
| | - Tomasz Pawiński
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
| | - Joanna I. Sulkowska
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA
- Correspondence: (A.S.); (J.I.S.)
| |
Collapse
|