1
|
Wang X, Jiang Z, Du C, Ma L, Yue D, Yang C, Duan S, Shen X. Iodine-Catalyzed Diversity-Oriented Synthesis of 3,4-Heterocycle-Fused Coumarins from 4-Aminocoumarins and Aurones in Different Solvent. J Org Chem 2024; 89:6456-6464. [PMID: 38621144 DOI: 10.1021/acs.joc.4c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
An unprecedented protocol has been developed for the synthesis of 3,4-heterocycle-fused coumarins from 4-aminocoumarins and aurones through iodine-catalyzed cascade reactions. Dihydropyridine-fused coumarin, pyridine-fused coumarin, and pyrrole-fused coumarin derivatives were achieved in good yields with high selectivity when CH3CN, AcOH, and DMSO were used as the solvent, respectively. This protocol provides several advantages, such as easily available starting materials, high atom economy, friendly environment, and simple procedure.
Collapse
Affiliation(s)
- Xuequan Wang
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan 661100, P. R. China
| | - Zhen Jiang
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan 661100, P. R. China
| | - Chahui Du
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan 661100, P. R. China
| | - Lin Ma
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan 661100, P. R. China
| | - Dan Yue
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan 661100, P. R. China
| | - Changhui Yang
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan 661100, P. R. China
| | - Suyue Duan
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan 661100, P. R. China
| | - Xianfu Shen
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, Yunnan 655011, P. R. China
| |
Collapse
|
2
|
Martín-Encinas E, Lopez-Aguileta L, Palacios F, Alonso C. Aza-Povarov Reaction. A Method for the Synthesis of Fused Tetracyclic Chromeno[4,3- d]pyrido[1,2- a]pyrimidines. J Org Chem 2024. [PMID: 38177107 DOI: 10.1021/acs.joc.3c02220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A cornerstone in drug discovery is the development of strategies to provide privileged small molecules with specific structural and stereochemical complexity, allowing access to new potential therapeutic entities. In this work, a new strategy based on the [4 + 2] Povarov reaction involving 1,3-diazadiene was developed. This approach is applied for a straightforward procedure in the preparation of chromeno[4,3-d]pyrido[1,2-a]pyrimidine derivatives, with accessible substrates, 2-aminopyridine and unsaturated aldehydes, and excellent atom economy to obtain four fused ring heterocycles, in a regio- and diastereoselective way.
Collapse
Affiliation(s)
- Endika Martín-Encinas
- Departamento de Química Orgánica I, Facultad de Farmacia and Lascaray Research Center, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU). Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain
| | - Leyre Lopez-Aguileta
- Departamento de Química Orgánica I, Facultad de Farmacia and Lascaray Research Center, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU). Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain
| | - Francisco Palacios
- Departamento de Química Orgánica I, Facultad de Farmacia and Lascaray Research Center, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU). Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain
| | - Concepción Alonso
- Departamento de Química Orgánica I, Facultad de Farmacia and Lascaray Research Center, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU). Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain
| |
Collapse
|
3
|
Melcón-Fernandez E, Martín-Encinas E, Palacios F, Galli G, Reguera RM, Martínez-Valladares M, Balaña-Fouce R, Alonso C, Pérez-Pertejo Y. Antileishmanial Effect of 1,5- and 1,8-Substituted Fused Naphthyridines. Molecules 2023; 29:74. [PMID: 38202656 PMCID: PMC10780244 DOI: 10.3390/molecules29010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
In the absence of a vaccine, there is a need to find new drugs for the treatment of neglected tropical diseases, such as leishmaniasis, that can overcome the many drawbacks of those currently used. These disadvantages include cost, the need to maintain a cold chain, the route of administration, the associated adverse effects and the generation of resistance. In this work we have evaluated the antileishmanial effect of 1,5- and 1,8-substituted fused naphthyridines through in vitro and ex vivo assays, using genetically modified axenic and intramacrophagic Leishmania infantum amastigotes. The toxicity of these compounds has been tested in the mammalian host cell using murine splenic macrophages, as well as in murine intestinal organoids (miniguts) in order to assess their potential for oral administration. The 1,8- derivatives showed greater leishmanicidal activity and the presence of a nitrogen atom in the fused ring to the naphthyridine was important to increase the activity of both types of molecules. The aromatization of the pyridine ring also had marked differences in the activity of the compounds.
Collapse
Affiliation(s)
- Estela Melcón-Fernandez
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain (G.G.)
| | - Endika Martín-Encinas
- Departamento de Química Orgánica I, Facultad de Farmacia, Lascaray Research Center, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Francisco Palacios
- Departamento de Química Orgánica I, Facultad de Farmacia, Lascaray Research Center, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Gulio Galli
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain (G.G.)
| | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain (G.G.)
| | - María Martínez-Valladares
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain (G.G.)
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain (G.G.)
| | - Concepción Alonso
- Departamento de Química Orgánica I, Facultad de Farmacia, Lascaray Research Center, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain (G.G.)
| |
Collapse
|
4
|
Rani P, Chahal S, Kumar R, Mayank, Kumar P, Negi A, Singh R, Kumar S, Kataria R, Joshi G, Sindhu J. Electro-organic synthesis of C-5 sulfenylated amino uracils: Optimization and exploring topoisomerase-I based anti-cancer profile. Bioorg Chem 2023; 138:106660. [PMID: 37320914 DOI: 10.1016/j.bioorg.2023.106660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/25/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Cancer is spreading worldwide and is one of the leading causes of death. The use of existing chemotherapeutic agents is frequently limited due to side effects. As a result, it is critical to investigate new agents for cancer treatment. In this context, we developed an electrochemical method for the synthesis of a series of thiol-linked pyrimidine derivatives (3a-3p) and explored their anti-cancer potential. The biological profile of the synthesized compounds was evaluated against breast (MDAMB-231 and MCF-7) and colorectal (HCT-116) cancer cell lines. 3b and 3d emerged to be the most potent agents, with IC50 values ranging between 0.98 to 2.45 µM. Target delineation studies followed by secondary anticancer parameters were evaluated for most potent compounds, 3b and 3d. The analysis revealed compounds possess DNA intercalation potential and selective inhibition towards human topoisomerase (hTopo1). The analysis was further corroborated by DNA binding studies and in silico-based molecular modeling studies that validated the intercalating binding mode between the compounds and the DNA.
Collapse
Affiliation(s)
- Payal Rani
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India
| | - Sandhya Chahal
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India
| | - Roshan Kumar
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Mayank
- Institut interdisciplinaire d'innovation technologique - 3IT USherbrooke, Sherbrooke, Quebec, Canada
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, India
| | - Arvind Negi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| | - Rajvir Singh
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India
| | - Sudhir Kumar
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India; Department of Bioinformatics and Computational Biology, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Ramesh Kataria
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Gaurav Joshi
- Department of Pharmaceutical Science, Hemvati Nandan Bahuguna Garhwal (A Central) University, Srinagar-246174, Dist. Garhwal, (Uttarakhand), India; Department of Biotechnology, Graphic Era (Deemed to be University), Bell Road, Clement Town Dehradun, Uttarakhand- 248002.
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India.
| |
Collapse
|
5
|
Masdeu C, de Los Santos JM, Palacios F, Alonso C. The Intramolecular Povarov Tool in the Construction of Fused Nitrogen-Containing Heterocycles. Top Curr Chem (Cham) 2023; 381:20. [PMID: 37249641 DOI: 10.1007/s41061-023-00428-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
Nitrogen heterocycles are part of the structure of natural products and agents with important biological activity, such as antiviral, antibiotic, and antitumor drugs. For this reason, heterocyclic compounds are one of today's most desirable synthetic targets and the Povarov reaction is a powerful synthetic tool for the construction of highly functionalized heterocyclic systems. This process involves an aromatic amine, a carbonyl compound, and an olefin or acetylene to give rise to the formation of a nitrogen-containing heterocycle. This review illustrates advances in the synthetic aspects of the intramolecular Povarov reaction for the construction of intricate nitrogen-containing polyheterocyclic compounds. This original review presents research done in this field, with references to important works by internationally relevant research groups on this current topic, covering the literature from 1992 to 2022. The intramolecular Povarov reactions are described here according to the key processes involved, using different combinations of aromatic or heteroaromatic amines, and aliphatic, aromatic, or heteroaromatic aldehydes. Some catalytic reactions promoted by transition metals are detailed, as well as the oxidative Povarov reaction and some asymmetric intramolecular Povarov processes.
Collapse
Affiliation(s)
- Carme Masdeu
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Jesús M de Los Santos
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Francisco Palacios
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Concepción Alonso
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain.
| |
Collapse
|
6
|
Prasanna Kumari S, Naveen B, Suresh Kumar P, Selva Ganesan S. Cu/TBHP mediated tetrahydroquinoline synthesis in water via oxidative cyclization reaction. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Jiménez-Aberásturi X, Palacios F, de Los Santos JM. Sc(OTf) 3-Mediated [4 + 2] Annulations of N-Carbonyl Aryldiazenes with Cyclopentadiene to Construct Cinnoline Derivatives: Azo-Povarov Reaction. J Org Chem 2022; 87:11583-11592. [PMID: 35972474 PMCID: PMC9447289 DOI: 10.1021/acs.joc.2c01224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We disclose the first accomplishment of the azo-Povarov reaction involving Sc(OTf)3-catalyzed [4 + 2] annulations of N-carbonyl aryldiazenes with cyclopentadiene in chloroform, in which N-carbonyl aryldiazenes act as 4π-electron donors. Hence, this protocol offers a rapid access to an array of cinnoline derivatives in moderate to good yields for substrates over a wide scope. The synthetic potential of the protocol was achieved by the gram-scale reaction and further derivatization of the obtained polycyclic product.
Collapse
Affiliation(s)
- Xabier Jiménez-Aberásturi
- Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria 01006, Spain
| | - Francisco Palacios
- Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria 01006, Spain
| | - Jesús M de Los Santos
- Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria 01006, Spain
| |
Collapse
|
8
|
Bakchi B, Krishna AD, Sreecharan E, Ganesh VBJ, Niharika M, Maharshi S, Puttagunta SB, Sigalapalli DK, Bhandare RR, Shaik AB. An overview on applications of SwissADME web tool in the design and development of anticancer, antitubercular and antimicrobial agents: A medicinal chemist's perspective. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Martín-Encinas E, Selas A, Palacios F, Alonso C. The design and discovery of topoisomerase I inhibitors as anticancer therapies. Expert Opin Drug Discov 2022; 17:581-601. [PMID: 35321631 DOI: 10.1080/17460441.2022.2055545] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Cancer has been identified as one of the leading causes of death worldwide. The biological target of some anticancer agents is topoisomerase I, an enzyme involved in the relaxation of supercoiled DNA. The synthesis of new compounds with antiproliferative effect and behaving as topoisomerase I inhibitors has become an active field of research. Depending on their mechanism of inhibition, they can be classified as catalytic inhibitors or poisons. AREAS COVERED This review article summarizes the state of the art for the development of selective topoisomerase I inhibitors. Collected compounds showed inhibition of the enzyme, highlighting those approved for clinical use, the combination therapies developed, as well as related drawbacks and future focus. EXPERT OPINION Research related to topoisomerase I inhibitors in cancer therapy started with camptothecin (CPT). This compound was first selected as a good anticancer agent and then topoisomerase I was identified as its therapeutic target. Derivatives of CPT irinotecan, topotecan, and belotecan are the only clinically approved inhibitors. Currently, their limitations are being addressed by different stretegies. Future studies should focus not only on developing other active molecules but also on improving the bioavailability and pharmacokinetics of potent synthetic derivatives.
Collapse
Affiliation(s)
- Endika Martín-Encinas
- Departamento de Química Orgánica I - Centro de Investigación Lascaray, Facultad de Farmacia, Universidad del País Vasco, Paseo de la Universidad 7, 01006 Vitoria, Spain
| | - Asier Selas
- Departamento de Química Orgánica I - Centro de Investigación Lascaray, Facultad de Farmacia, Universidad del País Vasco, Paseo de la Universidad 7, 01006 Vitoria, Spain
| | - Francisco Palacios
- Departamento de Química Orgánica I - Centro de Investigación Lascaray, Facultad de Farmacia, Universidad del País Vasco, Paseo de la Universidad 7, 01006 Vitoria, Spain
| | - Concepción Alonso
- Departamento de Química Orgánica I - Centro de Investigación Lascaray, Facultad de Farmacia, Universidad del País Vasco, Paseo de la Universidad 7, 01006 Vitoria, Spain
| |
Collapse
|
10
|
Soares MIL, Gomes CSB, Oliveira MC, Marçalo J, Pinho E Melo TMVD. Synthesis of 5 H-chromeno[3,4- b]pyridines via DABCO-catalyzed [3 + 3] annulation of 3-nitro-2 H-chromenes and allenoates. Org Biomol Chem 2021; 19:9711-9722. [PMID: 34726223 DOI: 10.1039/d1ob01130h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The DABCO-catalyzed [3 + 3] annulation between 3-nitro-2H-chromenes and benzyl 2,3-butadienoate has been developed as a route to 5H-chromeno[3,4-b]pyridine derivatives. Under optimal reaction conditions, 5H-chromeno[3,4-b]pyridines incorporating two allenoate units were obtained in moderate to good yields (30-76%). The same type of transformation could be carried out using butynoates as allene surrogates. Mechanistic studies by mass spectrometry allowed the identification of the key intermediates involved in the reaction mechanism. The reported synthetic methodology represents an entirely new approach for the synthesis of the 5H-chromeno[3,4-b]pyridine core structure based on allene chemistry.
Collapse
Affiliation(s)
- Maria I L Soares
- University of Coimbra, Coimbra Chemistry Centre (CQC) and Department of Chemistry, 3004-535 Coimbra, Portugal.
| | - Clara S B Gomes
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal.,UCIBIO, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - M Conceição Oliveira
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joaquim Marçalo
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Teresa M V D Pinho E Melo
- University of Coimbra, Coimbra Chemistry Centre (CQC) and Department of Chemistry, 3004-535 Coimbra, Portugal.
| |
Collapse
|
11
|
Gan J, Luo N, Wu C, Wan X, Wang C. Efficient Synthesis of Chromeno[4,3,2‐
de
] [1,6]naphthyridine Derivatives via Pseudo Four‐Component Reaction. ChemistrySelect 2021. [DOI: 10.1002/slct.202101962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jianbo Gan
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Street Yangzhou 225002 P. R. China
| | - Naili Luo
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Street Yangzhou 225002 P. R. China
| | - Chengjun Wu
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Street Yangzhou 225002 P. R. China
| | - Xinyi Wan
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Street Yangzhou 225002 P. R. China
| | - Cunde Wang
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Street Yangzhou 225002 P. R. China
| |
Collapse
|
12
|
A Multicomponent Protocol for the Synthesis of Highly Functionalized γ-Lactam Derivatives and Their Applications as Antiproliferative Agents. Pharmaceuticals (Basel) 2021; 14:ph14080782. [PMID: 34451879 PMCID: PMC8400033 DOI: 10.3390/ph14080782] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 01/13/2023] Open
Abstract
An efficient synthetic methodology for the preparation of 3-amino 1,5-dihydro-2H-pyrrol-2-ones through a multicomponent reaction of amines, aldehydes, and pyruvate derivatives is reported. In addition, the densely substituted lactam substrates show in vitro cytotoxicity, inhibiting the growth of carcinoma human tumor cell lines HEK293 (human embryonic kidney), MCF7 (human breast adenocarcinoma), HTB81 (human prostate carcinoma), HeLa (human epithelioid cervix carcinoma), RKO (human colon epithelial carcinoma), SKOV3 (human ovarian carcinoma), and A549 (carcinomic human alveolar basal epithelial cell). Given the possibilities in the diversity of the substituents that offer the multicomponent synthetic methodology, an extensive structure-activity profile is presented. In addition, both enantiomers of phosphonate-derived γ-lactam have been synthesized and isolated and a study of the cytotoxic activity of the racemic substrate vs. its two enantiomers is also presented. Cell morphology analysis and flow cytometry assays indicate that the main pathway by which our compounds induce cytotoxicity is based on the activation of the intracellular apoptotic mechanism.
Collapse
|
13
|
Selas A, Martin-Encinas E, Fuertes M, Masdeu C, Rubiales G, Palacios F, Alonso C. A patent review of topoisomerase I inhibitors (2016-present). Expert Opin Ther Pat 2021; 31:473-508. [PMID: 33475439 DOI: 10.1080/13543776.2021.1879051] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Topoisomerases are important targets for therapeutic improvement in the treatment of some diseases, including cancer. Inhibitors and poisons of topoisomerase I can limit the activity of this enzyme in its enzymatic cycle. This fact implies an anticancer effect of these drugs, since most cancer cells are characterized by both a higher activity of topoisomerase I and a higher replication rate compared to non-cancerous cells. Clinically approved inhibitors include camptothecin (CPT) and its derivatives. However, their limitations have encouraged different research groups to prepare new compounds, proof of which are the numerous research works and patents, some of them in the last five years. AREAS COVERED This review covers patent literature on topoisomerase I inhibitors and their application published between 2016-present. EXPERT OPINION The highest contribution toward patent development has been obtained from academics or small biotechnology companies. The most important fields of innovation include the preparation of prodrugs or inhibitors combined with other agents, as biocompatible polymers or antibodies. A promising development of topoisomerase I inhibitors is expected in the next years, directed to the treatment of diverse diseases, specifically toward different types of cancer and infectious diseases, among others.
Collapse
Affiliation(s)
- Asier Selas
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Endika Martin-Encinas
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Maria Fuertes
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Carme Masdeu
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Gloria Rubiales
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Francisco Palacios
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Concepción Alonso
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| |
Collapse
|
14
|
Martín-Encinas E, Rubiales G, Knudsen BR, Palacios F, Alonso C. Fused chromeno and quinolino[1,8]naphthyridines: Synthesis and biological evaluation as topoisomerase I inhibitors and antiproliferative agents. Bioorg Med Chem 2021; 40:116177. [PMID: 33962152 DOI: 10.1016/j.bmc.2021.116177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 01/18/2023]
Abstract
The synthesis of 1,8-naphthyridine derivatives fused with other heterocycles, such as chromenes and quinolines, as well as their behaviour as topoisomerase I inhibitors is studied. The preparation is carried out through a direct and simple process as an intramolecular [4 + 2] cycloaddition reaction between functionalized aldimines, obtained by the condensation of 2-aminopyridine and unsaturated aldehydes, and olefins. In particular, while no clear inhibitory activity is observed for chromeno[4,3-b][1,8]naphthyridine fused heterocycles, a very different result is observed for quinolino[4,3-b][1,8]naphthyridine derivatives. Experimental assays indicated that quinolino[4,3-b][1,8]naphthyridines inhibited the topoisomerase I enzymatic reaction behaving like a poison, as occurs with the natural TopI inhibitor, camptothecin. Furthermore, the cytotoxic effect on cell lines derived from human lung adenocarcinoma (A549), human ovarian carcinoma (SKOV3), and on non-cancerous lung fibroblasts cell line (MRC5) was also screened.
Collapse
Affiliation(s)
- Endika Martín-Encinas
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Gloria Rubiales
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Birgitta R Knudsen
- Department of Molecular Biology and Genetics and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus 8000, Denmark
| | - Francisco Palacios
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| | - Concepción Alonso
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| |
Collapse
|
15
|
Affiliation(s)
- Prasanta Patra
- Department of Chemistry, Jhargram Raj College, Jhargram, India
| |
Collapse
|
16
|
Patra P, Kar GK. The synthesis, biological evaluation and fluorescence study of chromeno[4,3- b]pyridin/quinolin-one derivatives, the backbone of natural product polyneomarline C scaffolds: a brief review. NEW J CHEM 2021. [DOI: 10.1039/d0nj04761a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review presents the synthesis, biological and fluorescence study of chromeno[4,3-b]pyridin/quinolin-ones via classical reactions including metal-catalyzed and green reaction protocols.
Collapse
Affiliation(s)
- Prasanta Patra
- Department of Chemistry
- Jhargram Raj College
- Jhargram 721507
- India
| | | |
Collapse
|
17
|
Patra P. 4-Chloro-3-formylcoumarin as a multifaceted building block for the development of various bio-active substituted and fused coumarin heterocycles: a brief review. NEW J CHEM 2021. [DOI: 10.1039/d1nj02755g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This review presents the diverse synthesis of 3,4-substituted coumarins and 5-, 6- and 7-membered ring fused coumarins using 4-chloro-3-formylcoumarin as the precursor via classical reactions including metal-catalyzed and green reaction protocols.
Collapse
Affiliation(s)
- Prasanta Patra
- Department of Chemistry
- Jhargram Raj College
- Jhargram 721507
- India
| |
Collapse
|
18
|
Wang MS, Xu HC, Gong Y, Qu RY, Zhuo LS, Huang W. Efficient Arylation of 2,7-Naphthyridin-1(2 H)-one with Diaryliodonium Salts and Discovery of a New Selective MET/AXL Kinase Inhibitor. ACS COMBINATORIAL SCIENCE 2020; 22:457-467. [PMID: 32589005 DOI: 10.1021/acscombsci.0c00074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
New 8-chloro-2-phenyl-2,7-naphthyridin-1(2H)-one building blocks bearing diverse substitutes on the 2-phenyl group were synthesized via an efficient diaryliodonium salt-based N-arylation strategy with the advantage of mild conditions, short reaction times, and high yields. A small combinatorial library of 8-amino substituted 2-phenyl-2,7-naphthyridin-1(2H)-one was further conveniently constructed based on the above chlorinated naphthyridinones and substituted aniline. Preliminary biochemical screening resulted in the discovery of the new 2,7-naphthyridone-based MET/AXL kinase inhibitors. More importantly, 17c (IC50,MET of 13.8 nM) or 17e (IC50,AXl of 17.2 nM) and 17i (IC50,AXl of 31.8 nM) can efficient selectively inhibit MET or AXL kinase, respectively, while commercial cabozantinib showed no selectivity. The further exploration of the 8-substituted 2-phenyl-2,7-naphthyridin-1(2H)-one combinatorial library would significantly accelerate the discovery of more potent and selective inhibitors against diverse kinases.
Collapse
Affiliation(s)
- Ming-Shu Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Hong-Chuang Xu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Yi Gong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Ren-Yu Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Lin-Sheng Zhuo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Wei Huang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
19
|
Masdeu C, Fuertes M, Martin-Encinas E, Selas A, Rubiales G, Palacios F, Alonso C. Fused 1,5-Naphthyridines: Synthetic Tools and Applications. Molecules 2020; 25:molecules25153508. [PMID: 32752070 PMCID: PMC7436086 DOI: 10.3390/molecules25153508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 11/21/2022] Open
Abstract
Heterocyclic nitrogen compounds, including fused 1,5-naphthyridines, have versatile applications in the fields of synthetic organic chemistry and play an important role in the field of medicinal chemistry, as many of them have a wide range of biological activities. In this review, a wide range of synthetic protocols for the construction of this scaffold are presented. For example, Friedländer, Skraup, Semmlere-Wolff, and hetero-Diels-Alder, among others, are well known classical synthetic protocols used for the construction of the main 1,5-naphthyridine scaffold. These syntheses are classified according to the nature of the cycle fused to the 1,5-naphthyridine ring: carbocycles, nitrogen heterocycles, oxygen heterocycles, and sulphur heterocycles. In addition, taking into account the aforementioned versatility of these heterocycles, their reactivity is presented as well as their use as a ligand for metal complexes formation. Finally, those fused 1,5-naphthyridines that present biological activity and optical applications, among others, are indicated.
Collapse
Affiliation(s)
| | | | | | | | | | - Francisco Palacios
- Correspondence: (F.P.); (C.A.); Tel.: +34-945-01-3103 (F.P.); +34-945-01-3087 (C.A.)
| | - Concepcion Alonso
- Correspondence: (F.P.); (C.A.); Tel.: +34-945-01-3103 (F.P.); +34-945-01-3087 (C.A.)
| |
Collapse
|
20
|
Synthesis of novel hybrid quinolino[4,3-b][1,5]naphthyridines and quinolino[4,3-b][1,5]naphthyridin-6(5H)-one derivatives and biological evaluation as topoisomerase I inhibitors and antiproliferatives. Eur J Med Chem 2020; 195:112292. [DOI: 10.1016/j.ejmech.2020.112292] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/28/2020] [Accepted: 03/28/2020] [Indexed: 12/18/2022]
|
21
|
Martín-Encinas E, Conejo-Rodríguez V, Miguel JA, Martínez-Ilarduya JM, Rubiales G, Knudsen BR, Palacios F, Alonso C. Novel phosphine sulphide gold(i) complexes: topoisomerase I inhibitors and antiproliferative agents. Dalton Trans 2020; 49:7852-7861. [DOI: 10.1039/d0dt01467b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold(i) increases the cytotoxicity of phosphine sulfide quinolines against cancer cell lines, while heterocycles maintain the TopI inhibitory activity.
Collapse
Affiliation(s)
- Endika Martín-Encinas
- Department of Organic Chemistry I
- Faculty of Pharmacy
- University of Basque Country (UPV/EHU)
- Vitoria-Gasteiz
- Spain
| | | | - Jesús A. Miguel
- IU CINQUIMA/Química Inorgánica
- Faculty of Science
- University of Valladolid
- Valladolid
- Spain
| | | | - Gloria Rubiales
- Department of Organic Chemistry I
- Faculty of Pharmacy
- University of Basque Country (UPV/EHU)
- Vitoria-Gasteiz
- Spain
| | - Birgitta R. Knudsen
- Department of Molecular Biology and Genetics and Interdisciplinary Nanoscience Center (iNANO)
- University of Aarhus
- Aarhus
- Denmark
| | - Francisco Palacios
- Department of Organic Chemistry I
- Faculty of Pharmacy
- University of Basque Country (UPV/EHU)
- Vitoria-Gasteiz
- Spain
| | - Concepción Alonso
- Department of Organic Chemistry I
- Faculty of Pharmacy
- University of Basque Country (UPV/EHU)
- Vitoria-Gasteiz
- Spain
| |
Collapse
|