1
|
C M, Pasha TY, Rahamathulla M, H P G, B L K, K M G, K N P, Hussain SM, Ahmed MM, Shivanandappa TB, Pasha I. Epidermal growth factor receptors unveiled: a comprehensive survey on mutations, clinical insights of global inhibitors, and emergence of heterocyclic derivatives as EGFR inhibitors. J Drug Target 2025:1-19. [PMID: 39756062 DOI: 10.1080/1061186x.2024.2449495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/09/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025]
Abstract
Mutations that overexpress the epidermal growth factor receptor (EGFR) are linked to cancers like breast (15-20%), head and neck (10-15%), colorectal (5-8%), and non-small cell lung cancer (10-50%), especially in East Asian populations. EGFR activation stimulates 'RAS/RAF/MEK/ERK, PI3K/Akt, and MAPK' pathways, which enhance cell division, survival, angiogenesis, and tumour growth while inhibiting apoptosis and metastasis. Secondary mutations (e.g. 'T790M', 'C797S'), off-target effects, and resistance due to alternate pathway activation reduce the efficacy of currently available EGFR inhibitors. To address these issues, 'novel heterocyclic inhibitors with structural versatility were developed to improve selectivity and binding affinity for mutant EGFR forms'. These new EGFR reduce side effects, enhance pharmacokinetics, and enhance therapeutic efficacy at low concentrations. This review focuses on 'EGFR mutations in various cancers' detailing the biochemical effects, clinical profiles, and binding interactions of globally approved EGFR inhibitors. Furthermore, it focuses into recent progress in nano-formulations and the development of heterocyclic derivatives that can successfully 'target mutant EGFRs' through varied synthesis methods. These inhibitors have the potential to have better binding affinities, selectivity's, and less side-effect. Further research required to refine the structures and develop nanoformulations of EGFR-targeted therapeutics in order to improve therapeutic efficiency and, provide more effective cancer treatments.
Collapse
Affiliation(s)
- Manojmouli C
- Department of Pharmaceutical Chemistry, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B. G. Nagara, Karnataka, India
| | - T Y Pasha
- Department of Pharmaceutical Chemistry, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B. G. Nagara, Karnataka, India
| | - Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Al Faraa 62223, Abha, Saudi Arabia
| | - Gagana H P
- Department of Pharmaceutical Chemistry, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B. G. Nagara, Karnataka, India
| | - Kavya B L
- Department of Pharmaceutical Chemistry, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B. G. Nagara, Karnataka, India
| | - Gagana K M
- Department of Pharmaceutical Chemistry, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B. G. Nagara, Karnataka, India
| | - Purushotham K N
- Department of Pharmaceutical Chemistry, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B. G. Nagara, Karnataka, India
| | - Shalam M Hussain
- Department of Clinical Pharmacy, College of Nursing and Health Science. Al-Rayyan Medical College, Madinah, Saudi Arabia
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Ismail Pasha
- Department of Pharmacology, Orotta College of Medicine and Health Sciences, Asmara University, Asmara, State of Eritrea
| |
Collapse
|
2
|
An Y, Lv X, Xu S, Li H, Zheng P, Zhu W, Wang L. Pyrimidine-based dual-target inhibitors targeting epidermal growth factor receptor for overcoming drug resistance in cancer therapy(2006-present). Eur J Med Chem 2025; 286:117268. [PMID: 39837171 DOI: 10.1016/j.ejmech.2025.117268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025]
Abstract
The epidermal growth factor receptor (EGFR) is a pivotal member of the epidermal growth factor receptor family, exerting crucial regulatory influence on cellular physiological processes, particularly in relation to cell growth, proliferation, and differentiation. In recent years, numerous EGFR inhibitors have been introduced to the market; unfortunately, the effectiveness of single-target EGFR inhibitors has been compromised due to the development of drug resistance caused by EGFR mutations. Despite attempts by some researchers to address this issue through combination therapy with two or more drugs, instances of dose-limiting toxicities have been observed. Consequently, EGFR dual-target inhibitors have emerged as a burgeoning field in cancer treatment, offering a novel therapeutic option for solid tumors with the added benefits of reduced risk of resistance, lower dosage requirements, diminished toxicity profiles, and enhanced efficacy. At present, a series of EGFR dual-target inhibitors with diverse structures have been developed successively. In this study, we initially investigated the pyrimidine-based EGFR dual-target inhibitors that have been reported in the past two decades and categorized them into aminopyrimidine derivatives and heterocyclic pyrimidine derivatives with increased molecular complexity. Subsequently, we comprehensively summarized the biological activity and structure-activity relationship of this class of inhibitors in the context of cancer therapy, while also exploring potential opportunities and challenges associated with their application in this field. The present study provides a partial framework to guide future endeavors in drug development.
Collapse
Affiliation(s)
- Yufeng An
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Xinya Lv
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Shidi Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Heqing Li
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China.
| | - Linxiao Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China.
| |
Collapse
|
3
|
Pal R, Teli G, Sengupta S, Maji L, Purawarga Matada GS. An outlook of docking analysis and structure-activity relationship of pyrimidine-based analogues as EGFR inhibitors against non-small cell lung cancer (NSCLC). J Biomol Struct Dyn 2024; 42:9795-9811. [PMID: 37642992 DOI: 10.1080/07391102.2023.2252082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Almost 80% of lung cancer diagnoses each year correspond to non-small cell lung cancer (NSCLC). The percentage of NSCLC with EGFR overexpression ranges from 40% to 89%, with squamous tumors showing the greatest rates (89%) and adenocarcinomas showing the lowest rates (41%). Therefore, in NSCLC therapy, blocking the EGFR-driven pathway by inhibiting the intracellular tyrosine kinase domain of EGFR has exhibited significant improvement. In this view, several small molecules particularly pyrimidine/fused pyrimidine scaffolds were intended for molecular hybridization to develop EGFR-TK inhibitors. However, the associated limitation such as resistance and genetic mutation along with adverse effects, constrained the long-term treatment and effectiveness of such medication. Therefore, in recent years, pyrimidine derivatives were uncovered as potential EGFR TKIs. The present review summarised the research progress of EGFR TKIs to dazed structure-activity relationship, biological evaluation, and comparative docking studies of pyrimidine compounds. We have added the comparative docking analysis followed by the molecular simulation study against the four different PDBs of EGFR to strengthen the already existing research. Docking analysis unfolded that compound 14 resulted as noticeable with all different PDB and managed to interact with some of the crucial amino acid residues. From a future perspective, researchers must develop a more selective inhibitor, that can selectively target the mutation. Our review will support medicinal chemists in the direction of the development of novel pyrimidine-based EGFR TKIs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Ghanshyam Teli
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Sindhuja Sengupta
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Lalmohan Maji
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | |
Collapse
|
4
|
Wang X, Lu Y, Chen S, Zhu Z, Fu Y, Zhang J, He J, Huang L, Luo L, Guo W, Xu Z, Xie Z, Xu X, Zhang Y, Ye F, Ma S. Discovery of a prominent dual-target DDR1/EGFR inhibitor aimed DDR1/EGFR-positive NSCLC. Bioorg Chem 2024; 149:107500. [PMID: 38823310 DOI: 10.1016/j.bioorg.2024.107500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024]
Abstract
This study aimed to develop the first dual-target small molecule inhibitor concurrently targeting Discoidin domain receptor 1 (DDR1) and Epidermal growth factor receptor (EGFR), which play a crucial interdependent roles in non-small cell lung cancer (NSCLC), demonstrating a synergistic inhibitory effect. A series of innovative dual-target inhibitors for DDR1 and EGFR were discovered. These compounds were designed and synthesized using structural optimization strategies based on the lead compound BZF02, employing 4,6-pyrimidine diamine as the core scaffold, followed by an investigation of their biological activities. Among these compounds, D06 was selected and showed micromolar enzymatic potencies against DDR1 and EGFR. Subsequently, compound D06 was observed to inhibit NSCLC cell proliferation and invasion. Demonstrating acceptable pharmacokinetic performance, compound D06 exhibited its anti-tumor activity in NSCLC PC-9/GR xenograft models without apparent toxicity or significant weight loss. These collective results showcase the successful synthesis of a potent dual-targeted inhibitor, suggesting the potential therapeutic efficacy of co-targeting DDR1 and EGFR for DDR1/EGFR-positive NSCLC.
Collapse
MESH Headings
- Humans
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/metabolism
- Discoidin Domain Receptor 1/antagonists & inhibitors
- Discoidin Domain Receptor 1/metabolism
- Lung Neoplasms/drug therapy
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/chemical synthesis
- Cell Proliferation/drug effects
- Structure-Activity Relationship
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/chemical synthesis
- Animals
- Drug Screening Assays, Antitumor
- Molecular Structure
- Dose-Response Relationship, Drug
- Mice
- Drug Discovery
- Mice, Nude
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/metabolism
- Cell Line, Tumor
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Xuebao Wang
- School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ying Lu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Siyu Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhaojingtao Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yanneng Fu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jinxia Zhang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiale He
- School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lu Huang
- School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lihong Luo
- School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Weiting Guo
- School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhouyang Xu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zixin Xie
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xuemei Xu
- Department of Pharmacy, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang 325035, China.
| | - Yuan Zhang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Faqing Ye
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Shumei Ma
- School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
5
|
Liu Z, Jing C, Kong F. From clinical management to personalized medicine: novel therapeutic approaches for ovarian clear cell cancer. J Ovarian Res 2024; 17:39. [PMID: 38347608 PMCID: PMC10860311 DOI: 10.1186/s13048-024-01359-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024] Open
Abstract
Ovarian clear-cell cancer is a rare subtype of epithelial ovarian cancer with unique clinical and biological features. Despite optimal cytoreductive surgery and platinum-based chemotherapy being the standard of care, most patients experience drug resistance and a poor prognosis. Therefore, novel therapeutic approaches have been developed, including immune checkpoint blockade, angiogenesis-targeted therapy, ARID1A synthetic lethal interactions, targeting hepatocyte nuclear factor 1β, and ferroptosis. Refining predictive biomarkers can lead to more personalized medicine, identifying patients who would benefit from chemotherapy, targeted therapy, or immunotherapy. Collaboration between academic research groups is crucial for developing prognostic outcomes and conducting clinical trials to advance treatment for ovarian clear-cell cancer. Immediate progress is essential, and research efforts should prioritize the development of more effective therapeutic strategies to benefit all patients.
Collapse
Affiliation(s)
- Zesi Liu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Chunli Jing
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Fandou Kong
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China.
| |
Collapse
|
6
|
Zuo Y, Long Z, Li R, Le Y, Zhang S, He H, Yan L. Design, synthesis and antitumor activity of 4-arylamine substituted pyrimidine derivatives as noncovalent EGFR inhibitors overcoming C797S mutation. Eur J Med Chem 2024; 265:116106. [PMID: 38169271 DOI: 10.1016/j.ejmech.2023.116106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Clinical researches have shown that epidermal growth factor receptor (EGFR) is a key target for treatment of non-small cell lung cancer (NSCLC). Many EGFR inhibitors were successfully developed as ani-tumor drugs to treat NSCLC patients. Unfortunately, drug resistances were found in clinic. To overcome C797S mutation in EGFR, a novel series of 4-arylamine substituted pyrimidine derivatives were designed and synthesized under the principle of structure-based drug design. Interestingly, compounds 6e and 9i demonstrated the best anti-proliferative activity against A549, NCI-H1975, and HCC827 cells. In particular, the IC50 values against HCC827 cells reached to 24.6 nM and 31.6 nM, which were much lower than human normal cells 2BS and LO2. Furthermore, compounds 6e and 9i showed extraordinary activity against EGFR19del/T790M/C797S (IC50 = 16.06 nM and 37.95 nM) and EGFRL858R/T790M/C797S (IC50 = 11.81 nM and 26.68 nM), which were potent than Osimertinib (IC50 = 52.28 nM and 157.60 nM). Further studies have shown that compounds 6e and 9i could pertain inhibition of HCC827 colony formation, and arrest HCC827 cells at G2/M phase. Moreover, the most promising compound 6e could inhibit the migration of HCC827 cells, induce HCC827 cells apoptosis, and significantly inhibit the phosphorylation of EGFR, AKT and Erk1/2. In vivo xenograft mouse model with HCC827 cells, compound 6e resulted in remarkable tumor regression without obvious toxicity. In addition, molecular docking studies suggested that compound 6e could firmly combine with T790M-mutant, T790 M/C797S-mutant, and L858R/T790 M/C797S-mutant EGFR kinases as ATP-competitive inhibitor.
Collapse
Affiliation(s)
- Yaqing Zuo
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Zhiwu Long
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Rongrong Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Yi Le
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| | - Silong Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Huan He
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Longjia Yan
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.
| |
Collapse
|
7
|
Wang C, Zhang Y, Zhang T, Xu J, Yan S, Liang B, Xing D. Epidermal growth factor receptor dual-target inhibitors as a novel therapy for cancer: A review. Int J Biol Macromol 2023; 253:127440. [PMID: 37839594 DOI: 10.1016/j.ijbiomac.2023.127440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Overexpression of the epidermal growth factor receptor (EGFR) has been linked to several human cancers, including esophageal cancer, pancreatic cancer, anal cancer, breast cancer, and lung cancer, particularly non-small cell lung cancer (NSCLC). Therefore, EGFR has emerged as a critical target for treating solid tumors. Many 1st-, 2nd-, 3rd-, and 4th-generation EGFR single-target inhibitors with clinical efficacy have been designed and synthesized in recent years. Drug resistance caused by EGFR mutations has posed a significant challenge to the large-scale clinical application of EGFR single-target inhibitors and the discovery of novel EGFR inhibitors. Therapeutic methods for overcoming multipoint EGFR mutations are still needed in medicine. EGFR dual-target inhibitors are more promising than single-target inhibitors as they have a lower risk of drug resistance, higher efficacy, lower dosage, and fewer adverse events. EGFR dual-target inhibitors have been developed sequentially to date, providing new options for remission in patients with previously untreatable malignancies and laying the groundwork for a future generation of compounds. This paper introduces the EGFR family proteins and their synergistic effects with other anticancer targets, and provides a comprehensive review of the development of EGFR dual-target inhibitors in cancer, as well as the opportunities and challenges associated with those fields.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao 266071, Shandong, China.
| | - Tingting Zhang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China
| | - Saisai Yan
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China.
| | - Bing Liang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Ren Q, Qu N, Sun J, Zhou J, Liu J, Ni L, Tong X, Zhang Z, Kong X, Wen Y, Wang Y, Wang D, Luo X, Zhang S, Zheng M, Li X. KinomeMETA: meta-learning enhanced kinome-wide polypharmacology profiling. Brief Bioinform 2023; 25:bbad461. [PMID: 38113075 PMCID: PMC10729787 DOI: 10.1093/bib/bbad461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
Kinase inhibitors are crucial in cancer treatment, but drug resistance and side effects hinder the development of effective drugs. To address these challenges, it is essential to analyze the polypharmacology of kinase inhibitor and identify compound with high selectivity profile. This study presents KinomeMETA, a framework for profiling the activity of small molecule kinase inhibitors across a panel of 661 kinases. By training a meta-learner based on a graph neural network and fine-tuning it to create kinase-specific learners, KinomeMETA outperforms benchmark multi-task models and other kinase profiling models. It provides higher accuracy for understudied kinases with limited known data and broader coverage of kinase types, including important mutant kinases. Case studies on the discovery of new scaffold inhibitors for membrane-associated tyrosine- and threonine-specific cdc2-inhibitory kinase and selective inhibitors for fibroblast growth factor receptors demonstrate the role of KinomeMETA in virtual screening and kinome-wide activity profiling. Overall, KinomeMETA has the potential to accelerate kinase drug discovery by more effectively exploring the kinase polypharmacology landscape.
Collapse
Affiliation(s)
- Qun Ren
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Ning Qu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Jingjing Sun
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Jingyi Zhou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Lingang Laboratory, Shanghai 200031, China
| | - Jin Liu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Lin Ni
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Xiaochu Tong
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Zimei Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Xiangtai Kong
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Yiming Wen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Yitian Wang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Dingyan Wang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, Hangzhou 330106, China
| | - Xiaomin Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Sulin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xutong Li
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
9
|
Ye J, Wu J, Liu B. Therapeutic strategies of dual-target small molecules to overcome drug resistance in cancer therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188866. [PMID: 36842765 DOI: 10.1016/j.bbcan.2023.188866] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 02/28/2023]
Abstract
Despite some advances in targeted therapeutics of human cancers, curative cancer treatment still remains a tremendous challenge due to the occurrence of drug resistance. A variety of underlying resistance mechanisms to targeted cancer drugs have recently revealed that the dual-target therapeutic strategy would be an attractive avenue. Compared to drug combination strategies, one agent simultaneously modulating two druggable targets generally shows fewer adverse reactions and lower toxicity. As a consequence, the dual-target small molecule has been extensively explored to overcome drug resistance in cancer therapy. Thus, in this review, we focus on summarizing drug resistance mechanisms of cancer cells, such as enhanced drug efflux, deregulated cell death, DNA damage repair, and epigenetic alterations. Based upon the resistance mechanisms, we further discuss the current therapeutic strategies of dual-target small molecules to overcome drug resistance, which will shed new light on exploiting more intricate mechanisms and relevant dual-target drugs for future cancer therapeutics.
Collapse
Affiliation(s)
- Jing Ye
- State Key Laboratory of Biotherapy and Cancer Center and Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junhao Wu
- State Key Laboratory of Biotherapy and Cancer Center and Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center and Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
10
|
Chen Y, Han J, Zhao Y, Zhao X, Zhao M, Zhang J, Wang J. 18F-labeled FGFR1 peptide: a new PET probe for subtype FGFR1 receptor imaging. Front Oncol 2023; 13:1047080. [PMID: 37182162 PMCID: PMC10174317 DOI: 10.3389/fonc.2023.1047080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 04/14/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction The fibroblast growth factor receptor (FGFR) family is highly expressed in a variety of tumor types and represents a new target for cancer therapy. Different FGFR subtype aberrations have been found to exhibit highly variable sensitivity and efficacy to FGFR inhibitors. Methods The present study is the first to suggest an imaging method for assessing FGFR1 expression. The FGFR1-targeting peptide NOTA-PEG2-KAEWKSLGEEAWHSK was synthesized by manual solid-phase peptide synthesis and high-pressure liquid chromatography (HPLC) purification and then labeled with fluorine-18 using NOTA as a chelator. In vitro and in vivo experiments were conducted to evaluate the stability, affinity and specificity of the probe. Tumor targeting efficacy and biodistribution were evaluated by micro-PET/CT imaging in RT-112, A549, SNU-16 and Calu-3 xenografts. Results The radiochemical purity of [18F]F-FGFR1 was 98.66% ± 0.30% (n = 3) with excellent stability. The cellular uptake rate of [18F]F-FGFR1 in the RT-112 cell line (FGFR1 overexpression) was higher than that in the other cell lines and could be blocked by the presence of excess unlabeled FGFR1 peptide. Micro-PET/CT imaging revealed a significant concentration of [18F]F-FGFR1 in RT-112 xenografts with no or very low uptake in nontargeted organs and tissues, which demonstrated that [18F]F-FGFR1 was selectively taken up by FGFR1-positive tumors. Conclusion [18F]F-FGFR1 showed high stability, affinity, specificity and good imaging capacity for FGFR1-overexpressing tumors in vivo, which provides new application potential in the visualization of FGFR1 expression in solid tumors.
Collapse
Affiliation(s)
- Yang Chen
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jingya Han
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Zhao
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xinming Zhao
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Shijiazhuang, China
- *Correspondence: Xinming Zhao,
| | - Mengmeng Zhao
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jingmian Zhang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianfang Wang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
11
|
Anandu KR, Jayan AP, Aneesh TP, Saiprabha VN. Pyrimidine derivatives as EGFR tyrosine kinase inhibitors in NSCLC: - A comprehensive review. Chem Biol Drug Des 2022; 100:599-621. [PMID: 35883248 DOI: 10.1111/cbdd.14124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 11/30/2022]
Abstract
EGFR positive NSCLC due to primary mutation (EGFR DEL19 & L858R) has been recognized as a crucial mediator of tumor progression. This led to the development and approval of EGFR tyrosine kinase inhibitors which addresses EGFR mediated NSCLC but fail to show potency after initial months of therapy due to acquired resistance (EGFR T790M, EGFR C797S). Extensive research allowed identification of drugs for EGFR positive NSCLC, wherein the majority of compounds have a pyrimidine substructure offering marked therapeutic benefits compared to chemotherapy. This current review outlines the diverse pyrimidine derivatives with amino-linked and fused pyrimidine scaffolds such as furo-pyrimidine, pyrimido-pyrimidine, thieno-pyrimidine, highlighting pyrimidine EGFR TK inhibitors reported in research emphasizing structural aspects, design approaches, inhibition potential. selectivity profile towards mutant EGFR conveyed through biological evaluation studies. Furthermore, mentioning the in-silico interaction profile of synthesized compounds for evaluating the binding affinity with key amino acids. The epilogue of review focuses on the recent research that drives forward to aid in the discovery and development of substituted amino and fused scaffolds of pyrimidine that can counteract the mutations and effectively manage EGFR positive NSCLC.
Collapse
Affiliation(s)
- K R Anandu
- Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Ajay P Jayan
- Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - T P Aneesh
- Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - V N Saiprabha
- Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| |
Collapse
|
12
|
Mahalapbutr P, Leechaisit R, Thongnum A, Todsaporn D, Prachayasittikul V, Rungrotmongkol T, Prachayasittikul S, Ruchirawat S, Prachayasittikul V, Pingaew R. Discovery of Anilino-1,4-naphthoquinones as Potent EGFR Tyrosine Kinase Inhibitors: Synthesis, Biological Evaluation, and Comprehensive Molecular Modeling. ACS OMEGA 2022; 7:17881-17893. [PMID: 35664590 PMCID: PMC9161259 DOI: 10.1021/acsomega.2c01188] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/21/2022] [Indexed: 05/02/2023]
Abstract
Epidermal growth factor receptor (EGFR) has been recognized as one of the attractive targets for anticancer drug development. Herein, a set of anilino-1,4-naphthoquinone derivatives (3-18) was synthesized and investigated for their anticancer and EGFR inhibitory potentials. Among all tested compounds, three derivatives (3, 8, and 10) were selected for studying EGFR inhibitory activity (in vitro and in silico) due to their most potent cytotoxic activities against six tested cancer cell lines (i.e., HuCCA-1, HepG2, A549, MOLT-3, MDA-MB-231, and T47D; IC50 values = 1.75-27.91 μM), high selectivity index (>20), and good predicted drug-like properties. The experimental results showed that these three promising compounds are potent EGFR inhibitors with nanomolar IC50 values (3.96-18.64 nM). Interestingly, the most potent compound 3 bearing 4-methyl substituent on the phenyl ring displayed 4-fold higher potency than the known EGFR inhibitor, erlotinib. Molecular docking, molecular dynamics simulation, and MM/GBSA-based free energy calculation revealed that van der Waals force played a major role in the accommodations of compound 3 within the ATP-binding pocket of EGFR. Additionally, the 4-CH3 moiety of the compound was noted to be a key chemical feature contributing to the highly potent EGFR inhibitory activity via its formations of alkyl interactions with A743, K745, M766, and L788 residues as well as additional interactions with M766 and T790.
Collapse
Affiliation(s)
- Panupong Mahalapbutr
- Department
of Biochemistry, and Center for Translational Medicine, Faculty of
Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ronnakorn Leechaisit
- Department
of Chemistry, Faculty of Science, Srinakharinwirot
University, Bangkok 10110, Thailand
| | - Anusit Thongnum
- Department
of Physics, Faculty of Science, Srinakharinwirot
University, Bangkok 10110, Thailand
| | - Duangjai Todsaporn
- Structural
and Computational Biology Research Unit, Department of Biochemistry,
Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Veda Prachayasittikul
- Center
of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Thanyada Rungrotmongkol
- Structural
and Computational Biology Research Unit, Department of Biochemistry,
Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program
in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supaluk Prachayasittikul
- Center
of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Somsak Ruchirawat
- Laboratory
of Medicinal Chemistry and Program in Chemical Sciences, Chulabhorn Research Institute, Chulabhorn Graduate
Institute, Bangkok 10210, Thailand
- Commission
on Higher Education, Ministry of Education, Center of Excellence on Environmental Health and Toxicology (EHT), Bangkok 10400, Thailand
| | - Virapong Prachayasittikul
- Department
of Clinical Microbiology and Applied Technology, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| | - Ratchanok Pingaew
- Department
of Chemistry, Faculty of Science, Srinakharinwirot
University, Bangkok 10110, Thailand
| |
Collapse
|
13
|
Zheng J, Zhang W, Li L, He Y, Wei Y, Dang Y, Nie S, Guo Z. Signaling Pathway and Small-Molecule Drug Discovery of FGFR: A Comprehensive Review. Front Chem 2022; 10:860985. [PMID: 35494629 PMCID: PMC9046545 DOI: 10.3389/fchem.2022.860985] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/28/2022] [Indexed: 12/23/2022] Open
Abstract
Targeted therapy is a groundbreaking innovation for cancer treatment. Among the receptor tyrosine kinases, the fibroblast growth factor receptors (FGFRs) garnered substantial attention as promising therapeutic targets due to their fundamental biological functions and frequently observed abnormality in tumors. In the past 2 decades, several generations of FGFR kinase inhibitors have been developed. This review starts by introducing the biological basis of FGF/FGFR signaling. It then gives a detailed description of different types of small-molecule FGFR inhibitors according to modes of action, followed by a systematic overview of small-molecule-based therapies of different modalities. It ends with our perspectives for the development of novel FGFR inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shenyou Nie
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Zufeng Guo
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Tan L, Zhang J, Wang Y, Wang X, Wang Y, Zhang Z, Shuai W, Wang G, Chen J, Wang C, Ouyang L, Li W. Development of Dual Inhibitors Targeting Epidermal Growth Factor Receptor in Cancer Therapy. J Med Chem 2022; 65:5149-5183. [PMID: 35311289 DOI: 10.1021/acs.jmedchem.1c01714] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Epidermal growth factor receptor (EGFR) is of great significance in mediating cell signaling transduction and tumor behaviors. Currently, third-generation inhibitors of EGFR, especially osimertinib, are at the clinical frontier for the treatment of EGFR-mutant non-small-cell lung cancer (NSCLC). Regrettably, the rapidly developing drug resistance caused by EGFR mutations and the compensatory mechanism have largely limited their clinical efficacy. Given the synergistic effect between EGFR and other compensatory targets during tumorigenesis and tumor development, EGFR dual-target inhibitors are promising for their reduced risk of drug resistance, higher efficacy, lower dosage, and fewer adverse events than those of single-target inhibitors. Hence, we present the synergistic mechanism underlying the role of EGFR dual-target inhibitors against drug resistance, their structure-activity relationships, and their therapeutic potential. Most importantly, we emphasize the optimal target combinations and design strategies for EGFR dual-target inhibitors and provide some perspectives on new challenges and future directions in this field.
Collapse
Affiliation(s)
- Lun Tan
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Xiye Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Yanyan Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Zhixiong Zhang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Wen Shuai
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Guan Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Juncheng Chen
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Chengdi Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Liang Ouyang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| |
Collapse
|
15
|
Nehra B, Mathew B, A Chawla P. A medicinal chemist's perspective towards structure activity relationship of heterocycle based anti-cancer agents. Curr Top Med Chem 2022; 22:493-528. [PMID: 35021975 DOI: 10.2174/1568026622666220111142617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/13/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
AIM To describe structure activity relationship of heterocyclic derivatives with multi-targeted anticancer activity. OBJECTIVES With the following goals in mind, this review tries to describe significant recent advances in the medicinal chemistry of heterocycle-based compounds: (1) To shed light on recent literature focused on heterocyclic derivatives' anticancer potential; (2) To discuss recent advances in the medicinal chemistry of heterocyclic derivatives, as well as their biological implications for cancer eradication; (3) To summarise the comprehensive correlation of structure activity relationship (SAR) with pharmacological outcomes in cancer therapy. BACKGROUND Cancer remains one of the major serious health issues devastating the world today. Cancer is a complex disease in which improperly altered cells proliferate at an uncontrolled, rapid, and severe rate. Variables such as poor dietary habits, high stress, age, and smoking, can all contribute to the development of cancer. Cancer can affect almost any organ or tissue, although the brain, breast, liver, and colon are the most frequently affected organs. From several years, surgical operations and irradiation are in use along with chemotherapy as a primary treatment of cancer but still effective treatment of cancer remains a huge challenge. Chemotherapy is now one of the most effective strategies to eradicate cancer, although it has been shown to have a number of cytotoxic and unfavourable effects on normal cells. Despite all of these cancer treatments, there are several other targets for anticancer drugs. Cancer can be effectively eradicated by focusing on these targets, which include both cell-specific and receptor-specific targets such as tyrosine kinase receptors (TKIs). Heterocyclic scaffolds also have a variety of applications in drug development and are a common moiety in the pharmaceutical, agrochemical, and textile industries. METHODS The association between structural activity relationship data of many powerful compounds and their anticancer potential in vitro and in vivo has been studied. SAR of powerful heterocyclic compounds can also be generated using molecular docking simulations, as reported vastly in literature. CONCLUSIONS Heterocycles have a wide range of applications, from natural compounds to synthesised derivatives with powerful anticancer properties. To avoid cytotoxicity or unfavourable effects on normal mammalian cells due to a lack of selectivity towards the target site, as well as to reduce the occurrence of drug resistance, safer anticancer lead compounds with higher potency and lower cytotoxicity are needed. This review emphasizes on design and development of heterocyclic lead compounds with promising anticancer potential.
Collapse
Affiliation(s)
- Bhupender Nehra
- University College of Pharmacy, Guru Kashi University, Talwandi Sabo, Bathinda, Punjab-151302, India
| | - Bijo Mathew
- Dept. of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682041, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga-142001, India
| |
Collapse
|
16
|
Zhang Y, Wang Q, Li L, Le Y, Liu L, Yang J, Li Y, Bao G, Yan L. Synthesis and preliminary structure-activity relationship study of 3-methylquinazolinone derivatives as EGFR inhibitors with enhanced antiproliferative activities against tumour cells. J Enzyme Inhib Med Chem 2021; 36:1205-1216. [PMID: 34074193 PMCID: PMC8174486 DOI: 10.1080/14756366.2021.1933466] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 11/24/2022] Open
Abstract
In this paper, a set of 3-methylquniazolinone derivatives were designed, synthesised, and studied the preliminary structure-activity relationship for antiproliferative activities. All target compounds performed significantly inhibitory effects against wild type epidermal growth factor receptor tyrosine kinase (EGFRwt-TK) and tumour cells (A431, A549, MCF-7, and NCI-H1975). In particular, compound 4d 3-fluoro-N-(4-((3-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)methoxy)phenyl)benzamide showed higher antiproliferative activities against all tumour cells than Gefitinib (IC50 of 3.48, 2.55, 0.87 and 6.42 μM, respectively). Furthermore, compound 4d could induce apoptosis of MCF-7 cells and arrest in G2/M phase at the tested concentration. Molecular docking and ADMET studies showed that compound 4d could closely form many hydrogen bonds with EGFRwt-TK. Therefore, compound 4d is potential to develop as novel anti-cancer drug.
Collapse
Affiliation(s)
- Yan Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guiyang, China
| | - Qin Wang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guiyang, China
| | - Luolan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Shizhen College of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yi Le
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guiyang, China
| | - Li Liu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guiyang, China
| | - Jing Yang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Yongliang Li
- Faculty of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou, China
| | - Guochen Bao
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Longjia Yan
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guiyang, China
| |
Collapse
|
17
|
Sharma B, Singh VJ, Chawla PA. Epidermal growth factor receptor inhibitors as potential anticancer agents: An update of recent progress. Bioorg Chem 2021; 116:105393. [PMID: 34628226 DOI: 10.1016/j.bioorg.2021.105393] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 12/20/2022]
Abstract
Epidermal growth factor receptor (EGFR) is a vital intermediate in cell signaling pathway including cell proliferation, angiogenesis, apoptosis, and metastatic spread and also having four divergent members with similar structural features, such as EGFR (HER1/ErbB1), ErbB2 (HER2/neu), ErbB3 (HER3), and ErbB4 (HER4). Despite this, clinically exploited inhibitors of EGFR (including erlotinib, lapatinib, gefitinib, selumetinib, etc.) are not specific thus provoking unenviable adverse effects. Some of the paramount obstacles to generate and develop new lead molecules of EGFR inhibitors are drug resistance, mutation, and also selectivity which inspire medicinal chemists to generate novel chemotypes. The discovery of therapeutic agents that inhibit the precise stage in tumorous cells such as EGFR is one of the chief successful targets in many cancer therapies, including lung and breast cancers. This review aims to compile the various recent progressions (2016-2021) in the discovery and development of diverse epidermal growth factor receptor (EGFR) inhibitors belonging to distinct structural classes like pyrazoline, pyrazole, imidazole, pyrimidine, coumarin, benzothiazole, etc. We have summarized preclinical and clinical data, structure-activity relationships (SAR) containing mechanistic and in silico studies to provide proposals for the design and invention of new EGFR inhibitors with therapeutic significance. The detailed progress of the work in the field will provide inexorable scope for the development of novel drug candidates with greater selectivity and efficacy.
Collapse
Affiliation(s)
- Bharti Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Vikram Jeet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India.
| |
Collapse
|
18
|
Zhao J, Tan W, Zhang L, Liu J, Shangguan M, Chen J, Zhao B, Peng Y, Cui M, Zhao S. FGFR3 phosphorylates EGFR to promote cisplatin-resistance in ovarian cancer. Biochem Pharmacol 2021; 190:114536. [PMID: 33794187 DOI: 10.1016/j.bcp.2021.114536] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/08/2022]
Abstract
Ovarian cancer is a deadly gynecologic cancer, and the majority of patients with ovarian cancer experience relapse after traditional treatment. Cisplatin (DDP) is a common chemotherapeutic drug for ovarian cancer, but many patients acquire DDP-resistance after treatment with long-term chemotherapy. The mechanisms of drug-resistance in ovarian cancer are not clear, and we thus aim to investigate novel targets for DDP-resistant ovarian cancer. Differential analysis, KEGG pathway enrichment and protein interaction networks were employed to identify the key genes related to DDP-resistance in ovarian cancer. Subsequently, cell viability, apoptosis and migration were measured to assess the effect of fibroblast growth factor receptor 3 (FGFR3) on DDP-resistance. Further, Pearson correlation analysis and co-expression analysis were used to explore the downstream pathways of FGFR3, and the function of FGFR3 and its downstream targets were further demonstrated by in vitro and nude mice experiments. FGFR3 were expressed at high levels in DDP-resistant ovarian cancer cells. FGFR3 silencing suppressed the activation of PI3K/AKT pathway and impeded the drug-resistance and development of tumor cells. Afterwards, we found that FGFR3 was co-expressed with epidermal growth factor receptor (EGFR). FGFR3 overexpression elevated EGFR phosphorylation and activated PI3K/AKT signaling. Furthermore, in nude mice, silencing FGFR3 and inhibiting EGFR phosphorylation were observed to promote the therapeutic effect of DDP. In conclusion, FGFR3 overexpression enhances DDP-resistance of ovarian cancer by promoting EGFR phosphorylation and further activating PI3K/AKT pathway. This study may offer promising targets for DDP-resistant ovarian cancer.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, PR China
| | - Wenxi Tan
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, PR China
| | - Lingyi Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, PR China
| | - Jian Liu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, PR China
| | - Mengyuan Shangguan
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, PR China
| | - Junyu Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, PR China
| | - Benzheng Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, PR China
| | - Yuanqing Peng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, PR China
| | - Manhua Cui
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, PR China.
| | - Shuhua Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, PR China.
| |
Collapse
|
19
|
Wang K, Chen Q, Liu N, Zhang J, Pan X. Recent advances in, and challenges of, anti-angiogenesis agents for tumor chemotherapy based on vascular normalization. Drug Discov Today 2021; 26:2743-2753. [PMID: 34332098 DOI: 10.1016/j.drudis.2021.07.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/18/2022]
Abstract
A major problem associated with cancer treatment is resistance-prone chemotherapeutic drugs. An increasing number of studies have documented that the occurrence of resistance tends to be associated with abnormal blood vessels. In 2001, Jain proposed the vascular normalization theory, which was recently applied to the drug-resistant treatment of tumors in the clinic. Through the intervention of angiogenesis inhibitors, remodeling the structure and function of abnormal vessels can maximize the efficacy of chemotherapeutic drugs. In this review, we systematically describe the occurrence and progress of tumor angiogenesis, as well as the pathological characteristics of tumor blood vessels. Moreover, druggable targets for vascular normalization and the development of related inhibitors are also outlined.
Collapse
Affiliation(s)
- Kai Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qinhua Chen
- Department of Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen 518101, China
| | - Nanxin Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
20
|
Ayati A, Moghimi S, Toolabi M, Foroumadi A. Pyrimidine-based EGFR TK inhibitors in targeted cancer therapy. Eur J Med Chem 2021; 221:113523. [PMID: 33992931 DOI: 10.1016/j.ejmech.2021.113523] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/25/2021] [Accepted: 04/22/2021] [Indexed: 12/23/2022]
Abstract
Despite significant improvements of new treatment options, cancer continues to represent as one of the most common and fatal disease. The EGFR signaling pathway is considered as a significant approach in targeted therapy of cancers. Blocking the EGFR-driven pathway by inhibiting the intracellular tyrosine kinase domain of EGFR have shown considerable improvement in cancer therapy. In an effort to identify EGFR tyrosine kinase inhibitors (TKI), several small molecules especially pyrimidine containing derivatives have been designed by applying molecular simulation and evaluated the emergence of epigenetic mutation and resistance problems restricted the long-term effectiveness of such medication and explained the need for further investigations in this field. In recent years, the studies have been focused on genetic alterations on EGFR tyrosine kinase domain, which led to the design and synthesis of more selective and effective inhibitors. Herein, we give an overview of the importance and status of EGFR inhibitors in cancer therapy. In addition, we provide an update of the recent advances in design, discovery and development of novel pyrimidine containing compounds as promising selective EGFR TK inhibitors.
Collapse
Affiliation(s)
- Adileh Ayati
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Moghimi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Toolabi
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Recent advances of dual FGFR inhibitors as a novel therapy for cancer. Eur J Med Chem 2021; 214:113205. [PMID: 33556787 DOI: 10.1016/j.ejmech.2021.113205] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 12/14/2022]
Abstract
Fibroblast growth factor receptor (FGFR) includes four highly conserved transmembrane receptor tyrosine kinases (FGFR1-4). FGF and FGFR regulate many biological processes, such as angiogenesis, wound healing and tissue regeneration. The abnormal expression of FGFR is related to the tumorigenesis, tumor progression and drug resistance of anti-tumor treatments in many types of tumors. Nowadays there are many anti-cancer drugs targeting FGFR. However, traditional single-target anti-tumor drugs are easy to acquire drug resistance. The therapeutic effect can be enhanced by simultaneously inhibiting FGFR and another target (such as VEGFR, EGFR, PI3K, CSF-1R, etc.). We know drug combination can bring problems such as drug interactions. Therefore, the development of FGFR dual target inhibitors is an important direction. In this paper, we reviewed the research on dual FGFR inhibitors in recent years and made brief comments on them.
Collapse
|