1
|
Burguin A, Roy J, Ouellette G, Maltais R, Bherer J, Diorio C, Poirier D, Durocher F. Aminosteroid RM-581 Decreases Cell Proliferation of All Breast Cancer Molecular Subtypes, Alone and in Combination with Breast Cancer Treatments. J Clin Med 2023; 12:4241. [PMID: 37445276 DOI: 10.3390/jcm12134241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer (BC) is a heterogenous disease classified into four molecular subtypes (Luminal A, Luminal B, HER2 and triple-negative (TNBC)) depending on the expression of the estrogen receptor (ER), the progesterone receptor (PR) and the human epidermal receptor 2 (HER2). The development of effective treatments for BC, especially TNBC, remains a challenge. Aminosteroid derivative RM-581 has previously shown an antiproliferative effect in multiple cancers in vitro and in vivo. In this study, we evaluated its effect in BC cell lines representative of BC molecular subtypes, including metastatic TNBC. We found that RM-581 has an antiproliferative effect on all BC molecular subtypes, especially on Luminal A and TNBC, in 2D and 3D cultures. The combination of RM-581 and trastuzumab or trastuzumab-emtansine enhanced the anticancer effect of each drug for HER2-positive BC cell lines, and the combination of RM-581 and taxanes (docetaxel or paclitaxel) improved the antiproliferative effect of RM-581 in TNBC and metastatic TNBC cell lines. We also confirmed that RM-581 is an endoplasmic reticulum (EnR)-stress aggravator by inducing an increase in EnR-stress-induced apoptosis markers such as BIP/GRP78 and CHOP and disrupting lipid homeostasis. This study demonstrates that RM-581 could be effective for the treatment of BC, especially TNBC.
Collapse
Affiliation(s)
- Anna Burguin
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC GIV 0A6, Canada
- Cancer Research Centre, CHU de Québec-Research Centre, Québec, QC G1R 3S3, Canada
| | - Jenny Roy
- Cancer Research Centre, CHU de Québec-Research Centre, Québec, QC G1R 3S3, Canada
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec-Research Center, Québec, QC G1V 4G2, Canada
| | - Geneviève Ouellette
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC GIV 0A6, Canada
- Cancer Research Centre, CHU de Québec-Research Centre, Québec, QC G1R 3S3, Canada
| | - René Maltais
- Cancer Research Centre, CHU de Québec-Research Centre, Québec, QC G1R 3S3, Canada
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec-Research Center, Québec, QC G1V 4G2, Canada
| | - Juliette Bherer
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC GIV 0A6, Canada
- Cancer Research Centre, CHU de Québec-Research Centre, Québec, QC G1R 3S3, Canada
| | - Caroline Diorio
- Cancer Research Centre, CHU de Québec-Research Centre, Québec, QC G1R 3S3, Canada
- Department of Social and Preventive Medicine, Faculty of Medicine, Université Laval, Québec, QC GIV 0A6, Canada
| | - Donald Poirier
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC GIV 0A6, Canada
- Cancer Research Centre, CHU de Québec-Research Centre, Québec, QC G1R 3S3, Canada
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec-Research Center, Québec, QC G1V 4G2, Canada
| | - Francine Durocher
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC GIV 0A6, Canada
- Cancer Research Centre, CHU de Québec-Research Centre, Québec, QC G1R 3S3, Canada
| |
Collapse
|
2
|
Poirier D, Roy J, Maltais R, Weidmann C, Audet-Walsh É. An Aminosteroid Derivative Shows Higher In Vitro and In Vivo Potencies than Gold Standard Drugs in Androgen-Dependent Prostate Cancer Models. Cancers (Basel) 2023; 15:cancers15113033. [PMID: 37296995 DOI: 10.3390/cancers15113033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
The aminosteroid derivative RM-581 blocks with high potency the growth of androgen-dependent (AR+) prostate cancer VCaP, 22Rv1, and LAPC-4 cells. Notably, RM-581 demonstrated superior antiproliferative activity in LAPC-4 cells compared to enzalutamide and abiraterone, two drugs that exhibited a synergistic effect in combination with RM-581. These findings suggest that RM-581 may have an action that is not directly associated with the hormonal pathway of androgens. Furthermore, RM-581 completely blocks tumor growth in LAPC-4 xenografts when given orally at 3, 10, and 30 mg/kg in non-castrated (intact) nude mice. During this study, an accumulation of RM-581 was observed in tumors compared to plasma (3.3-10 folds). Additionally, the level of fatty acids (FA) increased in the tumors and livers of mice treated with RM-581 but not in plasma. The increase was greater in unsaturated FA (21-28%) than in saturated FA (7-11%). The most affected FA were saturated palmitic acid (+16%), monounsaturated oleic acid (+34%), and di-unsaturated linoleic acid (+56%), i.e., the 3 most abundant FA, with a total of 55% of the 56 FA measured. For cholesterol levels, there was no significant difference in the tumor, liver, or plasma of mice treated or not with RM-581. Another important result was the innocuity of RM-581 in mice during a 28-day xenograft experiment and a 7-week dose-escalation study, suggesting a favorable safety window for this new promising drug candidate when given orally.
Collapse
Affiliation(s)
- Donald Poirier
- Endocrinology and Nephrology Unit, CHU de Québec Research Center-Université Laval, Pavillon CHUL, Québec, QC G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Jenny Roy
- Endocrinology and Nephrology Unit, CHU de Québec Research Center-Université Laval, Pavillon CHUL, Québec, QC G1V 4G2, Canada
| | - René Maltais
- Endocrinology and Nephrology Unit, CHU de Québec Research Center-Université Laval, Pavillon CHUL, Québec, QC G1V 4G2, Canada
| | - Cindy Weidmann
- Endocrinology and Nephrology Unit, CHU de Québec Research Center-Université Laval, Pavillon CHUL, Québec, QC G1V 4G2, Canada
| | - Étienne Audet-Walsh
- Endocrinology and Nephrology Unit, CHU de Québec Research Center-Université Laval, Pavillon CHUL, Québec, QC G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
3
|
Ngueta AD, Roy J, Maltais R, Poirier D. Chemical Synthesis and Biological Evaluation of 3-Substituted Estrone/Estradiol Derivatives as 17β-Hydroxysteroid Dehydrogenase Type 1 Inhibitors Acting via a Reverse Orientation of the Natural Substrate Estrone. Molecules 2023; 28:molecules28020632. [PMID: 36677690 PMCID: PMC9862175 DOI: 10.3390/molecules28020632] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Estradiol (E2) plays an important role in the progression of diseases such as breast cancer and endometriosis. Inhibition of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1), the enzyme that catalyzes the last step in the biosynthesis of the estrogenic hormone E2, therefore constitutes an interesting approach for the treatment of these two estrogen-dependent diseases. In order to obtain new inhibitors of 17β-HSD1, the impact of a m-carbamoylphenyloxy group at position three of an estrane nucleus was evaluated by preparing three derivatives of estrone (E1) and E2 using a microwave-assisted synthesis of diaryl ethers. Their inhibitory activity was addressed on two cell lines (T-47D and Z-12) representative of breast cancer and endometriosis, respectively, but unlike T-47D cells, Z-12 cells were not found suitable for testing potential 17β-HSD1 inhibitors. Thus, the addition of the m-carbamoylphenyl group at C3 of E1 (compound 5) did not increase the inhibition of E1 to E2 transformation by 17β-HSD1 present in T-47D cells (IC50 = 0.31 and 0.21 μM for 5 and E1, respectively), and this negative effect was more obvious for E2 derivatives 6 and 10 (IC50 = 1.2 and 1.3 μM, respectively). Molecular docking allowed us to identify key interactions with 17β-HSD1 and to highlight these new inhibitors' actions through an opposite orientation than natural enzyme substrate E1's classical one. Furthermore, molecular modeling experiments explain the better inhibitory activity of E1-ether derivative 5, as opposed to the E2-ether derivatives 6 and 10. Finally, when tested on T-47D and Z-12 cells, compounds 5, 6 and 10 did not stimulate the proliferation of these two estrogen-dependent cell lines. In fact, they reduced it.
Collapse
Affiliation(s)
- Adrien Djiemeny Ngueta
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec Research Center—Université Laval, Quebec, QC G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Jenny Roy
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec Research Center—Université Laval, Quebec, QC G1V 4G2, Canada
| | - René Maltais
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec Research Center—Université Laval, Quebec, QC G1V 4G2, Canada
| | - Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec Research Center—Université Laval, Quebec, QC G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|
4
|
Djiemeny Ngueta A, Roy J, Poirier D. Chemical synthesis, NMR characterization, and anticancer activity of androstene derivatives with a C17-side chain. Steroids 2022; 186:109064. [PMID: 35714784 DOI: 10.1016/j.steroids.2022.109064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/02/2022] [Accepted: 06/11/2022] [Indexed: 11/21/2022]
Abstract
Cancer remains one of the leading causes of death, worldwide. In addition, the lack of efficacy and selectivity of chemotherapeutic agents for cancer cells is a challenge that needs to be addressed through the development of new drugs. Since aminosteroids are of interest in fighting cancer, our group previously reported antiproliferative activity on several cancer cell lines of two representatives, RM-133 and RM-581. To extend the structure-activity relationship study of aminosteroids, of which RM-133 (androstane) and RM-581 (estrane) are the main candidates, we performed the chemical synthesis and biological evaluation on lung (SHP-77), breast (T-47D) and prostate (DU-145, PC-3 and LAPC-4) cancer cells of four analogues of RM-581. We moved the functionalized side chain from position 2 of the androstane and estrane derivatives to incorporate it into a new chain located at position 17. Chemical synthesis took place in 2 steps from steroidal side-chain carboxylic acids, allowing to obtain 4 steroid derivatives with acceptable yields, which were fully characterized by nuclear magnetic resonance spectroscopy (1H and 13C NMR). After the evaluation of compounds 12-15, lower antiproliferative activities varying from 12 to 54%, 0-33% and 0-63% were observed for SHP-77, DU-145 and PC-3 cell lines, respectively, while higher activities varying from 33 to 62% and 45-84% were observed for T-47D and LAPC-4 cell lines, respectively, when tested at 10 µM. Overall, it was observed that these aminosteroids have a lower cytotoxic activity than that of RM-581 and, that moving the side chain from steroid position C2 to C17 is clearly detrimental for antiproliferative activity. However, this work has enabled us to expand our knowledge of the structural requirements to maintain the anticancer activity of aminosteroid derivatives.
Collapse
Affiliation(s)
- Adrien Djiemeny Ngueta
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4), Quebec, QC G1V 4G2, Canada
| | - Jenny Roy
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4), Quebec, QC G1V 4G2, Canada
| | - Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4), Quebec, QC G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec, QC G1V 0A6, Canada.
| |
Collapse
|
5
|
Cortés-Benítez F, Roy J, Perreault M, Maltais R, Poirier D. 16-Picolyl-androsterone derivative exhibits potent 17β-HSD3 inhibitory activity, improved metabolic stability and cytotoxic effect on various cancer cells: Synthesis, homology modeling and docking studies. J Steroid Biochem Mol Biol 2021; 210:105846. [PMID: 33609690 DOI: 10.1016/j.jsbmb.2021.105846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 11/18/2022]
Abstract
A new androsterone derivative bearing a 16β-picolyl group (compound 5; FCO-586-119) was synthetized in four steps from the lead compound 1 (RM-532-105). We measured its inhibitory activity on 17β-HSD3 using microsomal fraction of rat testes as well as transfected LNCaP[17β-HSD3] cells. We then assessed its metabolic stability as well as its cytotoxic effect against a panel of cancer cell lines. The addition of a picolyl moiety at C-16 of RM-532-105 steroid core improves the 17β-HSD3 inhibitory activity in the microsomal fraction of rat testes, but not in whole LNCaP[17β-HSD3] cells. Interestingly, this structural modification enhances 3-fold the metabolic stability in conjunction with a significant cytotoxic effect against pancreatic, ovarian, breast, lung, and prostate cancer cells. Because the inhibitory activity data against 17β-HSD3 suggested that both steroid derivatives are non-competitive inhibitors, we performed docking and molecular dynamics simulations using a homology model of this membrane-associated enzyme. The results of these simulations revealed that both RM-532-105 (1) and FCO-586-119 (5) can compete for the cofactor-binding site displaying better binding energy than NADP+.
Collapse
Affiliation(s)
- Francisco Cortés-Benítez
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU De Québec - Research Center, Québec City, Québec, G1V 4G2, Canada; Laboratory of Synthesis and Isolation of Bioactive Substances, Department of Biological Systems, Biological and Health Sciences Division, Metropolitan Autonomous University- Xochimilco (UAM-X), Mexico City 04960, Mexico
| | - Jenny Roy
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU De Québec - Research Center, Québec City, Québec, G1V 4G2, Canada
| | - Martin Perreault
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU De Québec - Research Center, Québec City, Québec, G1V 4G2, Canada
| | - René Maltais
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU De Québec - Research Center, Québec City, Québec, G1V 4G2, Canada
| | - Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU De Québec - Research Center, Québec City, Québec, G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, Québec, G1V 0A6, Canada.
| |
Collapse
|
6
|
Dorababu A. Report on Recently (2017–20) Designed Quinoline‐Based Human Cancer Cell Growth Inhibitors. ChemistrySelect 2020. [DOI: 10.1002/slct.202003888] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Atukuri Dorababu
- Department of Chemistry SRMPP Govt. First Grade College Huvinahadagali 583219 India
| |
Collapse
|