1
|
Yu S, Zhang Q, Zhong X, Wang C, Shi W, Zhuang J, Zhang R, Jin F, Zhang J, Zhao Q, Chen GZ, Ye W, Lin GQ. Scalable Protecting-Group-Free Total Synthesis of Resibufogenin and Bufalin. Org Lett 2024. [PMID: 39496285 DOI: 10.1021/acs.orglett.4c03433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
A chemoenzymatic synthesis access to resibufogenin and bufalin was developed in seven steps without protecting groups. Starting with androstenedione (AD), an α-OH was introduced directly at C14 by hydroxylase P-450lun, which was further used as the directing group for hydrogenation to fully control the C17 configuration in the β-orientation after Suzuki cross-coupling. Dehydration of 14α-OH followed by an epoxidation delivered resibufogenin. Simultaneously, bufalin was also obtained via a challenging anaerobic Mukaiyama hydration.
Collapse
Affiliation(s)
- Shaopeng Yu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qiuheng Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xueqing Zhong
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chao Wang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenqing Shi
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiahua Zhuang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rui Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fangjie Jin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiange Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qunfei Zhao
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Gu-Zhou Chen
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenbo Ye
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
2
|
Kaur G, Devi S, Sharma A, Sood P. Pharmacological insights and role of bufalin (bufadienolides) in inflammation modulation: a narrative review. Inflammopharmacology 2024:10.1007/s10787-024-01517-9. [PMID: 39012431 DOI: 10.1007/s10787-024-01517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Bufadienolides, specifically bufalin, have garnered attention for their potential therapeutic application in modulating inflammatory pathways. Bufalin is derived from toad venom and exhibits promising anti-inflammatory properties. Its anti-inflammatory effects have been demonstrated by influencing crucial signaling pathways like NF-B, MAPK, and JAK-STAT, resulting in the inhibition of pro-inflammatory substances like cytokines, chemokines, and adhesion molecules. Bufalin blocks inflammasome activation and reduces oxidative stress, hence increasing its anti-inflammatory properties. Bufalin has shown effectiveness in reducing inflammation-related diseases such as cancer, cardiovascular problems, and autoimmune ailments in preclinical investigations. Furthermore, producing new approaches of medication delivery and combining therapies with bufalin shows potential for improving its effectiveness and reducing adverse effects. This review explores the pharmacological effects and mechanistic approaches of bufalin as an anti-inflammatory agent, which further highlights its potential for therapy and offers the basis for further study on its therapeutic application in inflammation-related disorders.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Chitkara University School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Akhil Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Parul Sood
- Chitkara University School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| |
Collapse
|
3
|
Lei X, Wang X, Xiong W, Xiao H, Wu Y, Huang T, Liang R, Li Y, Lin S. Cytochrome P450 Mining for Bufadienolide Diversification. ACS Chem Biol 2024; 19:1169-1179. [PMID: 38624108 DOI: 10.1021/acschembio.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Bufadienolides are a class of steroids with a distinctive α-pyrone ring at C17, mostly produced by toads and consisting of over 100 orthologues. They exhibit potent cardiotonic and antitumor activities and are active ingredients of the traditional Chinese medicine Chansu and Cinobufacini. Direct extraction from toads is costly, and chemical synthesis is difficult, limiting the accessibility of active bufadienolides with diverse modifications and trace content. In this work, based on the transcriptome and genome analyses, using a yeast-based screening platform, we obtained eight cytochrome P450 (CYP) enzymes from toads, which catalyze the hydroxylation of bufalin and resibufogenin at different sites. Moreover, a reported fungal CYP enzyme Sth10 was found functioning in the modification of bufalin and resibufogenin at multiple sites. A total of 15 bufadienolides were produced and structurally identified, of which six were first discovered. All of the compounds were effective in inhibiting the proliferation of tumor cells, especially 19-hydroxy-bufalin (2) and 1β-hydroxy-bufalin (3), which were generated from bufalin hydroxylation catalyzed by CYP46A35. The catalytic efficiency of CYP46A35 was improved about six times and its substrate diversity was expanded to progesterone and testosterone, the common precursors for steroid drugs, achieving their efficient and site-specific hydroxylation. These findings elucidate the key modification process in the synthesis of bufadienolides by toads and provide an effective way for the synthesis of unavailable bufadienolides with site-specific modification and active potentials.
Collapse
Affiliation(s)
- Xiaolai Lei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaozheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Weiliang Xiong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Han Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yingchun Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tingting Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
4
|
Tichvon C, Zviagin E, Surma Z, Nagorny P. Synthesis of Bufadienolide Cinobufagin via Late-Stage Singlet Oxygen Oxidation/Rearrangement Approach. Org Lett 2024; 26:2445-2450. [PMID: 38488174 PMCID: PMC10980571 DOI: 10.1021/acs.orglett.4c00625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
This manuscript describes a concise synthesis of cinobufagin, a natural steroid of the bufadienolide family, from readily available dehydroepiandrosterone (DHEA), as well as its α5-epimer derived from 3-epi-andosterone. This synthesis features expedient installation of the 17β-pyrone moiety with the 14β,15β-epoxide and the 16β-acetoxy group using a photochemical regioselective singlet oxygen [4 + 2] cycloaddition followed by CoTPP-promoted in situ endoperoxide rearrangement to provide a 14β,16β-bis-epoxide in 64% yield with a 1.6:1 d.r. This β,β-bis-epoxide intermediate was subsequently subjected to a regioselective scandium(III) trifluoromethanesulfonate catalyzed House-Meinwald rearrangement to establish the 17β-configuration. The synthesis of cinobufagin is achieved in 12 steps (LLS) and 7.6% overall yield, and we demonstrate that it could be used as a platform for the subsequent medicinal chemistry exploration of cinobufagin analogs such as cinobufagin 5α-epimer.
Collapse
Affiliation(s)
- Colin Tichvon
- Chemistry Department, University of Michigan, 930 N. University Ave. Ann Arbor, MI 48109
| | - Eugene Zviagin
- Chemistry Department, University of Michigan, 930 N. University Ave. Ann Arbor, MI 48109
| | - Zoey Surma
- Chemistry Department, University of Michigan, 930 N. University Ave. Ann Arbor, MI 48109
| | - Pavel Nagorny
- Chemistry Department, University of Michigan, 930 N. University Ave. Ann Arbor, MI 48109
| |
Collapse
|
5
|
Tang W, Zhang Y, Yang K, Ma J, Dong L, Wu C, Lv R, Wang C, Luo C, Zhang H, Miao Z, Wu Y. Discovery of Novel 3,11-Bispeptide Ester Arenobufagin Derivatives with Potential in Vivo Antitumor Activity and Reduced Cardiotoxicity. Chem Biodivers 2023; 20:e202200911. [PMID: 36627123 DOI: 10.1002/cbdv.202200911] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023]
Abstract
Arenobufagin, one of the bufadienolides isolated from traditional Chinese medicine Chan'su, exhibits potent antitumor activity. However, serious toxicity and small therapeutic window limits its drug development. In the present study, to our knowledge, novel 3,11-bispeptide ester arenobufagin derivatives have been firstly designed and synthesized on the base of our previous discovery of active 3-monopeptide ester derivative. The in vitro antiproliferative activity evaluation revealed that the moiety at C3 and C11 hydroxy had an important influence on cytotoxic activity and selectivity. Compound ZM350 notably inhibited tumor growth by 58.8 % at a dose 10 mg/kg in an A549 nude mice xenograft model. Therefore, compound ZM350 also presented a concentration-dependent apoptosis induction and low inhibitory effect against both hERG potassium channel and Cav1.2 calcium channel. Our study suggests that novel 3,11-bispeptide ester derivatives will be a potential benefit to further antitumor agent development of arenobufagin.
Collapse
Affiliation(s)
- Wenmin Tang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, P. R. China
| | - Yanming Zhang
- School of Pharmacy, The Second Military Medical University, 325 Guohe Road, Shanghai, 200433, P. R. China
| | - Keli Yang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, P. R. China
| | - Jianjiang Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, P. R. China
| | - Lian Dong
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, P. R. China
| | - Chen Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, P. R. China
| | - Rongxue Lv
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, P. R. China
| | - Chuanhao Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, P. R. China
| | - Chuan Luo
- Anhui China Resources Jinchan Pharmaceutical Co., Ltd., 39 Longfa Road, Huaibei, 235000, P. R. China
| | - Huojun Zhang
- Department of Radiation Oncology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, 200433, P. R. China
| | - Zhenyuan Miao
- School of Pharmacy, The Second Military Medical University, 325 Guohe Road, Shanghai, 200433, P. R. China
| | - Yuelin Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, P. R. China
| |
Collapse
|
6
|
Wells M, Fossépré M, Hambye S, Surin M, Blankert B. Uncovering the antimalarial potential of toad venoms through a bioassay-guided fractionation process. Int J Parasitol Drugs Drug Resist 2022; 20:97-107. [PMID: 36343571 PMCID: PMC9772263 DOI: 10.1016/j.ijpddr.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/16/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Malaria remains to date one of the most devastating parasitic diseases worldwide. The fight against this disease is rendered more difficult by the emergence and spread of drug-resistant strains. The need for new therapeutic candidates is now greater than ever. In this study, we investigated the antiplasmodial potential of toad venoms. The wide array of bioactive compounds present in Bufonidae venoms has allowed researchers to consider many potential therapeutic applications, especially for cancers and infectious diseases. We focused on small molecules, namely bufadienolides, found in the venom of Rhinella marina (L.). The developed bio-guided fractionation process includes a four solvent-system extraction followed by fractionation using flash chromatography. Sub-fractions were obtained through preparative TLC. All samples were characterized using chromatographic and spectrometric techniques and then underwent testing on in vitro Plasmodium falciparum cultures. Two strains were considered: 3D7 (chloroquine-sensitive) and W2 (chloroquine-resistant). This strategy highlighted a promising activity for one compound named resibufogenin. With IC50 values of (29 ± 8) μg/mL and (23 ± 1) μg/mL for 3D7 and W2 respectively, this makes it an interesting candidate for further investigation. A molecular modelling approach proposed a potential binding mode of resibufogenin to Plasmodium falciparum adenine-triphosphate 4 pump as antimalarial drug target.
Collapse
Affiliation(s)
- Mathilde Wells
- Laboratory of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Place du Parc 20, 7000, Mons, Belgium
| | - Mathieu Fossépré
- Laboratory for Chemistry of Novel Materials, Faculty of Sciences, Research Institute for Biosciences and Research Institute for Materials, University of Mons - UMONS, Place du Parc 20, 7000, Mons, Belgium
| | - Stéphanie Hambye
- Laboratory of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Place du Parc 20, 7000, Mons, Belgium
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials, Faculty of Sciences, Research Institute for Biosciences and Research Institute for Materials, University of Mons - UMONS, Place du Parc 20, 7000, Mons, Belgium
| | - Bertrand Blankert
- Laboratory of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Place du Parc 20, 7000, Mons, Belgium.
| |
Collapse
|
7
|
Zou D, Wang Q, Chen T, Sang D, Yang T, Wang Y, Gao M, He F, Li Y, He L, Longzhu D. Bufadienolides originated from toad source and their anti-inflammatory activity. Front Pharmacol 2022; 13:1044027. [PMID: 36339575 PMCID: PMC9627299 DOI: 10.3389/fphar.2022.1044027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/10/2022] [Indexed: 03/03/2024] Open
Abstract
Bufadienolide, an essential member of the C-24 steroid family, is characterized by an α-pyrone positioned at C-17. As the predominantly active constituent in traditional Chinese medicine of Chansu, bufadienolide has been prescribed in the treatment of numerous ailments. It is a specifically potent inhibitor of Na+/K+ ATPase with excellent anti-inflammatory activity. However, the severe side effects triggered by unbiased inhibition of the whole-body cells distributed α1-subtype of Na+/K+ ATPase, restrict its future applicability. Thus, researchers have paved the road for the structural alteration of desirable bufadienolide derivatives with minimal adverse effects via biotransformation. In this review, we give priority to the present evidence for structural diversity, MS fragmentation principles, anti-inflammatory efficacy, and structure modification of bufadienolides derived from toads to offer a scientific foundation for future in-depth investigations and views.
Collapse
Affiliation(s)
- Denglang Zou
- School of Life Science, Qinghai Normal University, Xining, China
- College of Pharmacy, Jinan University, Guangzhou, China
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Qiqi Wang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Tao Chen
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Duocheng Sang
- School of Life Science, Qinghai Normal University, Xining, China
| | - Tingqin Yang
- School of Life Science, Qinghai Normal University, Xining, China
| | - Yuhan Wang
- School of Life Science, Qinghai Normal University, Xining, China
| | - Mengze Gao
- School of Life Science, Qinghai Normal University, Xining, China
| | - Fangfang He
- School of Life Science, Qinghai Normal University, Xining, China
| | - Yulin Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Liangliang He
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Duojie Longzhu
- School of Life Science, Qinghai Normal University, Xining, China
| |
Collapse
|
8
|
Firneno TJ, Ramesh B, Maldonado JA, Hernandez-Briones AI, Emery AH, Roelke CE, Fujita MK. Transcriptomic analysis reveals potential candidate pathways and genes involved in toxin biosynthesis in true toads. J Hered 2022; 113:311-324. [PMID: 35325156 DOI: 10.1093/jhered/esac015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Synthesized chemical defenses have broadly evolved across countless taxa and are important in shaping evolutionary and ecological interactions within ecosystems. However, the underlying genomic mechanisms by which these organisms synthesize and utilize their toxins are relatively unknown. Herein, we use comparative transcriptomics to uncover potential toxin synthesizing genes and pathways, as well as interspecific patterns of toxin synthesizing genes across ten species of North American true toads (Bufonidae). Upon assembly and annotation of the ten transcriptomes, we explored patterns of relative gene expression and possible protein-protein interactions across the species to determine what genes and/or pathways may be responsible for toxin synthesis. We also tested our transcriptome dataset for signatures of positive selection to reveal how selection may be acting upon potential toxin producing genes. We assembled high quality transcriptomes of the bufonid parotoid gland, a tissue not often investigated in other bufonid related RNAseq studies. We found several genes involved in metabolic and biosynthetic pathways (e.g. steroid biosynthesis, terpenoid backbone biosynthesis, isoquinoline biosynthesis, glucosinolate biosynthesis) that were functionally enriched and/or relatively expressed across the ten focal species that may be involved in the synthesis of alkaloid and steroid toxins, as well as other small metabolic compounds that cause distastefulness in bufonids. We hope that our study lays a foundation for future studies to explore the genomic underpinnings and specific pathways of toxin synthesis in toads, as well as at the macroevolutionary scale across numerous taxa that produce their own defensive toxins.
Collapse
Affiliation(s)
- Thomas J Firneno
- Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA.,Amphibian and Reptile Diversity Research Center, Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA
| | - Balan Ramesh
- Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA
| | - Jose A Maldonado
- Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA.,Amphibian and Reptile Diversity Research Center, Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA
| | | | - Alyson H Emery
- Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA
| | - Corey E Roelke
- Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA.,Amphibian and Reptile Diversity Research Center, Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA
| | - Matthew K Fujita
- Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA.,Amphibian and Reptile Diversity Research Center, Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA
| |
Collapse
|
9
|
Shao H, Li B, Li H, Gao L, Zhang C, Sheng H, Zhu L. Novel Strategies for Solubility and Bioavailability Enhancement of Bufadienolides. Molecules 2021; 27:51. [PMID: 35011278 PMCID: PMC8746454 DOI: 10.3390/molecules27010051] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
Toad venom contains a large number of bufadienolides, which have a variety of pharmacological activities, including antitumor, cardiovascular, anti-inflammatory, analgesic and immunomodulatory effects. The strong antitumor effect of bufadienolides has attracted considerable attention in recent years, but the clinical application of bufadienolides is limited due to their low solubility and poor bioavailability. In order to overcome these shortcomings, many strategies have been explored, such as structural modification, solid dispersion, cyclodextrin inclusion, microemulsion and nanodrug delivery systems, etc. In this review, we have tried to summarize the pharmacological activities and structure-activity relationship of bufadienolides. Furthermore, the strategies for solubility and bioavailability enhancement of bufadienolides also are discussed. This review can provide a basis for further study on bufadienolides.
Collapse
Affiliation(s)
| | | | | | | | | | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China; (H.S.); (B.L.); (H.L.); (L.G.); (C.Z.)
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China; (H.S.); (B.L.); (H.L.); (L.G.); (C.Z.)
| |
Collapse
|
10
|
Johnson JB, Mani JS, Broszczak D, Prasad SS, Ekanayake CP, Strappe P, Valeris P, Naiker M. Hitting the sweet spot: A systematic review of the bioactivity and health benefits of phenolic glycosides from medicinally used plants. Phytother Res 2021; 35:3484-3508. [PMID: 33615599 DOI: 10.1002/ptr.7042] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 02/01/2023]
Abstract
Phenolic acid and flavonoid glycosides form a varied class of naturally occurring compounds, characterised by high polarity-resulting from the glycone moiety-and the presence of multiple phenol functionalities, which often leads to strong antioxidant activity. Phenolic glycosides, and in particular flavonoid glycosides, may possess strong bioactive properties with broad spectrum activity. This systematic literature review provides a detailed overview of 28 studies examining the biological activity of phenolic and flavonoid glycosides from plant sources, highlighting the potential of these compounds as therapeutic agents. The activity of glycosides depends upon the biological activity type, identity of the aglycone and the identity and specific location of the glycone moiety. From studies reporting the activity of both glycosides and their respective aglycones, phenolic glycosides appear to generally be a storage/reserve pool of precursors of more bioactive compounds. The glycosylated compounds are likely to be more bioavailable compared to their aglycone forms, due to the presence of the sugar moieties. Hydrolysis of the glycoside in the in vivo environment would release the free aglycone, potentiating their biological activity. However, further high-quality studies are needed to firmly establish the clinical efficacy of glycosides from many of the plant species studied.
Collapse
Affiliation(s)
- Joel B Johnson
- School of Health, Medical and Applied Sciences, CQUniversity, North Rockhampton, Queensland, Australia.,Centre for Indigenous Health Equity Research, CQUniversity, North Rockhampton, Queensland, Australia
| | - Janice S Mani
- School of Health, Medical and Applied Sciences, CQUniversity, North Rockhampton, Queensland, Australia.,Centre for Indigenous Health Equity Research, CQUniversity, North Rockhampton, Queensland, Australia
| | - Daniel Broszczak
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Shirtika S Prasad
- Faculty of Science, Technology and Engineering, The University of the South Pacific, Suva, Fiji
| | - Charitha P Ekanayake
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Padraig Strappe
- School of Health, Medical and Applied Sciences, CQUniversity, North Rockhampton, Queensland, Australia
| | - Peter Valeris
- Shimadzu Scientific Instruments (Oceania) Pty Ltd, Rydalmere, New South Wales, Australia
| | - Mani Naiker
- School of Health, Medical and Applied Sciences, CQUniversity, North Rockhampton, Queensland, Australia.,Centre for Indigenous Health Equity Research, CQUniversity, North Rockhampton, Queensland, Australia
| |
Collapse
|
11
|
García-Pérez P, Lozano-Milo E, Landin M, Gallego PP. From Ethnomedicine to Plant Biotechnology and Machine Learning: The Valorization of the Medicinal Plant Bryophyllum sp. PHARMACEUTICALS (BASEL, SWITZERLAND) 2020; 13:ph13120444. [PMID: 33291844 PMCID: PMC7762000 DOI: 10.3390/ph13120444] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022]
Abstract
The subgenus Bryophyllum includes about 25 plant species native to Madagascar, and is widely used in traditional medicine worldwide. Different formulations from Bryophyllum have been employed for the treatment of several ailments, including infections, gynecological disorders, and chronic diseases, such as diabetes, neurological and neoplastic diseases. Two major families of secondary metabolites have been reported as responsible for these bioactivities: phenolic compounds and bufadienolides. These compounds are found in limited amounts in plants because they are biosynthesized in response to different biotic and abiotic stresses. Therefore, novel approaches should be undertaken with the aim of achieving the phytochemical valorization of Bryophyllum sp., allowing a sustainable production that prevents from a massive exploitation of wild plant resources. This review focuses on the study of phytoconstituents reported on Bryophyllum sp.; the application of plant tissue culture methodology as a reliable tool for the valorization of bioactive compounds; and the application of machine learning technology to model and optimize the full phytochemical potential of Bryophyllum sp. As a result, Bryophyllum species can be considered as a promising source of plant bioactive compounds, with enormous antioxidant and anticancer potential, which could be used for their large-scale biotechnological exploitation in cosmetic, food, and pharmaceutical industries.
Collapse
Affiliation(s)
- Pascual García-Pérez
- Applied Plant & Soil Biology, Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, E-36310 Vigo, Spain; (P.G.-P.); (E.L.-M.)
- CITACA—Agri-Food Research and Transfer Cluster, University of Vigo, E-32004 Ourense, Spain
| | - Eva Lozano-Milo
- Applied Plant & Soil Biology, Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, E-36310 Vigo, Spain; (P.G.-P.); (E.L.-M.)
- CITACA—Agri-Food Research and Transfer Cluster, University of Vigo, E-32004 Ourense, Spain
| | - Mariana Landin
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Grupo I+D Farma (GI-1645), Pharmacy Faculty, University of Santiago, E-15782 Santiago de Compostela, Spain;
- Health Research Institute of Santiago de Compostela (IDIS), E-15782 Santiago de Compostela, Spain
| | - Pedro P. Gallego
- Applied Plant & Soil Biology, Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, E-36310 Vigo, Spain; (P.G.-P.); (E.L.-M.)
- CITACA—Agri-Food Research and Transfer Cluster, University of Vigo, E-32004 Ourense, Spain
- Correspondence:
| |
Collapse
|
12
|
Abstract
We report a unified total synthesis of five bufadienolides: bufalin (1), bufogenin B (2), bufotalin (3), vulgarobufotoxin (4), and 3-(N-succinyl argininyl) bufotalin (5). After the steroidal ABCD ring 8 was produced, the D ring was cross-coupled with a 2-pyrone moiety and stereoselectively epoxidized to generate 6. TMSOTf promoted a stereospecific 1,2-hydride shift from 6 to establish the β-oriented 2-pyrone of 19. Functional group manipulations from 19 furnished 1-5, which potently inhibited cancer cell growth.
Collapse
Affiliation(s)
- Shinsuke Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Koichi Hagiwara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|