1
|
Zhang T, Sun S, Wang R, Li T, Gan B, Zhang Y. BioisoIdentifier: an online free tool to investigate local structural replacements from PDB. J Cheminform 2024; 16:7. [PMID: 38218937 PMCID: PMC10788035 DOI: 10.1186/s13321-024-00801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024] Open
Abstract
Within the realm of contemporary medicinal chemistry, bioisosteres are empirically used to enhance potency and selectivity, improve adsorption, distribution, metabolism, excretion and toxicity profiles of drug candidates. It is believed that bioisosteric know-how may help bypass granted patents or generate novel intellectual property for commercialization. Beside the synthetic expertise, the drug discovery process also depends on efficient in silico tools. We hereby present BioisoIdentifier (BII), a web server aiming to uncover bioisosteric information for specific fragment. Using the Protein Data Bank as source, and specific substructures that the user attempt to surrogate as input, BII tries to find suitable fragments that fit well within the local protein active site. BII is a powerful computational tool that offers the ligand design ideas for bioisosteric replacing. For the validation of BII, catechol is conceived as model fragment attempted to be replaced, and many ideas are successfully offered. These outputs are hierarchically grouped according to structural similarity, and clustered based on unsupervised machine learning algorithms. In summary, we constructed a user-friendly interface to enable the viewing of top-ranking molecules for further experimental exploration. This makes BII a highly valuable tool for drug discovery. The BII web server is freely available to researchers and can be accessed at http://www.aifordrugs.cn/index/ . Scientific Contribution: By designing a more optimal computational process for mining bioisosteric replacements from the publicly accessible PDB database, then deployed on a web server for throughly free access for researchers. Additionally, machine learning methods are applied to cluster the bioisosteric replacements searched by the platform, making a scientific contribution to facilitate chemists' selection of appropriate bioisosteric replacements. The number of bioisosteric replacements obtained using BII is significantly larger than the currently available platforms, which expanding the search space for effective local structural replacements.
Collapse
Affiliation(s)
- Tinghao Zhang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Shaohua Sun
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Runzhou Wang
- School of Management, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ting Li
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Bicheng Gan
- College of Petroleum Engineering, Northeast Petroleum University, Daqing, 163318, Heilongjiang, China
| | - Yuezhou Zhang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China.
- Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics (FSCFE), Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China.
| |
Collapse
|
2
|
Poyraz S, Döndaş HA, Döndaş NY, Sansano JM. Recent insights about pyrrolidine core skeletons in pharmacology. Front Pharmacol 2023; 14:1239658. [PMID: 37745071 PMCID: PMC10512268 DOI: 10.3389/fphar.2023.1239658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/05/2023] [Indexed: 09/26/2023] Open
Abstract
To overcome numerous health disorders, heterocyclic structures of synthetic or natural origin are utilized, and notably, the emergence of various side effects of existing drugs used for treatment or the resistance of disease-causing microorganisms renders drugs ineffective. Therefore, the discovery of potential therapeutic agents that utilize different modes of action is of utmost significance to circumvent these constraints. Pyrrolidines, pyrrolidine-alkaloids, and pyrrolidine-based hybrid molecules are present in many natural products and pharmacologically important agents. Their key roles in pharmacotherapy make them a versatile scaffold for designing and developing novel biologically active compounds and drug candidates. This review aims to provide an overview of recent advancements (especially during 2015-2023) in the exploration of pyrrolidine derivatives, emphasizing their significance as fundamental components of the skeletal structure. In contrast to previous reviews that have predominantly focused on a singular biological activity associated with these molecules, this review consolidates findings from various investigations encompassing a wide range of important activities (antimicrobial, antiviral, anticancer, anti-inflammatory, anticonvulsant, cholinesterase inhibition, and carbonic anhydrase inhibition) exhibited by pyrrolidine derivatives. This study is also anticipated to serve as a valuable resource for drug research and development endeavors, offering significant insights and guidance.
Collapse
Affiliation(s)
- Samet Poyraz
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Çukurova University, Adana, Türkiye
| | - H. Ali Döndaş
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Çukurova University, Adana, Türkiye
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, Adana, Türkiye
| | | | - José M. Sansano
- Department of Organic Chemistry, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Instituto de Síntesis Orgánica (ISO), University of Alicante, Alicante, Spain
| |
Collapse
|
3
|
Biochanin A in murine Schistosoma mansoni infection: effects on inflammation, oxidative stress and fibrosis. J Helminthol 2023; 97:e16. [PMID: 36740983 DOI: 10.1017/s0022149x22000839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biochanin A (BCA) is a multifunctional natural compound that possesses anti-infective, anti-inflammatory, anti-oxidative and hepatoprotective effects. The aim of the study was to assess the therapeutic efficacy of BCA on Schistosoma mansoni-infected mice. Fifty mice were divided into six different groups as non-infected, non-infected BCA-treated, infected untreated, early infected BCA-treated (seven days post-infection (dpi)), late infected BCA-treated 60 dpi and infected praziquantel (PZQ)-treated groups. Parasitological, histopathological examination and immunohistochemical staining of transforming growth factor (TGF)-β, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) were investigated in liver sections. Cytochrome P450 (CYP450) gene expression of S. mansoni was evaluated by quantitative real-time polymerase chain reaction (RT-qPCR). A single dose of BCA significantly reduced worm burden in early (82.14%) and late infection (77.74%), mean tissue egg load in early (7.27 ± 0.495) and late BCA administration (7.63 ± 0.435) and decreased granuloma size. CYP450 mRNA expression was significantly reduced in early BCA treatment as compared to late treatment which emphasizes that early administration of BCA had more pronounced effects on worms than late administration. Both early and late BCA administration led to significant reduction in inflammatory cytokines as TGF and iNOS. Although the reduction of TGF and iNOS in BCA-treated mice was superior to PZQ, no statistically significant differences were noted. However, a significant downregulation of COX2 was noted in hepatocytes as compared to both infected control and PZQ-treated mice. BCA has schistosomicidal, anti-inflammatory, antioxidant and anti-fibrotic effects and could be regarded as a potential drug in schistosomiasis treatment.
Collapse
|
4
|
Novel indazole derivatives as potent apoptotic antiproliferative agents by multi-targeted mechanism: Synthesis and biological evaluation. Bioorg Chem 2022; 126:105922. [DOI: 10.1016/j.bioorg.2022.105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 11/18/2022]
|
5
|
Ruan B, Tang X, Guo W, Hu Y, Chen L. Synthesis and Biological Evaluation of Novel Phthalide Analogs-1,2,4-Oxadiazole Hybrids as Potential Anti-Inflammatory Agents. Chem Biodivers 2022; 19:e202200039. [PMID: 35794072 DOI: 10.1002/cbdv.202200039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/29/2022] [Indexed: 11/10/2022]
Abstract
A series of novel pathalide-1,2,4-oxadiazole analogs were synthesized for discovering novel anti-inflammatory agents. After the assessment of their cytotoxicity in vitro, all compounds had been screened for their anti-inflammatory activity by evaluating their inhibitory effect on LPS-induced NO production in RAW 264.7 macrophages. SARs had been concluded, and finally compound E13 was found to be the most potent compound. This compound could also significantly decrease the production of iNOS and COX-2. Preliminary mechanism studies indicated that compound E13 could inhibit the TLR4/NF-κB and ERK/p38 signaling pathways. These findings indicate that E13 holds great potential to be a lead compound for discovering novel anti-inflammatory drugs.
Collapse
Affiliation(s)
- Banfeng Ruan
- Key Lab of Biofabrication of Anhui Higher Education, Hefei University, Hefei, 230601, P. R. China
| | - Xiaofei Tang
- Key Lab of Biofabrication of Anhui Higher Education, Hefei University, Hefei, 230601, P. R. China
| | - Weiyun Guo
- Key Lab of Biofabrication of Anhui Higher Education, Hefei University, Hefei, 230601, P. R. China
| | - Yong Hu
- Agro-products Processing Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230001, P. R. China
| | - Liuzeng Chen
- Key Lab of Biofabrication of Anhui Higher Education, Hefei University, Hefei, 230601, P. R. China
| |
Collapse
|
6
|
Abu-Hashem AA, El-Gazzar ABA, Abdelgawad AAM, Gouda MA. Synthesis and chemical reactions of thieno[3,2- c]quinolines from arylamine derivatives, part (V): a review. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2021.2012176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ameen A. Abu-Hashem
- Photochemistry Department (Heterocyclic Unit), National Research Centre, Dokki, Giza, Egypt
- Chemistry Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - A. B. A. El-Gazzar
- Photochemistry Department (Heterocyclic Unit), National Research Centre, Dokki, Giza, Egypt
| | - Ahmed A. M. Abdelgawad
- Chemistry Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
- Medicinal and Aromatic Plants Department, Desert Research Center, Cairo, Egypt
| | - Moustafa A. Gouda
- Department of Chemistry, Faculty of Science and Arts, Taibah University, Ulla, Medina, Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
7
|
Frejat FOA, Cao Y, Wang L, Zhai H, Abdelazeem AH, Gomaa HAM, Youssif BGM, Wu C. New 1,2,4-oxadiazole/pyrrolidine hybrids as topoisomerase IV and DNA gyrase inhibitors with promising antibacterial activity. Arch Pharm (Weinheim) 2022; 355:e2100516. [PMID: 35363388 DOI: 10.1002/ardp.202100516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/09/2022]
Abstract
A series of hybridized pyrrolidine compounds with a 1,2,4-oxadiazole moiety were synthesized to develop effective molecules against the enzymes DNA gyrase and topoisomerase IV (Topo IV). Compounds 8-20 were developed based on a previously disclosed series of compounds from our lab, but with small structural modifications in the hopes of increasing the compounds' biological activity. In comparison to novobiocin, with IC50 = 170 nM, the findings of the DNA gyrase inhibitory assay revealed that compounds 16 and 17 were the most potent of all synthesized derivatives, with IC50 values of 180 and 210 nM, respectively. Compound 17 had the strongest inhibitory effect against Escherichia coli Topo IV of all the synthesized compounds, with an IC50 value of 13 µM, which was comparable to novobiocin (IC50 = 11 µM). Therefore, hybrids 16 and 17 appeared to be potential dual-target inhibitors. In the minimal inhibitory concentration (MIC) assays, compound 17 outperformed ciprofloxacin against E. coli, with an MIC of 55 ng/ml, compared to 60 ng/ml for ciprofloxacin. Finally, the docking study, along with the in vitro experiments, supports our promising approach to effectively develop potent leads for further optimization as dual DNA gyrase and Topo IV inhibitors.
Collapse
Affiliation(s)
- Firas O A Frejat
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China.,Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, People's Republic of China
| | - Yaquan Cao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China.,Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, People's Republic of China
| | - Lihong Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China.,Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, People's Republic of China
| | - Hongjin Zhai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China.,Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, People's Republic of China
| | - Ahmed H Abdelazeem
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.,Pharmacy Department, College of Pharmacy, Riyadh Elm University, Riyadh, Saudi Arabia
| | - Hesham A M Gomaa
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Chunli Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China.,Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, People's Republic of China
| |
Collapse
|
8
|
Frejat FOA, Cao Y, Zhai H, Abdel-Aziz SA, Gomaa HA, Youssif BG, Wu C. Novel 1,2,4-oxadiazole/pyrrolidine hybrids as DNA gyrase and topoisomerase IV inhibitors with potential antibacterial activity. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103538] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
9
|
Mordvinov VA, Ponomarev DV, Pakharukov YV, Pakharukova MY. Anthelmintic Activity of Antioxidants: In Vitro Effects on the Liver Fluke Opisthorchis felineus. Pathogens 2021; 10:pathogens10030284. [PMID: 33801420 PMCID: PMC8001094 DOI: 10.3390/pathogens10030284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 11/26/2022] Open
Abstract
Currently, molecular parasitologists are searching for new agents against trematodiases. Redox metabolism is important for parasites as far as long-lived adult parasites inside a mammalian host are exposed to redox challenges. Antioxidants have been poorly studied as anthelmintic agents, in particular against the foodborne trematodes. Study of in vitro anthelmintic activity of nonenzymatic natural and synthetic antioxidants of various chemical structures was performed using standard motility and mortality assays against juvenile and adult Opisthorchis felineus worms. Promising agents have been found among both natural and synthetic compounds. The mitochondria-targeted antioxidant SkQ1 [10-(6′-plastoquinonyl)decyltriphenylphosphonium] in motility assays was as effective (half-maximal inhibitory concentration [IC50] 0.6–1.4 μM) as praziquantel (IC50 0.47–1.4 μM), and SkQ1 was significantly more effective than praziquantel in mortality assays. Moreover, extensive tegument damage of the adult fluke was revealed after SkQ1 treatment. Flavonoids manifested potency too, with IC50 values in a micromolar range (5.1–17.4 μM). Other natural and synthetic compounds tested against helminths were significantly less effective than praziquantel. Results of our study indicate that SkQ1 and flavonoids have high anthelmintic activities against the liver flukes. We propose that structure–activity relationship research might be worthwhile based on the structures of the most effective substances.
Collapse
Affiliation(s)
- Viatcheslav A. Mordvinov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Science, 10 Lavrentiev Ave., 630090 Novosibirsk, Russia; (V.A.M.); (D.V.P.)
| | - Denis V. Ponomarev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Science, 10 Lavrentiev Ave., 630090 Novosibirsk, Russia; (V.A.M.); (D.V.P.)
| | - Yuri V. Pakharukov
- Department of Physics, Monitoring and Diagnostic Methods, Industrial University of Tyumen, 38 Volodarskogo Str., 625000 Tyumen, Russia;
| | - Maria Y. Pakharukova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Science, 10 Lavrentiev Ave., 630090 Novosibirsk, Russia; (V.A.M.); (D.V.P.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-913-394-6669
| |
Collapse
|
10
|
Design and synthesis of chiral urea-derived iodoarenes and their assessment in the enantioselective dearomatizing cyclization of a naphthyl amide. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|