1
|
Borie-Guichot M, Lan Tran M, Garcia V, Oukhrib A, Rodriguez F, Turrin CO, Levade T, Génisson Y, Ballereau S, Dehoux C. Multivalent pyrrolidines acting as pharmacological chaperones against Gaucher disease. Bioorg Chem 2024; 146:107295. [PMID: 38513326 DOI: 10.1016/j.bioorg.2024.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
A concise asymmetric synthesis of clickable enantiomeric pyrrolidines was achieved using Crabbé-Ma allenation. The synthesized iminosugars were grafted by copper-free strain-promoted alkyne-azide cycloaddition onto phosphorus dendrimers. The hexavalent and dodecavalent pyrrolidines were evaluated as β-glucocerebrosidase inhibitors. The level of inhibition suggests that monofluorocyclooctatriazole group may contribute to the affinity for the protein leading to potent multivalent inhibitors. Docking studies were carried out to rationalize these results. Then, the iminosugars clusters were evaluated as pharmacological chaperones in Gaucher patients' fibroblasts. An increase in β-glucocerebrosidase activity was observed with hexavalent and dodecavalent pyrrolidines at concentrations as low as 1 µM and 0.1 µM, respectively. These iminosugar clusters constitute the first example of multivalent pyrrolidines acting as pharmacological chaperones against Gaucher disease.
Collapse
Affiliation(s)
- Marc Borie-Guichot
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France
| | - My Lan Tran
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Virginie Garcia
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université Paul Sabatier, France
| | | | - Frédéric Rodriguez
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Cédric-Olivier Turrin
- IMD-Pharma, 205 Route de Narbonne, 31077 Toulouse Cedex 4, France; Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099 31077 Toulouse CEDEX 4, France; LCC-CNRS, Université de Toulouse, CNRS 31013 Toulouse CEDEX 6, France
| | - Thierry Levade
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université Paul Sabatier, France; Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, F-31059 Toulouse, France
| | - Yves Génisson
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Stéphanie Ballereau
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Cécile Dehoux
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France.
| |
Collapse
|
2
|
De Angelis M, Primitivo L, Sappino C, Centrella B, Lucarini C, Lanciotti L, Petti A, Odore D, D'Annibale A, Macchi B, Stefanizzi V, Cirigliano A, Rinaldi T, Righi G, Ricelli A. Stereocontrolled synthesis of new iminosugar lipophilic derivatives and evaluation of biological activities. Carbohydr Res 2023; 534:108984. [PMID: 37984279 DOI: 10.1016/j.carres.2023.108984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Iminosugars' similarity to carbohydrates determines the exceptional potential for this class of polyhydroxylated alkaloids to serve as potential drug candidates for a wide variety of diseases such as diabetes, lysosomal storage diseases, cancer, bacterial and viral infections. The presence of lipophilic substituents has a significant impact on their biological activities. This work reports the synthesis of three new pyrrolidine lipophilic derivatives O-alkylated in C-6 position. The biological activities of our iminosugars' collection were tested in two cancer cell lines and, due to the pharmaceutical potential, in the model yeast system Saccharomyces cerevisiae to assess their toxicity.
Collapse
Affiliation(s)
- Martina De Angelis
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185, Rome, Italy.
| | - Ludovica Primitivo
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Carla Sappino
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Barbara Centrella
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Claudia Lucarini
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Lucrezia Lanciotti
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Alessia Petti
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Davide Odore
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Andrea D'Annibale
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Beatrice Macchi
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", Via Cracovia, 50, 00133, Rome, Italy
| | - Valeria Stefanizzi
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", Via Cracovia, 50, 00133, Rome, Italy
| | - Angela Cirigliano
- Institute of Molecular Biology and Pathology (IBPM)-CNR, P.le A. Moro 5, 00185, Rome, Italy
| | - Teresa Rinaldi
- Department of Biology and Biotechnology, "Sapienza" University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Giuliana Righi
- Institute of Molecular Biology and Pathology (IBPM)-CNR, P.le A. Moro 5, 00185, Rome, Italy
| | - Alessandra Ricelli
- Institute of Molecular Biology and Pathology (IBPM)-CNR, P.le A. Moro 5, 00185, Rome, Italy
| |
Collapse
|
3
|
Tran ML, Borie-Guichot M, Garcia V, Oukhrib A, Génisson Y, Levade T, Ballereau S, Turrin CO, Dehoux C. Phosphorus Dendrimers for Metal-Free Ligation: Design of Multivalent Pharmacological Chaperones against Gaucher Disease. Chemistry 2023; 29:e202301210. [PMID: 37313991 DOI: 10.1002/chem.202301210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/15/2023]
Abstract
The first phosphorus dendrimers built on a cyclotriphosphazene core and decorated with six or twelve monofluorocyclooctyne units were prepared. A simple stirring allowed the grafting of N-hexyl deoxynojirimycin inhitopes onto their surface by copper-free strain promoted alkyne-azide cycloaddition click reaction. The synthesized iminosugars clusters were tested as multivalent inhibitors of the biologically relevant enzymes β-glucocerebrosidase and acid α-glucosidase, involved in Gaucher and Pompe lysosomal storage diseases, respectively. For both enzymes, all the multivalent compounds were more potent than the reference N-hexyl deoxynojirimycin. Remarkably, the final dodecavalent compound proved to be one of the best β-glucocerebrosidase inhibitors described to date. These cyclotriphosphazene-based deoxynojirimycin dendrimers were then evaluated as pharmacological chaperones against Gaucher disease. Not only did these multivalent constructs cross the cell membranes but they were also able to increase β-glucocerebrosidase activity in Gaucher cells. Notably, dodecavalent compound allowed a 1.4-fold enzyme activity enhancement at a concentration as low as 100 nM. These new monofluorocyclooctyne-presenting dendrimers may further find numerous applications in the synthesis of multivalent objects for biological and pharmacological purposes.
Collapse
Affiliation(s)
- My Lan Tran
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, 31062, Toulouse, France
| | - Marc Borie-Guichot
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, 31062, Toulouse, France
| | - Virginie Garcia
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université Paul Sabatier, Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, 31059, Toulouse, France
| | | | - Yves Génisson
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, 31062, Toulouse, France
| | - Thierry Levade
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université Paul Sabatier, Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, 31059, Toulouse, France
| | - Stéphanie Ballereau
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, 31062, Toulouse, France
| | - Cédric-Olivier Turrin
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077, Toulouse CEDEX 4, France
- LCC-CNRS, Université de Toulouse, CNRS, 31013, Toulouse CEDEX 6, France
- IMD-Pharma, 205 Route de Narbonne, 31077, Toulouse CEDEX 4, France
| | - Cécile Dehoux
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
4
|
Poyraz S, Döndaş HA, Döndaş NY, Sansano JM. Recent insights about pyrrolidine core skeletons in pharmacology. Front Pharmacol 2023; 14:1239658. [PMID: 37745071 PMCID: PMC10512268 DOI: 10.3389/fphar.2023.1239658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/05/2023] [Indexed: 09/26/2023] Open
Abstract
To overcome numerous health disorders, heterocyclic structures of synthetic or natural origin are utilized, and notably, the emergence of various side effects of existing drugs used for treatment or the resistance of disease-causing microorganisms renders drugs ineffective. Therefore, the discovery of potential therapeutic agents that utilize different modes of action is of utmost significance to circumvent these constraints. Pyrrolidines, pyrrolidine-alkaloids, and pyrrolidine-based hybrid molecules are present in many natural products and pharmacologically important agents. Their key roles in pharmacotherapy make them a versatile scaffold for designing and developing novel biologically active compounds and drug candidates. This review aims to provide an overview of recent advancements (especially during 2015-2023) in the exploration of pyrrolidine derivatives, emphasizing their significance as fundamental components of the skeletal structure. In contrast to previous reviews that have predominantly focused on a singular biological activity associated with these molecules, this review consolidates findings from various investigations encompassing a wide range of important activities (antimicrobial, antiviral, anticancer, anti-inflammatory, anticonvulsant, cholinesterase inhibition, and carbonic anhydrase inhibition) exhibited by pyrrolidine derivatives. This study is also anticipated to serve as a valuable resource for drug research and development endeavors, offering significant insights and guidance.
Collapse
Affiliation(s)
- Samet Poyraz
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Çukurova University, Adana, Türkiye
| | - H. Ali Döndaş
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Çukurova University, Adana, Türkiye
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, Adana, Türkiye
| | | | - José M. Sansano
- Department of Organic Chemistry, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Instituto de Síntesis Orgánica (ISO), University of Alicante, Alicante, Spain
| |
Collapse
|
5
|
Wang Y, Xiao J, Meng A, Liu C. Multivalent Pyrrolidine Iminosugars: Synthesis and Biological Relevance. Molecules 2022; 27:molecules27175420. [PMID: 36080188 PMCID: PMC9457877 DOI: 10.3390/molecules27175420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 11/30/2022] Open
Abstract
Recently, the strategy of multivalency has been widely employed to design glycosidase inhibitors, as glycomimetic clusters often induce marked enzyme inhibition relative to monovalent analogs. Polyhydroxylated pyrrolidines, one of the most studied classes of iminosugars, are an attractive moiety due to their potent and specific inhibition of glycosidases and glycosyltransferases, which are associated with many crucial biological processes. The development of multivalent pyrrolidine derivatives as glycosidase inhibitors has resulted in several promising compounds that stand out. Herein, we comprehensively summarized the different synthetic approaches to the preparation of multivalent pyrrolidine clusters, from total synthesis of divalent iminosugars to complex architectures bearing twelve pyrrolidine motifs. Enzyme inhibitory properties and multivalent effects of these synthesized iminosugars were further discussed, especially for some less studied therapeutically relevant enzymes. We envision that this comprehensive review will help extend the applications of multivalent pyrrolidine iminosugars in future studies.
Collapse
Affiliation(s)
- Yali Wang
- College of Pharmacy, North China University of Science and Technology, Tangshan 063000, China
| | - Jian Xiao
- College of Pharmacy, North China University of Science and Technology, Tangshan 063000, China
| | - Aiguo Meng
- Affiliated Hospital, North China University of Science and Technology, Tangshan 063000, China
| | - Chunyan Liu
- College of Pharmacy, North China University of Science and Technology, Tangshan 063000, China
- Correspondence:
| |
Collapse
|
6
|
Liu X, Li F, Su L, Wang M, Jia T, Xu X, Li X, Wei C, Luo C, Chen S, Chen H. Design and synthesis of novel benzimidazole-iminosugars linked a substituted phenyl group and their inhibitory activities against β-glucosidase. Bioorg Chem 2022; 127:106016. [PMID: 35841671 DOI: 10.1016/j.bioorg.2022.106016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/13/2022] [Accepted: 07/06/2022] [Indexed: 11/28/2022]
Abstract
A series of novel benzimidazole-iminosugars linked a (substuituted) phenyl group on benzene ring of benzimidazole 5(a-p) and 6(a-p) have been rationally designed and conveniently synthesized through Suzuki coupling reaction in high yields. All compounds have been evaluated for their inhibitory activities against β-glucosidase (almond). Six compounds 5d, 6d, 6e, 6i, 6n, and 6p showed more significant inhibitory activities with IC50 values in the range of 0.03-0.08 μM, almost 10-fold improved than that of the parent analogue 4, and much higher than that of the positive control castanospermine. The additional phenyl ring and the electron donating groups on it would be beneficial for the activity. Compounds 6d, 6n, and 4 had been chosen to be tested for their inhibition types against β-glucosidase. Interestingly, three compounds have different inhibition types although they had very similar structure. Their Ki values were calculated to be 0.02 ± 0.01 μM, 0.02 ± 0.01 μM, and 0.66 ± 0.14 μM, respectively. The equilibrium dissociation constant (KD) for 6d, 6n, and 4 and β-glucosidase was 0.04 μM, 0.03 μM and 0.45 μM by the ITC-based assay, respectively. Molecular docking work suggests that such benzimidazole-iminosugars derivatives might bind to the active site of β-glucosidase mainly through hydrogen bonds, the additional phenyl ring towards the solvent-exposed region played an important effect on their inhibitory activity against β-glucosidase.
Collapse
Affiliation(s)
- Xu Liu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Fengxin Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Lulu Su
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Mingchen Wang
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Tongguan Jia
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Xiaoming Xu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Xiaoliu Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Chao Wei
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Cheng Luo
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijie Chen
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Chen
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
7
|
GCase Enhancers: A Potential Therapeutic Option for Gaucher Disease and Other Neurological Disorders. Pharmaceuticals (Basel) 2022; 15:ph15070823. [PMID: 35890122 PMCID: PMC9325019 DOI: 10.3390/ph15070823] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/07/2022] Open
Abstract
Pharmaceutical chaperones (PCs) are small compounds able to bind and stabilize misfolded proteins, allowing them to recover their native folding and thus their biological activity. In particular, lysosomal storage disorders (LSDs), a class of metabolic disorders due to genetic mutations that result in misfolded lysosomal enzymes, can strongly benefit from the use of PCs able to facilitate their translocation to the lysosomes. This results in a recovery of their catalytic activity. No PC for the GCase enzyme (lysosomal acid-β-glucosidase, or glucocerebrosidase) has reached the market yet, despite the importance of this enzyme not only for Gaucher disease, the most common LSD, but also for neurological disorders, such as Parkinson’s disease. This review aims to describe the efforts made by the scientific community in the last 7 years (since 2015) in order to identify new PCs for the GCase enzyme, which have been mainly identified among glycomimetic-based compounds.
Collapse
|
8
|
Vanni C, Clemente F, Paoli P, Morrone A, Matassini C, Goti A, Cardona F. 3,4,5-Trihydroxypiperidine based multivalent glucocerebrosidase (GCase) enhancers. Chembiochem 2022; 23:e202200077. [PMID: 35322924 PMCID: PMC9400994 DOI: 10.1002/cbic.202200077] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/21/2022] [Indexed: 11/28/2022]
Abstract
The synthesis of five new multivalent derivatives of a trihydroxypiperidine iminosugar was accomplished through copper catalyzed alkyne‐azide cycloaddition (CuAAC) reaction of an azido ending piperidine and several propargylated scaffolds. The resulting multivalent architectures were assayed as inhibitors of lysosomal GCase, the defective enzyme in Gaucher disease. The multivalent compounds resulted in much more potent inhibitors than a parent monovalent reference compound, thus showing a good multivalent effect. Biological investigation of these compounds as pharmacological chaperones revealed that the trivalent derivative (12) gives a 2‐fold recovery of the GCase activity on Gaucher patient fibroblasts bearing the L444P/L444P mutations responsible for neuropathies. Additionally, a thermal denaturation experiment showed its ability to impart stability to the recombinant enzyme used in therapy.
Collapse
Affiliation(s)
- Costanza Vanni
- University of Florence: Universita degli Studi di Firenze, Department of Chemistry "Ugo Schiff", ITALY
| | - Francesca Clemente
- University of Florence: Universita degli Studi di Firenze, Department of Chemistry "Ugo Schiff", ITALY
| | - Paolo Paoli
- University of Florence: Universita degli Studi di Firenze, Department of Chemistry "Ugo Schiff", ITALY
| | - Amelia Morrone
- University of Florence: Universita degli Studi di Firenze, NEUROFARBA, ITALY
| | - Camilla Matassini
- University of Florence: Universita degli Studi di Firenze, Department of Chemistry "Ugo Schiff", ITALY
| | - Andrea Goti
- University of Florence: Universita degli Studi di Firenze, Department of Chemistry "Ugo Schiff", ITALY
| | - Francesca Cardona
- Università di Firenze, Dipartimento di Chimica, Via della Lastruccia 13, 50019, Sesto Fiorentino, ITALY
| |
Collapse
|
9
|
Discovery of human hexosaminidase inhibitors by in situ screening of a library of mono- and divalent pyrrolidine iminosugars. Bioorg Chem 2022; 120:105650. [DOI: 10.1016/j.bioorg.2022.105650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 01/10/2023]
|
10
|
Ahuja-Casarín AI, Merino-Montiel P, Vega-Baez JL, Montiel-Smith S, Fernandes MX, Lagunes I, Maya I, Padrón JM, López Ó, Fernández-Bolaños JG. Tuning the activity of iminosugars: novel N-alkylated deoxynojirimycin derivatives as strong BuChE inhibitors. J Enzyme Inhib Med Chem 2021; 36:138-146. [PMID: 33228403 PMCID: PMC7717699 DOI: 10.1080/14756366.2020.1847101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have designed unprecedented cholinesterase inhibitors based on 1-deoxynojirimycin as potential anti-Alzheimer’s agents. Compounds are comprised of three key structural motifs: the iminosugar, for interaction with cholinesterase catalytic anionic site (CAS); a hydrocarbon tether with variable lengths, and a fragment derived from 2-phenylethanol for promoting interactions with peripheral anionic site (PAS). Title compounds exhibited good selectivity towards BuChE, strongly depending on the substitution pattern and the length of the tether. The lead compounds were found to be strong mixed inhibitors of BuChE (IC50 = 1.8 and 1.9 µM). The presumptive binding mode of the lead compound was analysed using molecular docking simulations, revealing H-bond interactions with the catalytic subsite (His438) and CAS (Trp82 and Glu197) and van der Waals interactions with PAS (Thr284, Pro285, Asn289). They also lacked significant antiproliferative activity against tumour and non-tumour cells at 100 µM, making them promising new agents for tackling Alzheimer’s disease through the cholinergic approach.
Collapse
Affiliation(s)
- Ana I Ahuja-Casarín
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Penélope Merino-Montiel
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - José Luis Vega-Baez
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Sara Montiel-Smith
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Miguel X Fernandes
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, La Laguna, Spain
| | - Irene Lagunes
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, La Laguna, Spain
| | - Inés Maya
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Seville, Spain
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, La Laguna, Spain
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Seville, Spain
| | | |
Collapse
|
11
|
Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021; 121:7638-7956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology (JIST), Jorhat, Assam 785010, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science and Engineering Research (IISER), Pune, Maharashtra 411021, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
12
|
Klunda T, Hricovíni M, Šesták S, Kóňa J, Poláková M. Selective Golgi α-mannosidase II inhibitors: N-alkyl substituted pyrrolidines with a basic functional group. NEW J CHEM 2021. [DOI: 10.1039/d1nj01176f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzymatic assays, molecular modeling and NMR studies of novel 1,4-dideoxy-1,4-imino-l-lyxitols provided new information on the GH38 family enzyme inhibitors and their selectivity.
Collapse
Affiliation(s)
- Tomáš Klunda
- Institute of Chemistry
- Center for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Michal Hricovíni
- Institute of Chemistry
- Center for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Sergej Šesták
- Institute of Chemistry
- Center for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Juraj Kóňa
- Institute of Chemistry
- Center for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Monika Poláková
- Institute of Chemistry
- Center for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| |
Collapse
|
13
|
Weber P, Fischer R, Nasseri SA, Stütz AE, Thonhofer M, Withers SG, Wolfsgruber A, Wrodnigg TM. New α-galactosidase-inhibiting aminohydroxycyclopentanes. RSC Adv 2021; 11:15943-15951. [PMID: 35481199 PMCID: PMC9029992 DOI: 10.1039/d1ra02507d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/22/2021] [Indexed: 01/09/2023] Open
Abstract
A set of cyclopentanoid α-galactosidase ligands was prepared from a partially protected ω-eno-aldose via a reliable (2 + 3)-cycloaddition protocol with slightly modified conditions. The obtained N-benzylisoxazolidine ring was selectively opened and the configuration of the hydroxymethylgroup was inverted. Consecutive deprotection provided an aminocyclopentane, which was N-alkylated to furnish a set of potential α-galactosidase inhibitors. Their glycosidase inhibitory activities were screened with a panel of standard glycosidases of biological significance. A concise and robust synthesis of new cyclopentanoid competitive inhibitors of α-galactosidases related to Fabry's disease and other α-galactosidase related disorders.![]()
Collapse
Affiliation(s)
- Patrick Weber
- Glycogroup
- Institute of Chemistry and Technology of Biobased Systems
- Graz University of Technology
- A-8010 Graz
- Austria
| | - Roland Fischer
- Institute of Inorganic Chemistry
- Graz University of Technology
- A-8010 Graz
- Austria
| | - Seyed A. Nasseri
- Chemistry Department
- University of British Columbia
- Vancouver
- V6T 1Z1 Canada
| | - Arnold E. Stütz
- Glycogroup
- Institute of Chemistry and Technology of Biobased Systems
- Graz University of Technology
- A-8010 Graz
- Austria
| | - Martin Thonhofer
- Glycogroup
- Institute of Chemistry and Technology of Biobased Systems
- Graz University of Technology
- A-8010 Graz
- Austria
| | - Stephen G. Withers
- Chemistry Department
- University of British Columbia
- Vancouver
- V6T 1Z1 Canada
| | - Andreas Wolfsgruber
- Glycogroup
- Institute of Chemistry and Technology of Biobased Systems
- Graz University of Technology
- A-8010 Graz
- Austria
| | - Tanja M. Wrodnigg
- Glycogroup
- Institute of Chemistry and Technology of Biobased Systems
- Graz University of Technology
- A-8010 Graz
- Austria
| |
Collapse
|
14
|
Della Sala P, Vanni C, Talotta C, Di Marino L, Matassini C, Goti A, Neri P, Šesták S, Cardona F, Gaeta C. Multivalent resorcinarene clusters decorated with DAB-1 inhitopes: targeting Golgi α-mannosidase from Drosophila melanogaster. Org Chem Front 2021. [DOI: 10.1039/d1qo01048d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Resorcinarene@DAB-1 clusters show a remarkable multivalent effect towards GMIIb over other α-mannosidases, due to a rebinding mechanism: two DAB-1 units of the cluster bind the two Zn-sites of the dimeric protein in an alternate way.
Collapse
Affiliation(s)
- Paolo Della Sala
- Laboratory of Supramolecular Chemistry (SupraLab@UniSa), Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84984, Fisciano, Italy
| | - Costanza Vanni
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Carmen Talotta
- Laboratory of Supramolecular Chemistry (SupraLab@UniSa), Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84984, Fisciano, Italy
| | - Luca Di Marino
- Laboratory of Supramolecular Chemistry (SupraLab@UniSa), Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84984, Fisciano, Italy
| | - Camilla Matassini
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
- Associated with LENS, via N. Carrara 1, 50019 Sesto Fiorentino, FI, Italy
| | - Andrea Goti
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
- Associated with LENS, via N. Carrara 1, 50019 Sesto Fiorentino, FI, Italy
| | - Placido Neri
- Laboratory of Supramolecular Chemistry (SupraLab@UniSa), Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84984, Fisciano, Italy
| | - Sergej Šesták
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dubravska cesta 9, 84538, Bratislava, Slovakia
| | - Francesca Cardona
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
- Associated with LENS, via N. Carrara 1, 50019 Sesto Fiorentino, FI, Italy
| | - Carmine Gaeta
- Laboratory of Supramolecular Chemistry (SupraLab@UniSa), Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84984, Fisciano, Italy
| |
Collapse
|