1
|
Krishnan A, Khan FI, Sukumar S, Khan MKA. Identification of potential molecular targets and repurposed drugs for tuberculosis using network-based screening approach, molecular docking, and simulation. J Biomol Struct Dyn 2025; 43:73-91. [PMID: 37948198 DOI: 10.1080/07391102.2023.2279699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/22/2023] [Indexed: 11/12/2023]
Abstract
The spread of drug-resistant strains of tuberculosis has hampered efforts to control the disease worldwide. The Mycobacterium tuberculosis cell wall envelope is dynamic, with complex features that protect it from the host immunological response. As a result, the bacterial cell wall components represent a potential target for drug discovery. Protein-protein interaction networks (PPIN) are critical for understanding disease conditions and identifying precise therapeutic targets. We used a rational theoretical approach by constructing a PPIN with the proteins involved in cell wall biosynthesis. The PPIN was constructed through the STRING database and embB was identified as a key protein by using four topological measures, betweenness, closeness, degree, and eigenvector, in the CytoNCA tool in Cytoscape. The 'Drug repurposing' approach was employed to find suitable inhibitors against embB. We used the Schrödinger suites for molecular docking, molecular dynamics simulation, and binding free energy calculations to validate the binding of protein with the ligand. FDA-approved drugs from the ZINC database and DrugBank were screened against embB (PDB ID: 7BVF) using high-throughput virtual screening, standard precision, and extra precision docking. The drugs were screened based on the XP docking score of the standard drug ethambutol. Accordingly, from the top five hits, azilsartan and dihydroergotamine were selected based on the binding free energy values and were further subjected to Molecular Dynamics Simulation studies for 100 ns. Our study confirms that Azilsartan and Dihydroergotamine form stable complexes with embB and can be used as potential lead molecules based on further in vitro and in vivo experimental validation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Arunika Krishnan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Faez Iqbal Khan
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| | - Sudarkodi Sukumar
- Lakshmikumaran and Sridharan Attorneys, Wallace Garden, Nungambakkam, Chennai, India
| | - Md Khurshid Alam Khan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| |
Collapse
|
2
|
Aparecida Santos L, de Castro Dutra J, Picoli Marinho E, Cosme Cotta Malaquias L, Nascimento Gomes B, Caravita Grisolia J, Andrade Dias N, Burger E. Celecoxib exhibits antifungal effect against Paracoccidioides brasiliensis both directly and indirectly by activating neutrophil responses. Int Immunopharmacol 2024; 138:112606. [PMID: 38963980 DOI: 10.1016/j.intimp.2024.112606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Celecoxib, an anti-inflammatory drug, combined therapies using antimicrobials and immune modulator drugs are being studied. OBJECTIVE To assess whether Celecoxib has direct in vitro antifungal effect against the Paracoccidioides brasiliensis, the causative agent of Paracoccidioidomycosis-(PCM) and also if it improves the in vivo activity of neutrophils-(PMN) in an experimental murine subcutaneous-(air pouch) model of the disease. METHODS The antifungal activity of Celecoxib(6 mg/mL) on P. brasiliensis-(Pb18) was evaluated using the microdilution technique. Splenocytes co-cultured with Pb18 and treated with Celecoxib(6 mg/mL) were co-cultured for 24, 48 and 72-hours. Swiss mice were inoculated with Pb18 and treated with Celecoxib(6 mg/kg) in the subcutaneous air pouch. Neutrophils were collected from the air pouch. Mitochondrial activity, reactive oxygen production, catalase, peroxidase, cytokines and chemokines, nitrogen species, total protein, microbicidal activity of PMNs and viable Pb18 cells numbers were analyzed. RESULTS Celecoxib had no cytotoxic effect on splenocytes co-cultured with Pb18, but had a marked direct antifungal effect, inhibiting fungal growth both in vitro and in vivo. Celecoxib interaction with immune system cells in the air pouch, it leads to activation of PMNs, as confirmed by several parameters (mitochondrial activity, reactive oxygen species, peroxidase, KC and IL-6 increase, killing constant and phagocytosis). Celecoxib was able to reduce IL-4, IL-10 and IL-12 cytokine production. The number of recovered viable Pb18 decreased dramatically. CONCLUSIONS This is the first report of the direct antifungal activity of Celecoxib against P. brasiliensis. The use of Celecoxib opens a new possibility for future treatment of PCM.
Collapse
Affiliation(s)
- Lauana Aparecida Santos
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL. Alfenas, MG - Brazil CEP - 37130-001, Brazil
| | - Julia de Castro Dutra
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL. Alfenas, MG - Brazil CEP - 37130-001, Brazil
| | - Enrico Picoli Marinho
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL. Alfenas, MG - Brazil CEP - 37130-001, Brazil
| | - Luiz Cosme Cotta Malaquias
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL. Alfenas, MG - Brazil CEP - 37130-001, Brazil
| | - Bruno Nascimento Gomes
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL. Alfenas, MG - Brazil CEP - 37130-001, Brazil
| | - Julianne Caravita Grisolia
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL. Alfenas, MG - Brazil CEP - 37130-001, Brazil
| | - Nayara Andrade Dias
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL. Alfenas, MG - Brazil CEP - 37130-001, Brazil
| | - Eva Burger
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL. Alfenas, MG - Brazil CEP - 37130-001, Brazil.
| |
Collapse
|
3
|
Lorente-Torres B, Llano-Verdeja J, Castañera P, Ferrero HÁ, Fernández-Martínez S, Javadimarand F, Mateos LM, Letek M, Mourenza Á. Innovative Strategies in Drug Repurposing to Tackle Intracellular Bacterial Pathogens. Antibiotics (Basel) 2024; 13:834. [PMID: 39335008 PMCID: PMC11428606 DOI: 10.3390/antibiotics13090834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Intracellular bacterial pathogens pose significant public health challenges due to their ability to evade immune defenses and conventional antibiotics. Drug repurposing has recently been explored as a strategy to discover new therapeutic uses for established drugs to combat these infections. Utilizing high-throughput screening, bioinformatics, and systems biology, several existing drugs have been identified with potential efficacy against intracellular bacteria. For instance, neuroleptic agents like thioridazine and antipsychotic drugs such as chlorpromazine have shown effectiveness against Staphylococcus aureus and Listeria monocytogenes. Furthermore, anticancer drugs including tamoxifen and imatinib have been repurposed to induce autophagy and inhibit bacterial growth within host cells. Statins and anti-inflammatory drugs have also demonstrated the ability to enhance host immune responses against Mycobacterium tuberculosis. The review highlights the complex mechanisms these pathogens use to resist conventional treatments, showcases successful examples of drug repurposing, and discusses the methodologies used to identify and validate these drugs. Overall, drug repurposing offers a promising approach for developing new treatments for bacterial infections, addressing the urgent need for effective antimicrobial therapies.
Collapse
Affiliation(s)
- Blanca Lorente-Torres
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | - Jesús Llano-Verdeja
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | - Pablo Castañera
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | - Helena Á Ferrero
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | | | - Farzaneh Javadimarand
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | - Luis M Mateos
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, 24071 León, Spain
| | - Michal Letek
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, 24071 León, Spain
| | - Álvaro Mourenza
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| |
Collapse
|
4
|
Hanscheid T, Del Portal Luyten CR, Hermans SM, Grobusch MP. Repurposing of anti-malarial drugs for the treatment of tuberculosis: realistic strategy or fanciful dead end? Malar J 2024; 23:132. [PMID: 38702649 PMCID: PMC11067164 DOI: 10.1186/s12936-024-04967-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Drug repurposing offers a strategic alternative to the development of novel compounds, leveraging the known safety and pharmacokinetic profiles of medications, such as linezolid and levofloxacin for tuberculosis (TB). Anti-malarial drugs, including quinolones and artemisinins, are already applied to other diseases and infections and could be promising for TB treatment. METHODS This review included studies on the activity of anti-malarial drugs, specifically quinolones and artemisinins, against Mycobacterium tuberculosis complex (MTC), summarizing results from in vitro, in vivo (animal models) studies, and clinical trials. Studies on drugs not primarily developed for TB (doxycycline, sulfonamides) and any novel developed compounds were excluded. Analysis focused on in vitro activity (minimal inhibitory concentrations), synergistic effects, pre-clinical activity, and clinical trials. RESULTS Nineteen studies, including one ongoing Phase 1 clinical trial, were analysed: primarily investigating quinolones like mefloquine and chloroquine, and, to a lesser extent, artemisinins. In vitro findings revealed high MIC values for anti-malarials versus standard TB drugs, suggesting a limited activity. Synergistic effects with anti-TB drugs were modest, with some synergy observed in combinations with isoniazid or pyrazinamide. In vivo animal studies showed limited activity of anti-malarials against MTC, except for one study of the combination of chloroquine with isoniazid. CONCLUSIONS The repurposing of anti-malarials for TB treatment is limited by high MIC values, poor synergy, and minimal in vivo effects. Concerns about potential toxicity at effective dosages and the risk of antimicrobial resistance, especially where TB and malaria overlap, further question their repurposing. These findings suggest that focusing on novel compounds might be both more beneficial and rewarding.
Collapse
Affiliation(s)
- Thomas Hanscheid
- Instituto de Microbiologia, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Claire Ruiz Del Portal Luyten
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam Infection and Immunity, Amsterdam Public Health, Amsterdam UMC, Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
| | - Sabine M Hermans
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam Infection and Immunity, Amsterdam Public Health, Amsterdam UMC, Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
| | - Martin P Grobusch
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam Infection and Immunity, Amsterdam Public Health, Amsterdam UMC, Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands.
- Institute of Tropical Medicine, German Centre for Infection Research (DZIF), University of Tübingen, Tübingen, Germany.
- Centre de Recherches Médicales en Lambaréné (CERMEL), Lambaréné, Gabon.
- Masanga Medical Research Unit (MMRU), Masanga, Sierra Leone.
- Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
5
|
Adolph C, Cheung CY, McNeil MB, Jowsey WJ, Williams ZC, Hards K, Harold LK, Aboelela A, Bujaroski RS, Buckley BJ, Tyndall JDA, Li Z, Langer JD, Preiss L, Meier T, Steyn AJC, Rhee KY, Berney M, Kelso MJ, Cook GM. A dual-targeting succinate dehydrogenase and F 1F o-ATP synthase inhibitor rapidly sterilizes replicating and non-replicating Mycobacterium tuberculosis. Cell Chem Biol 2024; 31:683-698.e7. [PMID: 38151019 DOI: 10.1016/j.chembiol.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/13/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Abstract
Mycobacterial bioenergetics is a validated target space for antitubercular drug development. Here, we identify BB2-50F, a 6-substituted 5-(N,N-hexamethylene)amiloride derivative as a potent, multi-targeting bioenergetic inhibitor of Mycobacterium tuberculosis. We show that BB2-50F rapidly sterilizes both replicating and non-replicating cultures of M. tuberculosis and synergizes with several tuberculosis drugs. Target identification experiments, supported by docking studies, showed that BB2-50F targets the membrane-embedded c-ring of the F1Fo-ATP synthase and the catalytic subunit (substrate-binding site) of succinate dehydrogenase. Biochemical assays and metabolomic profiling showed that BB2-50F inhibits succinate oxidation, decreases the activity of the tricarboxylic acid (TCA) cycle, and results in succinate secretion from M. tuberculosis. Moreover, we show that the lethality of BB2-50F under aerobic conditions involves the accumulation of reactive oxygen species. Overall, this study identifies BB2-50F as an effective inhibitor of M. tuberculosis and highlights that targeting multiple components of the mycobacterial respiratory chain can produce fast-acting antimicrobials.
Collapse
Affiliation(s)
- Cara Adolph
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Matthew B McNeil
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - William J Jowsey
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Zoe C Williams
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Kiel Hards
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Liam K Harold
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Ashraf Aboelela
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Richard S Bujaroski
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Benjamin J Buckley
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Joel D A Tyndall
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, Guangzhou, China
| | - Julian D Langer
- Proteomics, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Laura Preiss
- Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Thomas Meier
- Department of Life Sciences, Imperial College London, Exhibition Road, London SW7 2AZ, UK; Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Adrie J C Steyn
- Africa Health Research Institute, University of KwaZulu Natal, Durban, KwaZulu, Natal, South Africa; Department of Microbiology, Centers for AIDs Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kyu Y Rhee
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY 14853, USA; Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Michael Berney
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Michael J Kelso
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Gregory M Cook
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand.
| |
Collapse
|
6
|
Tarin M, Babaei M, Eshghi H, Matin MM, Saljooghi AS. Targeted delivery of elesclomol using a magnetic mesoporous platform improves prostate cancer treatment both in vitro and in vivo. Talanta 2024; 270:125539. [PMID: 38141466 DOI: 10.1016/j.talanta.2023.125539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/25/2023] [Accepted: 12/07/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND To improve the anticancer properties of elesclomol (ELC), targeted theranostic nanoparticles (NPs; APT-PEG-Au-MMNPs@ELC) were designed to increase the selectivity of the drug delivery system (DDS). MATERIALS AND METHODS ELC was synthesized and entrapped in the open porous structure of magnetic mesoporous silica nanoparticles (MMNPs). The pore entrance of MMNPs was then blocked using gold gatekeepers. Finally, the external surfaces of the particles were grafted with functional polyethylene glycol (PEG) and EpCAM aptamer to generate biocompatible and targeted NPs. In the next step, the physicochemical properties of prepared NPs were fully evaluated and their anticancer potential was evaluated both in vitro and in vivo. RESULTS The targeted NPs were successfully synthesized with a final size diameter of 81.13 ± 7.41 nm. The results indicated a pH-dependent release pattern, which sustained for 72 h despite an initial rapid release. Upon exposure to APT-PEG-Au-MMNPs@ELC, higher cytotoxicity was observed in human prostate cancer cells (PC-3) as compared with control Chinese hamster ovary (CHO) cells, indicating higher specificity of targeted NPs against EpCAM-positive cancerous cells. Moreover, APT-PEG-Au-MMNPs@ELC could induce apoptosis in PC-3 cells. In vivo results on a PC-3 xenograft tumor model demonstrated that targeted NPs could significantly inhibit tumor growth and diminish severe side effects of ELC, compared to the free drug. CONCLUSION Collectively, APT-PEG-Au-MMNPs@ELC could be considered a promising theranostic platform for the targeted delivery of ELC to improve its therapeutic effects in prostate cancer.
Collapse
Affiliation(s)
- Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam Babaei
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Eshghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Amir Sh Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
7
|
Hossain S, Rafi RH, Ripa FA, Khan MRI, Hosen ME, Molla MKI, Faruqe MO, Al-Bari MAA, Das S. Modulating the antibacterial effect of the existing antibiotics along with repurposing drug metformin. Arch Microbiol 2024; 206:190. [PMID: 38519821 DOI: 10.1007/s00203-024-03917-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Owing to the extensive prevalence of resistant bacteria to numerous antibiotic classes, antimicrobial resistance (AMR) poses a well-known hazard to world health. As an alternate approach in the field of antimicrobial drug discovery, repurposing the available medications which are also called antibiotic resistance breakers has been pursued for the treatment of infections with antimicrobial resistance pathogens. In this study, we used Haloperidol, Metformin and Hydroxychloroquine as repurposing drugs in in vitro (Antibacterial Antibiotic Sensitivity Test and Minimum Inhibitory Concentration-MIC) and in vivo (Shigellosis in Swiss albino mice) tests in combination with traditional antibiotics (Oxytetracycline, Erythromycin, Doxycycline, Gentamicin, Ampicillin, Chloramphenicol, and Penicillin) against a group of AMR resistance bacteria (Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Shigella boydii). After observing the results of the conducted in vitro experiments we studied the effects of the above non antibiotic drugs in combination with the said antibiotics. As an repurposing adjuvant antibiotic drug, Metformin exhibited noteworthy activity in almost all in vitro, in vivo and in silico tests (Zone of inhibition for 30 to 43 mm for E.coli in combination with Doxycycline; MIC value decreased 50 µM to 0.781 µM with Doxycycline on S. boydii).In rodents Doxycycline and Metformin showed prominent against Shigellosis in White blood cell count (6.47 ± 0.152 thousand/mm3) and Erythrocyte sedimentation rate (10.5 ± 1.73 mm/hr). Our findings indicated that Metformin and Doxycycline combination has a crucial impact on Shigellosis. The molecular docking study was performed targeting the Acriflavine resistance protein B (AcrB) (PDB ID: 4CDI) and MexA protein (PDB ID: 6IOK) protein with Metformin (met8) drug which showed the highest binding energy with - 6.4 kcal/mol and - 5.5 kcal/mol respectively. Further, molecular dynamics simulation revealed that the docked complexes were relatively stable during the 100 ns simulation period. This study suggest Metformin and other experimented drugs can be used as adjuvants boost up antibiosis but further study is needed to find out the safety and efficacy of this non-antibiotic drug as potent antibiotic adjuvant.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Somlal Das
- University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
8
|
Sharma D, Gautam S, Srivastava N, Bisht D. In silico Screening of Food and Drug Administration-approved Compounds against Trehalose 2-sulfotransferase (Rv0295c) in Mycobacterium tuberculosis: Insights from Molecular Docking and Dynamics Simulations. Int J Mycobacteriol 2024; 13:73-82. [PMID: 38771283 DOI: 10.4103/ijmy.ijmy_20_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/25/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Tuberculosis (TB) remains a prominent global health challenge, distinguished by substantial occurrences of infection and death. The upsurge of drug-resistant TB strains underscores the urgency to identify novel therapeutic targets and repurpose existing compounds. Rv0295c is a potentially druggable enzyme involved in cell wall biosynthesis and virulence. We evaluated the inhibitory activity of Food and Drug Administration (FDA)-approved compounds against Rv0295c of Mycobacterium tuberculosis, employing molecular docking, ADME evaluation, and dynamics simulations. METHODS The study screened 1800 FDA-approved compounds and selected the top five compounds with the highest docking scores. Following this, we subjected the initially screened ligands to ADME analysis based on their dock scores. In addition, the compound exhibited the highest binding affinity chosen for molecular dynamics (MD) simulation to investigate the dynamic behavior of the ligand-receptor complex. RESULTS Dihydroergotamine (CHEMBL1732) exhibited the highest binding affinity (-12.8 kcal/mol) for Rv0295c within this set of compounds. We evaluated the stability and binding modes of the complex over extended simulation trajectories. CONCLUSION Our in silico analysis demonstrates that FDA-approved drugs can serve as potential Rv0295c inhibitors through repurposing. The combination of molecular docking and MD simulation offers a comprehensive understanding of the interactions between ligands and the protein target, providing valuable guidance for further experimental validation. Identifying Rv0295c inhibitors may contribute to new anti-TB drugs.
Collapse
Affiliation(s)
- Devesh Sharma
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
- School of Studies in Biochemistry, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Sakshi Gautam
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Nalini Srivastava
- School of Studies in Biochemistry, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Deepa Bisht
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| |
Collapse
|
9
|
Dong W, Wang G, Bai Y, Li Y, Zhao L, Lu W, Wang C, Zhang Z, Lu H, Wang X, Chen H, Tan C. Repurposing an Antioxidant to Kill Mycobacterium tuberculosis by Targeting the 50S Subunit of the Ribosome. Biomolecules 2023; 13:1793. [PMID: 38136663 PMCID: PMC10742058 DOI: 10.3390/biom13121793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Tuberculosis and drug-resistant TB remain serious threats to global public health. It is urgent to develop novel anti-TB drugs in order to control it. In addition to redesigning and developing new anti-TB drugs, drug repurposing is also an innovative way to develop antibacterial drugs. Based on this method, we discovered SKQ-1 in the FDA-approved drug library and evaluated its anti-TB activity. In vitro, we demonstrated that SKQ-1 engaged in bactericidal activity against drug-sensitive and -resistant Mtb and confirmed the synergistic effects of SKQ1 with RIF and INH. Moreover, SKQ-1 showed a significant Mtb-killing effect in macrophages. In vivo, both the SKQ-1 treatment alone and the treatment in combination with RIF were able to significantly reduce the bacterial load and improve the survival rate of G. mellonella infected with Mtb. We performed whole-genome sequencing on screened SKQ-1-resistant strains and found that the SNP sites were concentrated in the 50S ribosomal subunit of Mtb. Furthermore, we proved that SKQ-1 can inhibit protein translation. In summary, from the perspective of drug repurposing, we discovered and determined the anti-tuberculosis effect of SKQ-1, revealed its synergistic effects with RIF and INH, and demonstrated its mechanism of action through targeting ribosomes and disrupting protein synthesis, thus making it a potential treatment option for DR-TB.
Collapse
Affiliation(s)
- Wenqi Dong
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Gaoyan Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yajuan Bai
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yuxin Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liying Zhao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Wenjia Lu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chenchen Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Zhaoran Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Hao Lu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
10
|
Tarin M, Babaie M, Eshghi H, Matin MM, Saljooghi AS. Elesclomol, a copper-transporting therapeutic agent targeting mitochondria: from discovery to its novel applications. J Transl Med 2023; 21:745. [PMID: 37864163 PMCID: PMC10589935 DOI: 10.1186/s12967-023-04533-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/16/2023] [Indexed: 10/22/2023] Open
Abstract
Copper (Cu) is an essential element that is involved in a variety of biochemical processes. Both deficiency and accumulation of Cu are associated with various diseases; and a high amount of accumulated Cu in cells can be fatal. The production of reactive oxygen species (ROS), oxidative stress, and cuproptosis are among the proposed mechanisms of copper toxicity at high concentrations. Elesclomol (ELC) is a mitochondrion-targeting agent discovered for the treatment of solid tumors. In this review, we summarize the synthesis of this drug, its mechanisms of action, and the current status of its applications in the treatment of various diseases such as cancer, tuberculosis, SARS-CoV-2 infection, and other copper-associated disorders. We also provide some detailed information about future directions to improve its clinical performance.
Collapse
Affiliation(s)
- Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam Babaie
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Eshghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M. Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Sh. Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
11
|
Singh D, Singh A, Chawla PA. An overview of current strategies and future prospects in drug repurposing in tuberculosis. EXPLORATION OF MEDICINE 2023. [DOI: 10.37349/emed.2023.00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
A large number of the population faces mortality as an effect of tuberculosis (TB). The line of treatment in the management of TB faces a jolt with ever-increasing multi-drug resistance (DR) cases. Further, the drugs engaged in the treatment of TB are associated with different toxicities, such as renal and hepatic toxicity. Different combinations are sought for effective anti-tuberculosis (anti-TB) effects with a decrease in toxicity. In this regard, drug repurposing has been very promising in improving the efficacy of drugs by enhancement of bioavailability and widening the safety margin. The success in drug repurposing lies in specified binding and inhibition of a particular target in the drug molecule. Different drugs have been repurposed for various ailments like cancer, Alzheimer’s disease, acquired immunodeficiency syndrome (AIDS), hair loss, etc. Repurposing in anti-TB drugs holds great potential too. The use of whole-cell screening assays and the availability of large chemical compounds for testing against Mycobacterium tuberculosis poses a challenge in this development. The target-based discovery of sites has emerged in the form of phenotypic screening as ethionamide R (EthR) and malate synthase inhibitors are similar to pharmaceuticals. In this review, the authors have thoroughly described the drug repurposing techniques on the basis of pharmacogenomics and drug metabolism, pathogen-targeted therapy, host-directed therapy, and bioinformatics approaches for the identification of drugs. Further, the significance of repurposing of drugs elaborated on large databases has been revealed. The role of genomics and network-based methods in drug repurposing has been also discussed in this article.
Collapse
Affiliation(s)
- Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Amrinder Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Pooja A. Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India
| |
Collapse
|
12
|
Pang AH, Green KD, Punetha A, Chandrika NT, Howard KC, Garneau-Tsodikova S, Tsodikov OV. Discovery and Mechanistic Analysis of Structurally Diverse Inhibitors of Acetyltransferase Eis among FDA-Approved Drugs. Biochemistry 2023; 62:710-721. [PMID: 36657084 PMCID: PMC9905294 DOI: 10.1021/acs.biochem.2c00658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Over one and a half million people die of tuberculosis (TB) each year. Multidrug-resistant TB infections are especially dangerous, and new drugs are needed to combat them. The high cost and complexity of drug development make repositioning of drugs that are already in clinical use for other indications a potentially time- and money-saving avenue. In this study, we identified among existing drugs five compounds: azelastine, venlafaxine, chloroquine, mefloquine, and proguanil as inhibitors of acetyltransferase Eis from Mycobacterium tuberculosis, a causative agent of TB. Eis upregulation is a cause of clinically relevant resistance of TB to kanamycin, which is inactivated by Eis-catalyzed acetylation. Crystal structures of these drugs as well as chlorhexidine in complexes with Eis showed that these inhibitors were bound in the aminoglycoside binding cavity, consistent with their established modes of inhibition with respect to kanamycin. Among three additionally synthesized compounds, a proguanil analogue, designed based on the crystal structure of the Eis-proguanil complex, was 3-fold more potent than proguanil. The crystal structures of these compounds in complexes with Eis explained their inhibitory potencies. These initial efforts in rational drug repositioning can serve as a starting point in further development of Eis inhibitors.
Collapse
Affiliation(s)
| | | | - Ankita Punetha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Kaitlind C. Howard
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Oleg V. Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| |
Collapse
|
13
|
Drug repurposing strategy II: from approved drugs to agri-fungicide leads. J Antibiot (Tokyo) 2023; 76:131-182. [PMID: 36707717 PMCID: PMC9880955 DOI: 10.1038/s41429-023-00594-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/28/2023]
Abstract
Epidemic diseases of crops caused by fungi deeply affected the course of human history and processed a major restriction on social and economic development. However, with the enormous misuse of existing antimicrobial drugs, an increasing number of fungi have developed serious resistance to them, making the diseases caused by pathogenic fungi even more challenging to control. Drug repurposing is an attractive alternative, it requires less time and investment in the drug development process than traditional R&D strategies. In this work, we screened 600 existing commercially available drugs, some of which had previously unknown activity against pathogenic fungi. From the primary screen at a fixed concentration of 100 μg/mL, 120, 162, 167, 85, 102, and 82 drugs were found to be effective against Rhizoctonia solani, Sclerotinia sclerotiorum, Botrytis cinerea, Phytophthora capsici, Fusarium graminearum and Fusarium oxysporum, respectively. They were divided into nine groups lead compounds, including quinoline alkaloids, benzimidazoles/carbamate esters, azoles, isothiazoles, pyrimidines, pyridines, piperidines/piperazines, ionic liquids and miscellaneous group, and simple structure-activity relationship analysis was carried out. Comparison with fungicides to identify the most promising drugs or lead structures for the development of new antifungal agents in agriculture.
Collapse
|
14
|
Koh Jing Jie A, Hussein M, Rao GG, Li J, Velkov T. Drug Repurposing Approaches towards Defeating Multidrug-Resistant Gram-Negative Pathogens: Novel Polymyxin/Non-Antibiotic Combinations. Pathogens 2022; 11:pathogens11121420. [PMID: 36558754 PMCID: PMC9781023 DOI: 10.3390/pathogens11121420] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Multidrug-resistant (MDR) Gram-negative pathogens remain an unmet public health threat. In recent times, increased rates of resistance have been reported not only to commonly used antibiotics, but also to the last-resort antibiotics, such as polymyxins. More worryingly, despite the current trends in resistance, there is a lack of new antibiotics in the drug-discovery pipeline. Hence, it is imperative that new strategies are developed to preserve the clinical efficacy of the current antibiotics, particularly the last-line agents. Combining conventional antibiotics such as polymyxins with non-antibiotics (or adjuvants), has emerged as a novel and effective strategy against otherwise untreatable MDR pathogens. This review explores the available literature detailing the latest polymyxin/non-antibiotic combinations, their mechanisms of action, and potential avenues to advance their clinical application.
Collapse
Affiliation(s)
- Augustine Koh Jing Jie
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Maytham Hussein
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Gauri G. Rao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Tony Velkov
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
- Correspondence:
| |
Collapse
|
15
|
Baliram Gaikwad N, Kumar Sahoo S, Ommi O, Naiyaz Ahmad M, Pathan A, Kaul G, Nanduri S, Dasgupta A, Chopra S, Madhavi Yaddanapudi V. Identification of 1,3‐Substituted Pyrazole‐Based Carboxamide Derivatives as Potent Antitubercular Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202203333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nikhil Baliram Gaikwad
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037, Telangana India
| | - Santosh Kumar Sahoo
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037, Telangana India
| | - Ojaswitha Ommi
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037, Telangana India
| | - Mohammad Naiyaz Ahmad
- Division of Molecular Microbiology and Immunology CSIR-Central Drug Research Institute Sector 10, Janakipuram Extension Sitapur Road Lucknow 226031, UP India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Afroz Pathan
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037, Telangana India
| | - Grace Kaul
- Division of Molecular Microbiology and Immunology CSIR-Central Drug Research Institute Sector 10, Janakipuram Extension Sitapur Road Lucknow 226031, UP India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Srinivas Nanduri
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037, Telangana India
| | - Arunava Dasgupta
- Division of Molecular Microbiology and Immunology CSIR-Central Drug Research Institute Sector 10, Janakipuram Extension Sitapur Road Lucknow 226031, UP India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sidharth Chopra
- Division of Molecular Microbiology and Immunology CSIR-Central Drug Research Institute Sector 10, Janakipuram Extension Sitapur Road Lucknow 226031, UP India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Venkata Madhavi Yaddanapudi
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037, Telangana India
| |
Collapse
|
16
|
Silva D, Lopes MVC, Petrovski Ž, Santos MM, Santos JP, Yamada-Ogatta SF, Bispo MLF, de Souza MVN, Duarte ARC, Lourenço MCS, Gonçalves RSB, Branco LC. Novel Organic Salts Based on Mefloquine: Synthesis, Solubility, Permeability, and In Vitro Activity against Mycobacterium tuberculosis. Molecules 2022; 27:5167. [PMID: 36014405 PMCID: PMC9412322 DOI: 10.3390/molecules27165167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022] Open
Abstract
The development of novel pharmaceutical tools to efficiently tackle tuberculosis is the order of the day due to the rapid development of resistant strains of Mycobacterium tuberculosis. Herein, we report novel potential formulations of a repurposed drug, the antimalarial mefloquine (MFL), which was combined with organic anions as chemical adjuvants. Eight mefloquine organic salts were obtained by ion metathesis reaction between mefloquine hydrochloride ([MFLH][Cl]) and several organic acid sodium salts in high yields. One of the salts, mefloquine mesylate ([MFLH][MsO]), presented increased water solubility in comparison with [MFLH][Cl]. Moreover, all salts with the exception of mefloquine docusate ([MFLH][AOT]) showed improved permeability and diffusion through synthetic membranes. Finally, in vitro activity studies against Mycobacterium tuberculosis revealed that these ionic formulations exhibited up to 1.5-times lower MIC values when compared with [MFLH][Cl], particularly mefloquine camphorsulfonates ([MFLH][(1R)-CSA], [MFLH][(1S)-CSA]) and mefloquine HEPES ([MFLH][HEPES]).
Collapse
Affiliation(s)
- Dário Silva
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - Márcio V. C. Lopes
- Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Cidade Universitaria, Rio de Janeiro 21941-909, Brazil
| | - Željko Petrovski
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - Miguel M. Santos
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - Jussevania P. Santos
- Departamento de Microbiologia, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid (PR 445), Km 380, Campus Universitário, Londrina 86057-970, Brazil
| | - Sueli F. Yamada-Ogatta
- Departamento de Microbiologia, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid (PR 445), Km 380, Campus Universitário, Londrina 86057-970, Brazil
| | - Marcelle L. F. Bispo
- Departamento de Microbiologia, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid (PR 445), Km 380, Campus Universitário, Londrina 86057-970, Brazil
| | - Marcus V. N. de Souza
- FioCruz-Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos-Far-Manguinhos, Rua Sizenando Nabuco, 100, Manguinhos, Rio de Janeiro 21041-250, Brazil
| | - Ana Rita C. Duarte
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - Maria C. S. Lourenço
- Instituto de Pesquisas Clínica Evandro Chagas—IPEC, Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil
| | - Raoni Schroeder B. Gonçalves
- Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Cidade Universitaria, Rio de Janeiro 21941-909, Brazil
| | - Luis C. Branco
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| |
Collapse
|
17
|
Sahoo SK, Gajula SNR, Ahmad MN, Kaul G, Nanduri S, Sonti R, Dasgupta A, Chopra S, Yaddanapudi VM. Bioevaluation of quinoline-4-carbonyl derivatives of piperazinyl-benzothiazinones as promising antimycobacterial agents. Arch Pharm (Weinheim) 2022; 355:e2200168. [PMID: 35876343 DOI: 10.1002/ardp.202200168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/12/2022]
Abstract
The quinoline moiety remains a privileged antitubercular (anti-TB) pharmacophore, whereas 8-nitrobenzothiazinones are emerging potent antimycobacterial agents with two investigational candidates in the clinical pipeline. Herein, we report the synthesis and bioevaluation of 30 piperazinyl-benzothiazinone-based quinoline hybrids as prospective anti-TB agents. Preliminary evaluation revealed 24/30 compounds exhibiting substantial activity (minimum inhibitory concentration [MIC] = 0.06-1 µg/ml) against Mycobacterium tuberculosis (Mtb) H37Rv. Cytotoxicity analysis against Vero cells found these to be devoid of any significant toxicity, with the majority displaying a selectivity index of >80. Furthermore, potent nontoxic compounds, when screened against clinical isolates of drug-resistant Mtb strains, demonstrated equipotent inhibition with MIC values of 0.03-0.25 µg/ml. A time-kill study identified a lead compound exhibiting concentration-dependent bactericidal activity, with 10× MIC completely eliminating Mtb bacilli within 7 days. Along with acceptable aqueous solubility and microsomal stability, the optimum active compounds of the series manifested all desirable traits of a promising antimycobacterial candidate.
Collapse
Affiliation(s)
- Santosh K Sahoo
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Siva N R Gajula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Mohammad N Ahmad
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India.,Biological Sciences Division, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Grace Kaul
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India.,Biological Sciences Division, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Srinivas Nanduri
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Arunava Dasgupta
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India.,Biological Sciences Division, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Sidharth Chopra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India.,Biological Sciences Division, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Venkata M Yaddanapudi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| |
Collapse
|
18
|
Trousil J, Dal NJK, Fenaroli F, Schlachet I, Kubíčková P, Janoušková O, Pavlova E, Škorič M, Trejbalová K, Pavliš O, Sosnik A. Antibiotic-Loaded Amphiphilic Chitosan Nanoparticles Target Macrophages and Kill an Intracellular Pathogen. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201853. [PMID: 35691939 DOI: 10.1002/smll.202201853] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/19/2022] [Indexed: 06/15/2023]
Abstract
In this work, levofloxacin (LVX), a third-generation fluoroquinolone antibiotic, is encapsulated within amphiphilic polymeric nanoparticles of a chitosan-g-poly(methyl methacrylate) produced by self-assembly and physically stabilized by ionotropic crosslinking with sodium tripolyphosphate. Non-crosslinked nanoparticles display a size of 29 nm and a zeta-potential of +36 mV, while the crosslinked counterparts display 45 nm and +24 mV, respectively. The cell compatibility, uptake, and intracellular trafficking are characterized in the murine alveolar macrophage cell line MH-S and the human bronchial epithelial cell line BEAS-2B in vitro. Internalization events are detected after 10 min and the uptake is inhibited by several endocytosis inhibitors, indicating the involvement of complex endocytic pathways. In addition, the nanoparticles are detected in the lysosomal compartment. Then, the antibacterial efficacy of LVX-loaded nanoformulations (50% w/w drug content) is assessed in MH-S and BEAS-2B cells infected with Staphylococcus aureus and the bacterial burden is decreased by 49% and 46%, respectively. In contrast, free LVX leads to a decrease of 8% and 5%, respectively, in the same infected cell lines. Finally, intravenous injection to a zebrafish larval model shows that the nanoparticles accumulate in macrophages and endothelium and demonstrate the promise of these amphiphilic nanoparticles to target intracellular infections.
Collapse
Affiliation(s)
- Jiří Trousil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, 162 00, Czech Republic
| | | | | | - Inbar Schlachet
- Laboratory of Pharmaceutical Nanomaterials Science, Faculty of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Pavla Kubíčková
- Military Health Institute, Military Medical Agency, Prague, 160 00, Czech Republic
| | - Olga Janoušková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, 162 00, Czech Republic
- Department of Biology, Faculty of Science, University of J. E. Purkyně, Ústí nad Labem, 400 96, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, 162 00, Czech Republic
| | - Miša Škorič
- Department of Pathological Morphology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, 612 42, Czech Republic
| | - Kateřina Trejbalová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Oto Pavliš
- Military Health Institute, Military Medical Agency, Prague, 160 00, Czech Republic
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Faculty of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
19
|
Designing quinoline-isoniazid hybrids as potent anti-tubercular agents inhibiting mycolic acid biosynthesis. Eur J Med Chem 2022; 239:114531. [PMID: 35759907 DOI: 10.1016/j.ejmech.2022.114531] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/04/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022]
Abstract
Isoniazid is a cornerstone of modern tuberculosis (TB) therapy and targets the enoyl ACP reductase InhA, a key enzyme in mycolic acid biosynthesis. InhA is still a promising target for the development of new anti-TB drugs. Herein, we report the design, synthesis, and anti-tubercular activity of new isoniazid hybrids. Among these, 1H-1,2,3 triazole-tethered quinoline-isoniazid conjugates 16a to 16g exhibited high activity against Mycobacterium tuberculosis with minimal inhibitory concentrations in the 0.25-0.50 μg/mL range and were bactericidal in vitro. Importantly, these compounds were well tolerated at high doses on mammalian cells, leading to high selectivity indices. The hybrids were dependent on functional KatG production to inhibit mycolic acid biosynthesis. Moreover, overexpression of InhA in M. tuberculosis resulted in high resistance levels to 16a-16g and reduced mycolic acid biosynthesis inhibition, similar to isoniazid. Overall, these findings suggest that the synthesized quinoline-isoniazid hybrids are promising anti-tubercular molecules, which require further pre-clinical evaluation.
Collapse
|
20
|
Kumar Sahoo S, Naiyaz Ahmad M, Kaul G, Nanduri S, Dasgupta A, Chopra S, Madhavi Yaddanapudi V. Exploration of Isoxazole-Carboxylic Acid Methyl Ester Based 2-Substituted Quinoline Derivatives as Promising Antitubercular Agents. Chem Biodivers 2022; 19:e202200324. [PMID: 35653161 DOI: 10.1002/cbdv.202200324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/02/2022] [Indexed: 12/12/2022]
Abstract
In pursuit of potent anti-TB agents active against drug resistant tuberculosis (DR-TB), herein we report synthesis and bio-evaluation of a new series of isoxazole-carboxylic acid methyl ester based 2-substituted quinoline derivatives. Preliminary evaluation indicated selectivity towards Mtb H37Rv, with no inhibition of non-tubercular mycobacterial (NTM) & bacterial pathogen panel. Out of 36 synthesized compounds, majority exhibited substantial inhibition of Mtb H37Rv (MIC 0.5-8 μg/mL). Cell viability test against Vero cells revealed no significant cytotoxicity. Further, screening against drug resistant strains (DR-Mtb) found hit compound displaying promising potency (MIC 1-4 μg/mL). Structure optimization of the hit led to the identification of lead compound demonstrating potent inhibition of both drug-susceptible Mtb (MIC 0.12 μg/mL) and drug-resistant Mtb (MIC 0.25-0.5 μg/mL) along with a high selectivity index (SI) >80. Taken together, with appreciable selectivity and potent activity, these chemotypes show prospect to be turned into a potential anti-TB candidate.
Collapse
Affiliation(s)
- Santosh Kumar Sahoo
- Department of chemical sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, India
| | - Mohammad Naiyaz Ahmad
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, UP, India.,AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Grace Kaul
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, UP, India.,AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Srinivas Nanduri
- Department of chemical sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, India
| | - Arunava Dasgupta
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, UP, India.,AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sidharth Chopra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, UP, India.,AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Venkata Madhavi Yaddanapudi
- Department of chemical sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, India
| |
Collapse
|
21
|
Screening Repurposed Antiviral Small Molecules as Antimycobacterial Compounds by a Lux-Based phoP Promoter-Reporter Platform. Antibiotics (Basel) 2022; 11:antibiotics11030369. [PMID: 35326832 PMCID: PMC8944841 DOI: 10.3390/antibiotics11030369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 02/04/2023] Open
Abstract
The emergence of multidrug-resistant strains and hyper-virulent strains of Mycobacterium tuberculosis are big therapeutic challenges for tuberculosis (TB) control. Repurposing bioactive small-molecule compounds has recently become a new therapeutic approach against TB. This study aimed to identify novel anti-TB agents from a library of small-molecule compounds via a rapid screening system. A total of 320 small-molecule compounds were used to screen for their ability to suppress the expression of a key virulence gene, phop, of the M. tuberculosis complex using luminescence (lux)-based promoter-reporter platforms. The minimum inhibitory and bactericidal concentrations on drug-resistant M. tuberculosis and cytotoxicity to human macrophages were determined. RNA sequencing (RNA-seq) was conducted to determine the drug mechanisms of the selected compounds as novel antibiotics or anti-virulent agents against the M. tuberculosis complex. The results showed that six compounds displayed bactericidal activity against M. bovis BCG, of which Ebselen demonstrated the lowest cytotoxicity to macrophages and was considered as a potential antibiotic for TB. Another ten compounds did not inhibit the in vitro growth of the M. tuberculosis complex and six of them downregulated the expression of phoP/R significantly. Of these, ST-193 and ST-193 (hydrochloride) showed low cytotoxicity and were suggested to be potential anti-virulence agents for M. tuberculosis.
Collapse
|
22
|
Perveen S, Kumari D, Singh K, Sharma R. Tuberculosis drug discovery: Progression and future interventions in the wake of emerging resistance. Eur J Med Chem 2022; 229:114066. [PMID: 34973508 DOI: 10.1016/j.ejmech.2021.114066] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 02/06/2023]
Abstract
The emergence of drug resistance continues to afflict TB control where drug resistant strains have become a global health concern. Contrary to drug-sensitive TB, the treatment of MDR/XDR-TB is more complicated requiring the administration of second-line drugs that are inefficient than the first line drugs and are associated with greater side effects. The emergence of drug resistant Mtb strains had coincided with an innovation void in the field of drug discovery of anti-mycobacterials. However, the approval of bedaquiline and delamanid recently for use in MDR/XDR-TB has given an impetus to the TB drug discovery. The review discusses the drug discovery efforts in the field of tuberculosis with a focus on the strategies adopted and challenges confronted by TB research community. Here, we discuss the diverse clinical candidates in the current TB drug discovery pipeline. There is an urgent need to combat the current TB menace through multidisciplinary approaches and strategies making use of the recent advances in understanding the molecular biology and pathogenesis of Mtb. The review highlights the recent advances in drug discovery, with the host directed therapeutics and nanoparticles-drug delivery coming up as important tools to fight tuberculosis in the future.
Collapse
Affiliation(s)
- Summaya Perveen
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Diksha Kumari
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
23
|
In Silico Drug Repurposing Approach: Investigation of Mycobacterium tuberculosis FadD32 Targeted by FDA-Approved Drugs. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030668. [PMID: 35163931 PMCID: PMC8840176 DOI: 10.3390/molecules27030668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/27/2021] [Accepted: 01/09/2022] [Indexed: 12/17/2022]
Abstract
Background: Despite the enormous efforts made towards combating tuberculosis (TB), the disease remains a major global threat. Hence, new drugs with novel mechanisms against TB are urgently needed. Fatty acid degradation protein D32 (FadD32) has been identified as a promising drug target against TB, the protein is required for the biosynthesis of mycolic acids, hence, essential for the growth and multiplication of the mycobacterium. However, the FadD32 mechanism upon the binding of FDA-approved drugs is not well established. Herein, we applied virtual screening (VS), molecular docking, and molecular dynamic (MD) simulation to identify potential FDA-approved drugs against FadD32. Methodology/Results: VS technique was found promising to identify four FDA-approved drugs (accolate, sorafenib, mefloquine, and loperamide) with higher molecular docking scores, ranging from -8.0 to -10.0 kcal/mol. Post-MD analysis showed that the accolate hit displayed the highest total binding energy of -45.13 kcal/mol. Results also showed that the accolate hit formed more interactions with FadD32 active site residues and all active site residues displayed an increase in total binding contribution. RMSD, RMSF, Rg, and DCCM analysis further supported that the presence of accolate exhibited more structural stability, lower bimolecular flexibility, and more compactness into the FadD32 protein. Conclusions: Our study revealed accolate as the best potential drug against FadD32, hence a prospective anti-TB drug in TB therapy. In addition, we believe that the approach presented in the current study will serve as a cornerstone to identifying new potential inhibitors against a wide range of biological targets.
Collapse
|
24
|
Recent advancements and developments in search of anti-tuberculosis agents: A quinquennial update and future directions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Madugula SS, Nagamani S, Jamir E, Priyadarsinee L, Sastry GN. Drug repositioning for anti-tuberculosis drugs: an in silico polypharmacology approach. Mol Divers 2021; 26:1675-1695. [PMID: 34468898 DOI: 10.1007/s11030-021-10296-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/10/2021] [Indexed: 01/20/2023]
Abstract
Development of potential antitubercular molecules is a challenging task due to the rapidly emerging drug-resistant strains of Mycobacterium tuberculosis (M.tb). Structure-based approaches hold greater benefit in identifying compounds/drugs with desired polypharmacological profiles. These methods can be employed based on the knowledge of protein binding sites to identify the complementary ligands. In this study, polypharmacology guided computational drug repurposing approach was applied to identify potential antitubercular drugs. 20 important druggable protein targets in M.tb were considered from the target library of Molecular Property Diagnostic Suite-Tuberculosis (MPDSTB- http://mpds.neist.res.in:8084 ) for virtual screening. FDA approved drugs were collected, preprocessed and docked in the active sites of the 20 M.tb targets. The top 300 drug molecules from each target (20 × 300) were filtered-in and subsequently screened for possible antitubercular and antimycobacterial activity using PASS tool. Using this approach, 34 drugs with predicted antitubercular and anti-mycobacterial activity were identified along with good binding affinity against multiple M.tb targets. Interestingly, 21 out of the 34 identified drugs are antibiotics while 4 drug molecules (nitrofural, stavudine, quinine and quinidine) are non-antibiotics showing promising predicted antitubercular activity. Most of these molecules have the similar privileged antimycobacterial drugs scaffold. Further drug likeness properties were calculated to get deeper insights to M.tb lead molecules. Interestingly, it was also observed that the drugs identified from the study are under different stages of drug discovery (i.e., in vitro, clinical trials) for the effective treatment of various diseases including cancer, degenerative diseases, dengue virus infection, tuberculosis, etc. Krasavin et al., 2017 synthesized nitrofuran analogues with appreciable MICs (22-23 µM) against M.tb H37Rv. These experiments further add to the credibility of the drugs identified in this study (TB).
Collapse
Affiliation(s)
- Sita Sirisha Madugula
- Centre for Molecular Modelling, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Selvaraman Nagamani
- Advanced Computation and Data Sciences Division, CSIR - North East Institute of Science and Technology, Jorhat, Assam, 785 006, India
| | - Esther Jamir
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,Advanced Computation and Data Sciences Division, CSIR - North East Institute of Science and Technology, Jorhat, Assam, 785 006, India
| | - Lipsa Priyadarsinee
- Advanced Computation and Data Sciences Division, CSIR - North East Institute of Science and Technology, Jorhat, Assam, 785 006, India
| | - G Narahari Sastry
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. .,Advanced Computation and Data Sciences Division, CSIR - North East Institute of Science and Technology, Jorhat, Assam, 785 006, India.
| |
Collapse
|
26
|
Dos Santos Nascimento IJ, de Aquino TM, da Silva-Júnior EF. Drug Repurposing: A Strategy for Discovering Inhibitors against Emerging Viral Infections. Curr Med Chem 2021; 28:2887-2942. [PMID: 32787752 DOI: 10.2174/0929867327666200812215852] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Viral diseases are responsible for several deaths around the world. Over the past few years, the world has seen several outbreaks caused by viral diseases that, for a long time, seemed to possess no risk. These are diseases that have been forgotten for a long time and, until nowadays, there are no approved drugs or vaccines, leading the pharmaceutical industry and several research groups to run out of time in the search for new pharmacological treatments or prevention methods. In this context, drug repurposing proves to be a fast and economically viable technique, considering the fact that it uses drugs that have a well-established safety profile. Thus, in this review, we present the main advances in drug repurposing and their benefit for searching new treatments against emerging viral diseases. METHODS We conducted a search in the bibliographic databases (Science Direct, Bentham Science, PubMed, Springer, ACS Publisher, Wiley, and NIH's COVID-19 Portfolio) using the keywords "drug repurposing", "emerging viral infections" and each of the diseases reported here (CoV; ZIKV; DENV; CHIKV; EBOV and MARV) as an inclusion/exclusion criterion. A subjective analysis was performed regarding the quality of the works for inclusion in this manuscript. Thus, the selected works were those that presented drugs repositioned against the emerging viral diseases presented here by means of computational, high-throughput screening or phenotype-based strategies, with no time limit and of relevant scientific value. RESULTS 291 papers were selected, 24 of which were CHIKV; 52 for ZIKV; 43 for DENV; 35 for EBOV; 10 for MARV; and 56 for CoV and the rest (72 papers) related to the drugs repurposing and emerging viral diseases. Among CoV-related articles, most were published in 2020 (31 papers), updating the current topic. Besides, between the years 2003 - 2005, 10 articles were created, and from 2011 - 2015, there were 7 articles, portraying the outbreaks that occurred at that time. For ZIKV, similar to CoV, most publications were during the period of outbreaks between the years 2016 - 2017 (23 articles). Similarly, most CHIKV (13 papers) and DENV (14 papers) publications occur at the same time interval. For EBOV (13 papers) and MARV (4 papers), they were between the years 2015 - 2016. Through this review, several drugs were highlighted that can be evolved in vivo and clinical trials as possible used against these pathogens showed that remdesivir represent potential treatments against CoV. Furthermore, ribavirin may also be a potential treatment against CHIKV; sofosbuvir against ZIKV; celgosivir against DENV, and favipiravir against EBOV and MARV, representing new hopes against these pathogens. CONCLUSION The conclusions of this review manuscript show the potential of the drug repurposing strategy in the discovery of new pharmaceutical products, as from this approach, drugs could be used against emerging viral diseases. Thus, this strategy deserves more attention among research groups and is a promising approach to the discovery of new drugs against emerging viral diseases and also other diseases.
Collapse
|
27
|
Targeting MmpL3 for anti-tuberculosis drug development. Biochem Soc Trans 2021; 48:1463-1472. [PMID: 32662825 PMCID: PMC7458404 DOI: 10.1042/bst20190950] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
The unique architecture of the mycobacterial cell envelope plays an important role in Mycobacterium tuberculosis (Mtb) pathogenesis. A critical protein in cell envelope biogenesis in mycobacteria, required for transport of precursors, trehalose monomycolates (TMMs), is the Mycobacterial membrane protein large 3 (MmpL3). Due to its central role in TMM transport, MmpL3 has been an attractive therapeutic target and a key target for several preclinical agents. In 2019, the first crystal structures of the MmpL3 transporter and its complexes with lipids and inhibitors were reported. These structures revealed several unique structural features of MmpL3 and provided invaluable information on the mechanism of TMM transport. This review aims to highlight the recent advances made in the function of MmpL3 and summarises structural findings. The overall goal is to provide a mechanistic perspective of MmpL3-mediated lipid transport and inhibition, and to highlight the prospects for potential antituberculosis therapies.
Collapse
|
28
|
Sidrônio MGS, Castelo Branco APOT, Abbadi BL, Macchi F, Silveira MD, Lock GDA, Costa TD, de Araújo DM, Cibulski S, Bizarro CV, Machado P, Basso LA, Rodrigues-Junior VS. Effects of tafenoquine against active, dormant and resistant Mycobacterium tuberculosis. Tuberculosis (Edinb) 2021; 128:102089. [PMID: 34004588 DOI: 10.1016/j.tube.2021.102089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 10/21/2022]
Abstract
Antimalarial drugs have been suggested as promising scaffolds with anti-tubercular activities. In this work, we demonstrated, for the first time, the effectiveness of tafenoquine against mycobacteria. Firstly, tafenoquine inhibited the growth of Mycobacterium smegmatis and Mycobacterium tuberculosis with lower MICs values as compared to other antimalarial drugs, such as mefloquine, chloroquine, and primaquine. Importantly, tafenoquine was active against three multi-drug resistant strains of M. tuberculosis with MIC values similar to pan-sensitive strains, suggesting that tafenoquine is capable of evading the major mechanisms of resistance found in drug-resistant clinical isolates of M. tuberculosis. Importantly, tafenoquine displayed a synergistic effect when combined with mefloquine. In addition, tafenoquine displayed an improved activity compared to the groups treated with both isoniazid and rifampicin in the six-week nutrient starved M. tuberculosis cultures. This finding suggests that further investigations of tafenoquine against dormant mycobacteria are worth pursuing. Moreover, different concentrations of tafenoquine ranging from 1.25 to 80 μM displayed different effects against M. tuberculosis, from moderate (reduction of a 1.8 log CFU/mL) to potent bactericidal (reduction of a 4.2 log CFU/mL) activities. Tafenoquine may represent a hit for further drug optimization and for future clinical development as a new anti-mycobacterial agent, especially in cases of resistant and/or dormant forms of tuberculosis.
Collapse
Affiliation(s)
- Maria Gabriella S Sidrônio
- Programa de Pós-Graduação em Biotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil; Laboratório de Biotecnologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Ana Paula O T Castelo Branco
- Laboratório de Biotecnologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Bruno L Abbadi
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Brazil; Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Fernanda Macchi
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Brazil; Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Porto Alegre, Brazil
| | - Maiele D Silveira
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Brazil; Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Graziela de A Lock
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Teresa Dalla Costa
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Demétrius M de Araújo
- Programa de Pós-Graduação em Biotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil; Laboratório de Biotecnologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil; Programa de Pós-Graduação em Biotecnologia (Renorbio), Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Samuel Cibulski
- Laboratório de Biotecnologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil; Programa de Pós-Graduação em Biotecnologia (Renorbio), Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Cristiano V Bizarro
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Brazil; Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Porto Alegre, Brazil
| | - Pablo Machado
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Brazil; Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Porto Alegre, Brazil
| | - Luiz Augusto Basso
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Brazil; Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Porto Alegre, Brazil
| | - Valnês S Rodrigues-Junior
- Programa de Pós-Graduação em Biotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil; Laboratório de Biotecnologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil; Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Brazil.
| |
Collapse
|
29
|
In-vitro and ex-vivo characterization of novel mannosylated gelatin nanoparticles of linezolid by quality-by-design approach. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Mourenza Á, Gil JA, Mateos LM, Letek M. Novel Treatments against Mycobacterium tuberculosis Based on Drug Repurposing. Antibiotics (Basel) 2020; 9:E550. [PMID: 32872158 PMCID: PMC7557778 DOI: 10.3390/antibiotics9090550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis is the leading cause of death, worldwide, due to a bacterial pathogen. This respiratory disease is caused by the intracellular pathogen Mycobacterium tuberculosis and produces 1.5 million deaths every year. The incidence of tuberculosis has decreased during the last decade, but the emergence of MultiDrug-Resistant (MDR-TB) and Extensively Drug-Resistant (XDR-TB) strains of M. tuberculosis is generating a new health alarm. Therefore, the development of novel therapies based on repurposed drugs against MDR-TB and XDR-TB have recently gathered significant interest. Recent evidence, focused on the role of host molecular factors on M. tuberculosis intracellular survival, allowed the identification of new host-directed therapies. Interestingly, the mechanism of action of many of these therapies is linked to the activation of autophagy (e.g., nitazoxanide or imatinib) and other well-known molecular pathways such as apoptosis (e.g., cisplatin and calycopterin). Here, we review the latest developments on the identification of novel antimicrobials against tuberculosis (including avermectins, eltrombopag, or fluvastatin), new host-targeting therapies (e.g., corticoids, fosfamatinib or carfilzomib) and the host molecular factors required for a mycobacterial infection that could be promising targets for future drug development.
Collapse
Affiliation(s)
- Álvaro Mourenza
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
| | - José A. Gil
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, 24071 León, Spain
| | - Luis M. Mateos
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, 24071 León, Spain
| | - Michal Letek
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, 24071 León, Spain
| |
Collapse
|
31
|
Dubey KK, Indu, Sharma M. Reprogramming of antibiotics to combat antimicrobial resistance. Arch Pharm (Weinheim) 2020; 353:e2000168. [DOI: 10.1002/ardp.202000168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/04/2020] [Accepted: 07/11/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Kashyap K. Dubey
- Bioprocess Engineering Laboratory, Department of Biotechnology Central University of Haryana Mahendergarh Haryana India
- School of Biotechnology Jawaharlal Nehru University New Delhi India
| | - Indu
- Bioprocess Engineering Laboratory, Department of Biotechnology Central University of Haryana Mahendergarh Haryana India
| | - Manisha Sharma
- Bioprocess Engineering Laboratory, Department of Biotechnology Central University of Haryana Mahendergarh Haryana India
| |
Collapse
|