1
|
Kardile RA, Sarkate AP, Lokwani DK, Tiwari SV, Azad R, Thopate SR. Design, synthesis, and biological evaluation of novel quinoline derivatives as small molecule mutant EGFR inhibitors targeting resistance in NSCLC: In vitro screening and ADME predictions. Eur J Med Chem 2022; 245:114889. [DOI: 10.1016/j.ejmech.2022.114889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022]
|
2
|
Design, synthesis and anti-tumor activity evaluation of 4,6,7-substitute quinazoline derivatives. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02897-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
3
|
Goehringer N, Biersack B, Peng Y, Schobert R, Herling M, Ma A, Nitzsche B, Höpfner M. Anticancer Activity and Mechanisms of Action of New Chimeric EGFR/HDAC-Inhibitors. Int J Mol Sci 2021; 22:ijms22168432. [PMID: 34445133 PMCID: PMC8395095 DOI: 10.3390/ijms22168432] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022] Open
Abstract
New chimeric inhibitors targeting the epidermal growth factor (EGFR) and histone deacetylases (HDACs) were synthesized and tested for antineoplastic efficiency in solid cancer (prostate and hepatocellular carcinoma) and leukemia/lymphoma cell models. The most promising compounds, 3BrQuin-SAHA and 3ClQuin-SAHA, showed strong inhibition of tumor cell growth at one-digit micromolar concentrations with IC50 values similar to or lower than those of clinically established reference compounds SAHA and gefitinib. Target-specific EGFR and HDAC inhibition was demonstrated in cell-free kinase assays and Western blot analyses, while unspecific cytotoxic effects could not be observed in LDH release measurements. Proapoptotic formation of reactive oxygen species and caspase-3 activity induction in PCa and HCC cell lines DU145 and Hep-G2 seem to be further aspects of the modes of action. Antiangiogenic potency was recognized after applying the chimeric inhibitors on strongly vascularized chorioallantoic membranes of fertilized chicken eggs (CAM assay). The novel combination of two drug pharmacophores against the EGFR and HDACs in one single molecule was shown to have pronounced antineoplastic effects on tumor growth in both solid and leukemia/lymphoma cell models. The promising results merit further investigations to further decipher the underlying modes of action of the novel chimeric inhibitors and their suitability for new clinical approaches in tumor treatment.
Collapse
Affiliation(s)
- Nils Goehringer
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (N.G.); (A.M.)
| | - Bernhard Biersack
- Organic Chemistry 1, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany; (B.B.); (R.S.)
| | - Yayi Peng
- Laboratory of Lymphocyte Signaling and Oncoproteome, University Hospital Cologne, Weyertal 115c, 50931 Cologne, Germany; (Y.P.); (M.H.)
| | - Rainer Schobert
- Organic Chemistry 1, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany; (B.B.); (R.S.)
| | - Marco Herling
- Laboratory of Lymphocyte Signaling and Oncoproteome, University Hospital Cologne, Weyertal 115c, 50931 Cologne, Germany; (Y.P.); (M.H.)
- Clinic and Polyclinic for Hematology, Cell Therapy and Hemostaseology, Liebigstraße 22, House 7, 04103 Leipzig, Germany
| | - Andi Ma
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (N.G.); (A.M.)
| | - Bianca Nitzsche
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (N.G.); (A.M.)
- Correspondence: (B.N.); (M.H.)
| | - Michael Höpfner
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (N.G.); (A.M.)
- Correspondence: (B.N.); (M.H.)
| |
Collapse
|
4
|
Zheng YG, Pei X, Xia DX, Wang YB, Jiang P, An L, Huang TH, Xue YS. Design, synthesis, and cytotoxic activity of novel 2H-imidazo[1,2-c]pyrazolo[3,4-e]pyrimidine derivatives. Bioorg Chem 2021; 109:104711. [PMID: 33609916 DOI: 10.1016/j.bioorg.2021.104711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 01/06/2023]
Abstract
In this study, a series of novel 2H-imidazo [1, 2-c] pyrazolo [3, 4-e] pyrimidine derivatives were designed, synthesized, and evaluated for their cytotoxic activities. The in vitro cell growth inhibition assay of the target compounds indicated their selectivity in inhibiting the proliferation of blood tumor cells (K562, U937) and solid tumor cells (HCT116, HT-29). Compound 9b exhibited the highest antiproliferative activities against K562 (IC50 = 5.597 µM) and U937 (IC50 = 3.512 µM). Based on the flow cytometry assays, compound 9b caused obvious induction of cell apoptosis and cell arrest at the S phase. Furthermore, western blot analysis revealed that compound 9b upregulated the expression of Bax, downregulated the levels of Bcl-2, and further activated caspase-3 in K562 cells. Therefore, compound 9b may be a potential anticancer agent that deserves further investigation.
Collapse
Affiliation(s)
- You-Guang Zheng
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China.
| | - Xin Pei
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - De-Xin Xia
- Department of Radiology, XuZhou Central Hospital, Xuzhou 221004, PR China
| | - Yuan-Bo Wang
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Ping Jiang
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Lin An
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Tong-Hui Huang
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Yun-Sheng Xue
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| |
Collapse
|
5
|
Computational and Synthetic approach with Biological Evaluation of Substituted Quinoline derivatives as small molecule L858R/T790M/C797S triple mutant EGFR inhibitors targeting resistance in Non-Small Cell Lung Cancer (NSCLC). Bioorg Chem 2021; 107:104612. [PMID: 33476869 DOI: 10.1016/j.bioorg.2020.104612] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/13/2020] [Accepted: 12/27/2020] [Indexed: 12/28/2022]
Abstract
New substituted quinoline derivatives were designed and synthesized via a five-step modified Suzuki coupling reaction. A comparative molecular docking study was carried out on two different types of EGFR enzymes which include wild-type (PDB: 4I23) and T790M mutated (PDB: 2JIV) respectively. Compounds were also validated upon T790M/C797S mutated (PDB ID: 5D41) EGFR enzyme at the allosteric binding site. All docking studies confirmed high potency and flexibility towards wild type as well as a mutated enzyme. Anticancer activity of the synthesized derivatives was examined against HCC827, H1975 (L858R/T790M/C797S and L858R/T790M), A549, and HT-29 cell lines by standard MTT assay. Most of the quinoline derivatives revealed a significant cytotoxic effect. The IC50 values of 4-(4-methylquinolin-2-yl)phenyl 4-(chloromethyl)benzoate (5j) were found to be 0.0042 µM, 0.02 µM, 1.91 µM, 3.82 µM and 3.67 µM while IC50 values of osimertinib were 0.0040 µM, 0.02 µM, ND, 0.99 µM and 1.22 µM, respectively. Compound 5j has shownexcellent inhibitory activities against EGFR kinases triple mutant with IC 50 value 1.91 µM. It was observed that, compared to H1975, A549 and A431 cell lines, synthesized compounds significantly inhibited proliferation of the HCC827 cell line. These data suggested that synthesized compounds showed promising selective anticancer activity against tumor cells harboring EGFR Del E746-A750. The potency of compound 5j was compared through molecular dynamic simulations andan insilicoADMET study. QSAR models were generated and the best model was correctly compared with respect to predicted and observed activity of compounds. The built model will assist to design, refine and construct novel substituted quinoline derivatives as potent EGFR inhibitors in near future.
Collapse
|