1
|
Jiang J, Sun Y, Sun Y, Lu F, Liu F, Zhang H. Rational Design of a Yeast-derived 3',5'-bisphosphate Nucleotidase with Improved Substrate Specificity. J GEN APPL MICROBIOL 2024; 70:n/a. [PMID: 38897942 DOI: 10.2323/jgam.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In recent years, a convenient phosphatase-coupled sulfotransferase assay method has been proven to be applicable to most sulfotransferases. The central principle of the method is that phosphatase specifically degrades 3'-phosphoadenosine-5'-phosphate (PAP) and leaves 3'-phosphoadenosine-5'-phosphosulfate (PAPS). Our group previously acquired a yeast 3',5'-bisphosphate nucleotidase (YND), which showed a higher catalytic activity for PAP than PAPS and could be a potential phosphatase for the sulfotransferase assay. Here, we obtained a beneficial mutant of YND with markedly improved substrate specificity towards PAP via rational design. Of 9 chosen mutation sites in the active site pocket, the mutation G236D showed the best specificity for PAP. After optimization of the reaction conditions, the mutant YNDG236D displayed a 4.8-fold increase in the catalytic ratio PAP/PAPS compared to the wild-type. We subsequently applied YNDG236D to the assay of human SULT1A1 and SULT1A3 with their known substrate 1-naphthol, indicating that the mutant could be used to evaluate sulfotransferase activity by colorimetry. Analysis of the MD simulation results revealed that the improved substrate specificity of the mutant towards PAP may stem from a more stable protein conformation and the changed flexibility of key residues in the entrance of the substrate tunnel. This research will provide a valuable reference for the development of efficient sulfotransferase activity assays.
Collapse
Affiliation(s)
- Jipeng Jiang
- College of Biotechnology, Tianjin University of Science & Technology
| | - Yanqing Sun
- College of Biotechnology, Tianjin University of Science & Technology
| | - Yanan Sun
- College of Biotechnology, Tianjin University of Science & Technology
| | - Fuping Lu
- College of Biotechnology, Tianjin University of Science & Technology
| | - Fufeng Liu
- College of Biotechnology, Tianjin University of Science & Technology
| | - Huitu Zhang
- College of Biotechnology, Tianjin University of Science & Technology
| |
Collapse
|
2
|
Maurer SJ, Petrarca de Albuquerque JL, McCallum ME. Recent Developments in the Biosynthesis of Aziridines. Chembiochem 2024; 25:e202400295. [PMID: 38830838 DOI: 10.1002/cbic.202400295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Only 0.016 % of all known natural products contain an aziridine ring, but this unique structural feature imparts high reactivity and cytotoxicity to the compounds in which it is found. Until 2021, no naturally occurring aziridine-forming enzymes had been identified. Since 2021, the biosynthetic enzymes for ~10 % of known aziridine containing natural products have been identified and characterized. This article describes the recent advances in our understanding of enzyme-catalyzed aziridine formation in the context of historical methods for aziridine formation through synthetic chemistry.
Collapse
Affiliation(s)
- Sabina J Maurer
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, PA 19104, USA
| | | | - Monica E McCallum
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Cheng Y, Yi X, Zhang Y, He Q, Chen D, Cao W, Fang P, Liu W. Oxidase Heterotetramer Completes 1-Azabicyclo[3.1.0]hexane Formation with the Association of a Nonribosomal Peptide Synthetase. J Am Chem Soc 2023; 145:8896-8907. [PMID: 37043819 DOI: 10.1021/jacs.2c12507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Ficellomycin, azinomycins, and vazabitide A are nonribosomal peptide natural products characterized by an amino acid unit that contains a similar 1-azabicyclo[3.1.0]hexane (ABCH) pharmacophore. This unit is derived from diamino-dihydroxy-heptanic acid (DADH); however, the process through which linear DADH is cyclized to furnish an ABCH ring system remains poorly understood. Based on the reconstitution of the route of the ABCH-containing unit by blending genes/enzymes involved in the biosynthesis of ficellomycin and azinomycins, we report that ABCH formation is completed by an oxidase heterotetramer with the association of a nonribosomal peptide synthetase (NRPS). The DADH precursor was prepared in Escherichia coli to produce a conjugate subjected to in vitro enzymatic hydrolysis for offloading from an amino-group carrier protein. To furnish an aziridine ring, DADH was processed by C7-hydroxyl sulfonation and sulfate elimination-coupled cyclization. Further cyclization leading to an azabicyclic hexane pharmacophore was proved to occur in the NRPS, where the oxidase heterotetramer functions in trans and catalyzes α,β-dehydrogenation to initiate the formation of a fused five-membered nitrogen heterocycle. The identity of ABCH was validated by utilization of the resultant ABCH-containing unit in the total biosynthesis of ficellomycin. Biochemical characterization, crystal structure, and site-specific mutagenesis rationalize the catalytic mechanism of the unusual oxidase heterotetramer.
Collapse
Affiliation(s)
- Yiyuan Cheng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xuan Yi
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yan Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qingli He
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Dandan Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Weiguo Cao
- Department of Chemistry, Shanghai University, 99 Shangda Rd, Baoshan, Shanghai 200444, China
| | - Pengfei Fang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
4
|
Cha L, Paris JC, Zanella B, Spletzer M, Yao A, Guo Y, Chang WC. Mechanistic Studies of Aziridine Formation Catalyzed by Mononuclear Non-Heme Iron Enzymes. J Am Chem Soc 2023; 145:6240-6246. [PMID: 36913534 DOI: 10.1021/jacs.2c12664] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Aziridines are compounds with a nitrogen-containing three-membered ring. When it is incorporated into natural products, the reactivity of the strained ring often drives the biological activities of aziridines. Despite its importance, the enzymes and biosynthetic strategies deployed to install this reactive moiety remain understudied. Herein, we report the use of in silico methods to identify enzymes with potential aziridine-installing (aziridinase) functionality. To validate candidates, we reconstitute enzymatic activity in vitro and demonstrate that an iron(IV)-oxo species initiates aziridine ring closure by the C-H bond cleavage. Furthermore, we divert the reaction pathway from aziridination to hydroxylation using mechanistic probes. This observation, isotope tracing experiments using H218O and 18O2, and quantitative product analysis, provide evidence for the polar capture of a carbocation species by the amine in the pathway to aziridine installation.
Collapse
Affiliation(s)
- Lide Cha
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jared C Paris
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Brady Zanella
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Martha Spletzer
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Angela Yao
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Wei-Chen Chang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
5
|
Tao H, Ushimaru R, Awakawa T, Mori T, Uchiyama M, Abe I. Stereoselectivity and Substrate Specificity of the Fe(II)/α-Ketoglutarate-Dependent Oxygenase TqaL. J Am Chem Soc 2022; 144:21512-21520. [DOI: 10.1021/jacs.2c08116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Hui Tao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-0033, Japan
- ACT-X, Japan Science and Technology Agency (JST), Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-0033, Japan
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-0033, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Research Initiative for Supra-Materials (RISM), Shinshu University, Ueda 386-8567, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
6
|
Kurosawa S, Hasebe F, Okamura H, Yoshida A, Matsuda K, Sone Y, Tomita T, Shinada T, Takikawa H, Kuzuyama T, Kosono S, Nishiyama M. Molecular Basis for Enzymatic Aziridine Formation via Sulfate Elimination. J Am Chem Soc 2022; 144:16164-16170. [PMID: 35998388 DOI: 10.1021/jacs.2c07243] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Natural products containing an aziridine ring, such as mitomycin C and azinomycin B, exhibit antitumor activities by alkylating DNA via their aziridine rings; however, the biosynthetic mechanisms underlying the formation of these rings have not yet been elucidated. We herein investigated the biosynthesis of vazabitide A, the structure of which is similar to that of azinomycin B, and demonstrated that Vzb10/11, with no similarities to known enzymes, catalyzed the formation of the aziridine ring via sulfate elimination. To elucidate the detailed reaction mechanism, crystallization of Vzb10/11 and the homologous enzyme, AziU3/U2, in the biosynthesis of azinomycin B was attempted, and the structure of AziU3/U2, which had a new protein fold overall, was successfully determined. The structural analysis revealed that these enzymes adjusted the dihedral angle between the amino group and the adjacent sulfate group of the substrate to almost 180° and enhanced the nucleophilicity of the C6-amino group temporarily, facilitating the SN2-like reaction to form the aziridine ring. The present study reports for the first time the molecular basis for aziridine ring formation.
Collapse
Affiliation(s)
- Sumire Kurosawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Fumihito Hasebe
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hironori Okamura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ayako Yoshida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kenichi Matsuda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yusuke Sone
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takeo Tomita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tetsuro Shinada
- Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Hirosato Takikawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Saori Kosono
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Makoto Nishiyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
7
|
Wu S, Li Y. A Unique Sulfotransferase-Involving Strigolactone Biosynthetic Route in Sorghum. FRONTIERS IN PLANT SCIENCE 2021; 12:793459. [PMID: 34970291 PMCID: PMC8713700 DOI: 10.3389/fpls.2021.793459] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/08/2021] [Indexed: 05/17/2023]
Abstract
LOW GERMINATION STIMULANT 1 (LGS1) plays an important role in strigolactones (SLs) biosynthesis and Striga resistance in sorghum, but the catalytic function remains unclear. Using the recently developed SL-producing microbial consortia, we examined the activities of sorghum MORE AXILLARY GROWTH1 (MAX1) analogs and LGS1. Surprisingly, SbMAX1a (cytochrome P450 711A enzyme in sorghum) synthesized 18-hydroxy-carlactonoic acid (18-hydroxy-CLA) directly from carlactone (CL) through four-step oxidations. The further oxidated product orobanchol (OB) was also detected in the microbial consortium. Further addition of LGS1 led to the synthesis of both 5-deoxystrigol (5DS) and 4-deoxyorobanchol (4DO). Further biochemical characterization found that LGS1 functions after SbMAX1a by converting 18-hydroxy-CLA to 5DS and 4DO possibly through a sulfonation-mediated pathway. The unique functions of SbMAX1 and LGS1 imply a previously unknown synthetic route toward SLs.
Collapse
|